用户名: 密码: 验证码:
六盘山香水河小流域植被结构水文影响及其坡面尺度效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为认识水文要素的空间变化,量化其对水文过程影响及坡面尺度效应,本文于2012年和2013年生长季在六盘山香水河小流域对典型坡面和主要植被类型进行了立地因子和林分结构特征的调查,并利用传统水文学方法研究了林分生态水文过程。研究结果量化了植被的水文影响及坡位差异,分析了坡面尺度效应,加深了对植被系统结构的水文影响及坡面尺度效应形成机理的认识,可为发展森林生态水文学理论和促进林水综合管理提供科学指导。
     1.主要植被类型结构特征及蒸散差异
     香水河小流域内主要森林类型的结构特征差异较大。林分树高、胸径等分布存在明显差异。在整个生长季,华山松林、白桦林、辽东栎林的冠层LAI动态表现为生长初期快速上升,生长中期保持稳定,生长后期缓慢下降;油松林的冠层LAI变化幅度较小。
     本文研究的所有森林样地的土壤均为灰褐土,土壤石砾含量大于20%。华山松林、油松林、白桦林、辽东栎林的土壤特征指标存在差异,0~100cm土层的土壤容重分别为0.83、1.04、0.79、1.14g·cm-3;总孔隙度分别为66.5、59.6、68.0、56.4%;田间持水量分别为47.1、32.9、62.4、35.2%。
     在2012年生长季观测期(5月11日—10月18日),林外总降雨量507.2mm,属于平水年。受树种组成、林冠郁闭度、植被垂直分层等林分结构特征差异影响,各林分的蒸散量大小和组分差异较大,华山松林、白桦林、辽东栎林、油松林、华北落叶松林的蒸散量(和组分)分别为413.2、480.7、389.0、377.6,541.4mm分别占同期降雨量的81.5、94.8、76.7、74.4和106.7%。
     2.不同密度华北落叶松结构特征及蒸散(组分)差异
     在2007年间伐后形成的不同密度(1811、1556、1134、1033、844株·hm-2)华北落叶松林平均树高相差不大(13.8~14.8m),但平均胸径随林分密度降低而逐渐增大(16.3~18.1cm)。不同密度的华北落叶松林的林冠LAI变化趋势一致,表现为生长初期快速上升,生长中期保持稳定,生长后期缓慢下降;林冠LAI随林分密度增大呈直线上升。林分密度对土壤物理性质无显著影响。
     在不同密度的华北落叶松林样地,其总蒸散量(和组成)分别为614.9、549.6、531.7、500.7、466.9mm,分别占同期降雨量的121.2、108.3、104.8、98.7、92.0%,表现为蒸散量随林分密度增大而增加,即在间伐降低林分密度的5年后还可明显观测到其降低林分蒸散耗水的作用。
     3.不同坡位华北落叶松结构特征、蒸散(组分)差异及坡面尺度效应
     选择分布华北落叶松的半阳坡作为典型坡面,坡面林分胸径主要分布在16~24cm,树高均在11m以上。不同坡位的(坡顶、坡中上、坡中、坡中下、坡底)华北落叶松林生长季平均LAI依次为2.97、3.14、3.20、3.19、3.24,随坡位降低逐渐增加,从坡顶向下的坡面滑动平均值随水平坡长增加而增加。7从坡顶开始坡长为200m时(水平坡长395m),树高、胸径、LAI等结构指标的滑动平均值近似于整个坡面的平均值。为评价不同坡位处的林分结构对整个坡面的代表性及其随坡长的变化规律,建立了不同坡位处林分结构指标与坡面平均值的比值沿从坡顶向下的水平坡长的数量关系。
     在2013年生长季观测期(5月16日—10月19日),林外总降雨量为815.9mm,属于丰水年。在典型坡面上,各坡位的(坡顶、坡中上、坡中、坡中下、坡底)华北落叶松样地的林分蒸散量(和组分)依次为425.7、440.7、449.8、448.8、486.1mm,分别占同期降雨量的52.5、54.0、55.1、55.0、59.6%,其占同期降雨量比例明显低于往年。林分蒸散及组分均存在坡位差异,冠层截留和蒸腾量随坡位降低呈增加趋势,林下蒸散趋势相反;总蒸散量随坡位降低逐渐增大。
     森林的水文影响存在坡面尺度效应。从坡顶向下计算的2013年生长季森林蒸散及其分量的坡面滑动平均值,随水平坡长增加,冠层截留量表现为先减小后持续增加,林下蒸散表现为先增加后持续降低,乔木蒸腾量和总蒸散量表现为持续增加;当坡长约200m时,森林的冠层截留、乔木蒸腾、林下蒸散、总蒸散量的坡面滑动平均值分别为140.5、119.7、181.0、441.2mm,比整个坡面的平均值分别低3.9%(5.6mm)、低9.4%(12.4mm)、高5.6%(9.6mm)、低1.9%(8.4mm)。
     建立了森林蒸散及其分量的样地测定值与坡面平均值的比值随离开坡顶水平距离而变化的统计关系,依此可将任一特定坡位分样地测定值尺度上推为坡面平均值,从而在减少工作量的同时还提升调查精度。
     4.不同森林样地的产流特征
     对2012年生长季森林样地的水量平衡计算表明,并非各林分样地均有产流,其中华山松林和辽东栎林分别产流16.6和54.7mm,但油松林和白桦林的水量平衡项分别为-6.6和-82.1mm,需消耗土壤水分。
     随着华北落叶松林的林分密度由高至低,其计算产流量分别为33.1、31.9、68.5、85.9、89.5mm,密度减少53.5%,产流量增加幅度为170.3%,表明在间伐降低林分密度的5年后还可明显观测到其增加产流效果。
     在降水丰富的2013年生长季,在典型坡面上位于坡顶、坡中、坡底的华北落叶松林样地的水量平衡计算所得的产流量分别为353.7、344.4、301.4mm。
     5.冠层LAI与水文过程的关系
     冠层LAI与其他林分结构指标(郁闭度、树高、密度、胸高断面积)存在较高相关性,且LAI直接影响林分的各个水文过程。为了认识林分结构对水文过程的影响,利用2012年各样地生长季冠层平均LAI和水文过程观测数据,进行了相关分析。结果显示:冠层LAI与总蒸散(R2=0.56)、冠层截留(R2=0.59)、乔木蒸腾(R2=0.52)呈正相关且相关性较高,与林地产流量负相关且相关性较高(R2=0.53),但与林下蒸散呈负相关且相关性较低(R2=0.12)。说明,林分结构是水文过程主要影响因素。
For understanding space changes of the hydrological elements, to quantify its impact onthe hydrological processes and the slope scale effect. Based on the measurements of vegetationstructure and site factors of the typical slope andmain vegetation types,and the observations offorest ecological and hydrological processes using the traditional hydrology method from2012to2013two years growing season (May to October) in Xiangshuihe watershed of LiupanMountains, Ningxia. We quantified the hydrological effects of vegetation and it’s slopedifference and analyzed the slope scale effect. This study is helpful to understand thehydrological effect of vegetation system structure and its formation mechanism form samplescale to slope scale, and to promote the development of forest ecological hydrology theory, andto provide scientific guidance for regional forest integrated water management.
     1. The differences of vegetation structure characteristics and evapotranspiration invegetation type
     The structure characteristics of main forest type in Xiangshuihe watershed are different.Significant differences were diameter at breast height and tree height. The season change trendof canopy LAI of Pinus armandii forest, Betula platyphylla forest and Quercus liaotungensisforest was similar, the dynamic of canopy LAI was showed for growing rapidly rising in earlygrowth stage, remain stable in mid growth stage, and slow decline in later growth stage. but theseason changing scale of canopy LAI of P. tablaeformis forest was small.
     The forest soil types are mostly black brown soil and gravel content is higher inXiangshuihe watershed. The soil characteristic of B. platyphylla forest, P.tablaeformis forest,P.armandii forest and Q.liaotungensis forest was similar, bulk density was0.83、1.04、0.79、1.14g·cm-3, total porosity was66.5、59.6、68.0、56.4%, field capacity was47.1、32.9、62.4、35.2%in0-100cm soil layer, respectively.
     Rainfall is507.2mm in the growing season (May11to October18) of2012inXiangshuihe watershed. The results showed that forest evapotranspiration and its components difference were mainly affected by species composition, canopy density, the stand verticalstructure. The stand evapotranspiration of P. armandii forest, B. platyphylla forest,Q.liaotungensis forest, P. tablaeformis forest and Larix Principis rupprechtii forest were413.2,480.7,389.0,377.6,541.4mm, respectively accounted for81.5,94.8,76.7,74.4and106.7%ofthe rainfall at the same period, but it’s components are different.
     2. The differences of Larix Principis rupprechtii forest structure characteristics andevapotranspiration (components) in different density
     Different density of Larix Principis rupprechtii forest were thinning in2007(1811、1556、1134、1033、844tree·hm-2), the average tree height of different density of Larix Principisrupprechtii forests were similar(13.8~14.8m), but the DBH is increased with the decrease ofstand density (16.3-18.1cm).The season change trend of LAI of Larix Principis rupprechtiiforests with different density were similar, the dynamic of canopy LAI was showed forgrowing rapidly rising in early growth stage, remain stable in mid growth stage, and slowdecline in later growth stage. and LAI were positively correlated with forest density.
     The soil hydrological-physical properties of Larix Principis rupprechtii forests withdifferent density had certain difference, but there was no significant change rule.
     The evaporation of L. Pricipis-rupprechtiis with the density of1811、1556、1134、1033、844tree·hm-2were614.9,549.6,531.7,500.7,466.9mm, respectively accounted for121.2,108.3,104.8,98.7and92.0%of the rainfall (507.2mm) at the same period, and the value ofevaporation was positively correlated whit stand density. The results show that thinningtreatment reducing stand density after5years was an observed effective measure for reducingthe stand evapotranspiration.
     3. The differences of Larix Principis rupprechtii forest structure characteristics andevapotranspiration (components) and slope scale effect in different slpoe
     Half-sunny slope as a typical slope was choose that distribution of L pricipis-rupprechtii,DBH had mainly distributed in16-24cm, and an average value of tree height more than11m.The average value of LAI of different slope (top,upper, middle,lower and bottom slope position) was2.97,3.14,3.20,3.19,3.24in growing season, respectively.Moving average increase withthe of level of slope length from the top downward slope.The soil hydrological-physicalproperties of Larix Principis rupprechtii forests with different slope position had certaindifference, but there was no significant change rule.The result showed that stand structurefeatures (Tree height, DBH, LAI) can represent the entire slope forest stand structurecharacteristics when investigating slope length was200m.To evaluate the representation ofstand structure to total slope and change rule stand structure with the slope length in thedifferent slope position, the quantitative relationship was established between the ratio of standstructure in different slope position with slope average value and the slope horizontal distanceform top to bottom.
     Rainfall is815.9mm in the growing season (May16to October19) in2013, belong to thewet year. The evaporation of L. Pricipis-rupprechtiis in different slope positions (from topslope to bottom slope) were425.7,440.7,449.8,448.8mm,486.1mm, on typical slope,respectively accounted for52.5、54.0、55.1、55.0and59.6%of the rainfall at the same period.Accounting for the proportion of rainfall was decreased obviously, because of effected byrainfall and meteorological conditions. The evapotranspiration and its components existedslope position differences. Interception and transpiration was increase with lower slopepositions, contrary trend of floor evaporation; Total evapotranspiration was increase with lowerslope positions.
     The effect of forest to hydrological exist slope scale effec. Calculation of the slpoemoving average value of the stand evapotranspiration and its components form top to lower ingrowing season in2013, canopy interception showed reduced first and continue to increaseafter, floor evaporation showed increase first and continue to reduced after, tree transpirationand total evapotranspiration showed continue to increase with the slope horizontal distanceincrease. Compared to the average value, the moving average value of canopy interception, treetranspiration, understory evapotranspiration and total evapotranspiration was respectively lower3.9%(5.6mm), lower9.4%(12.35mm), higher5.6%(9.6mm) and lower1.9%(8.4mm) when slope length was200m.
     Relationships between ratios of forest evapotranspiration and its components measured ina specific position of a slope to the slope average and the horizontal distance from the slope topwas obtained in this paper. Therefore, the average of an index for a whole slope can beupscaled from the value measured in any given slope position. That would lessen the workloadand improve the accuracy.
     4. The flow characteristics of different vegetation types
     Water balance calculation of forest plots in growing season in2012, the results showed:not all stand sample has water output. The capacity of water output of P. armandii forest and Q.liaotungensis forest was16.6and54.7mm, water output of P. tablaeformis forest and B.platyphylla forest was-6.6and-82.1mm, consumption of soil moisture.
     The water flow of L. Pricipis-rupprechtiis forest with density from high to low were:33.1,31.9,68.5,85.9, and89.5mm, runoff increased by170.3%when density decreased by53.5%.The results showed that thinning treatment reducing stand density after5years was an effectivemeasure for increasing the runoff production.
     The water flow of L. Pricipis-rupprechtiis forest in top, middle and bottom slope positionwere353.7,344.4,301.4mm respectively in2013year growing season, runoff decreased fromtop slope to bottom slope.
     5. The relationship between leaf area index and hydrological process
     Better correlations between LAI with other forest structure, and LAI was direct effecedthe hydrological process of stand. In order to understanding the effected of forest standstructure for hydrological processes. The correlation analysis was used the average value ofLAI in growing season and data of hydrological process in2012, the results showed: the totalevapotranspiration, canopy interception and tree transpiration was positively related with leafarea index (LAI), and the correlation coefficients (R2)were respectively0.61,0.50and0.45.However, understory evapotranspiration was negatively related with leaf LAI, with a low correlation coefficient of0.12. There was a liner relationship between LAI and forest waterflow and the correlation coefficient (R2) was up to0.58. The results showed that foreststructure characteristics were the important influence factors of forest evapotranspiration andrunoff.
引文
Andersen J, Dybkjaer G, Jensen KH et al. Use of remotely sensed precipitation and leaf area index in adistributed hydrological model. Journal of Hydrology,2002,264,(1/4):34-50
    Andréassian V.Waters and forests;from historical controversy to scientific debate.Journal of Hydrology,2004,291:1-27
    Anthony WK. Translating Models Across Scales in the Landscape. In:MonicaG.Tuner, RobertH. Gardner.edsQuantitative Methods in Landscape Ecology. Springer-Verlag,1991,479-518
    Arias D, Calvo-Alvarado J, Dohrenbusch A. Calibration of LAI-2000to estimate leaf area index (LAI) andassessment of its relationship with stand productivity in six native and introduced tree species in CostaRica. Forest Ecology and Management,2007,247:185-193
    Asner GP, Scurlock JMO, Hicke JA. Global synthesis of leaf area index observations: implications forecological and remote sensing studies. Global Ecology&Biogeography,2003,12:191-205
    Atkinson TC. Techniques for measuring subsurface flow on hillslopes. Kirkby M.J. Hillslope Hydrology.Chichester:Wiley,1978,73-120
    Baldocchi DD, Law BE, Anthoni PM. On measuring and modeling energy fluxes above the floor of ahomogeneous and heterogeneous conifer forest. Agricultural and Forest Meteorology,2000,102:187-206
    Baldocchi DD, Vogel CA. Energy and CO2flux densities above and below a temperate broad-leaved forestand a boreal pine forest. Tree Physiol,1996,16:5-16
    Bergkamp G. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrub lands. Catena,1998,33:201-220
    Bl schl G. Scaling in hydrology, Hydrological Processes,2001,15:709-711
    Bonan GB. Forests and climate change: forcings, feedbacks and the climate benefits of forests. Science,2008,320:1444-1449
    Bosch JM,Hewlett JD. A review of catchment experiments to determine the effect of vegetation changes onwater yield and evapotranspiration.Journal of Hydrology,1982,55(1/4):3-23
    Bronstert A, Bárdossy A. Uncertainty of runoff modelling at the hillslope scale due to temporal variations ofrainfall intensity. Physics and Chemistry of the Earth,2003,28:283-288
    Brown A, Zhang L, McMahon TA, et al. A review of paired catchment studies for determining changes inwater yield resulting from alterations in vegetation. Journal of Hydrology,2005,310,28-61
    Brutsaert W. Hydrology: An Introduction. Cambridge University Press,2005
    Bucci SJ, Scholz FG, Goldstein G, et al. Controls on stand transpiration and soil water utilization along atree density gradient in a Neotropical savanna. Agricultural and forest meteorology,2008,148:839-849
    Cammeraat ELH. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchmentin southeast Spain. Agriculture, Ecosystems and Environment,2004,104:317-332
    Cerdan O, Bissonnais YL,Govers G, et al. Scale effect on runoff from experimental plots to catchments inagricultural areas in Normandy. Journal of Hydrology,2004,299:4-14
    Chen JM. Optically-based methods for measuring seasonal variation of leaf area index in boreal coniferstands. Agricultural and Forest Meteorology,1996,80:135-163
    David JS, Bellot J, Birot Y, et al. Water fluxes in forests. In: Birot, Y.,Gracia, C., Palahi, M.(Eds.), Water forForests and People in the Mediterranean Region–A Challenging Balance. What Science Can Tell Us1.European Forest Institute, Joensuu.2011
    Delphis F, Levia J, Frost E. A review and evaluation of stemflow literature in the hydrologic andbiogeochemical cycles of forested and agricultural ecosystems.Journal of Hydrology,2003,274:1-29
    Esteves M, Lapetite JM. A multi-scale approach of runoff generation in a Sahelian gully catchment: a casestudy in Niger. CATENA,2003,50(2-4):255-271
    Ewers BE, Gower ST, Bond LB. Effects of stand age and tree species on canopy transpiration and averagestomatal conductance of boreal forests. Plant, Cell and Environment,2005,28:660-678
    Farley KA. Effects of afforestation on water yield: A global synthesis with implications for policy. GlobalChange Biology,2005,11:1565-1576
    Federer, CA. BROOK90: a simulation model for evaporation, soil water, and streamflow, Version3.1.Computer freeware and documentation. USDA Forest Service.1995.
    Friedman ST. Environmental aspects of the intensive plantation/reserve debate. J. Sustain. Forest,2006,21:59-73
    Fu BJ, Wang J, Chen LD, et al. The effects of land use on soil moisture variation in the Danangou catchment,the Loess Plateau of China. Catena,2003,54:197-211
    Giambelluca TW, Scholz FG, Bucci SJ et al. Evapotranspiration and energy balance of Brazilian savannaswith contrasting tree density. Agricultural and Forest Meteorology,2009,149:1365-1376
    Giesen N van de, Stomph Tjeerd Jan, Ridder Nico de. Surface runoff scale effects in West Africanwatersheds: Modeling and management options. Agricultural Water Management,2005,72(2):109-130
    Hebert MT, Jack SB. Leaf area index and site water balance of loblolly pine (Pinus taeda L) across aprecipitation gradient in East Texas. Forest Ecology and Management,1998,105:273-282
    Helvey JD, Patric JH. Canopy and litter interception of rainfall by hardwoods of eastern United States. WaterResour Res,1965,1:193-205
    Hibbert AR. Water yield changes after converting a forested catchment to grass. Water Resources Research,1969,5:634-640
    Hornbeck JW,Swank WT. Watershed ecosystem analysis as a basis for multiple use management of easternforests.Eco1.App1,1992,(2):238-247
    Iida S,Tanaka T, Sugita M. Change of evapotranspiration components due to the succession from Japanesered pine to evergreen oak. Journal of Hydrology,2006,326;166-180
    Ishihara MI, Hiura T. Modeling leaf area index from litter collection and tree data in a deciduous broadleafforest. Agricultural and Forest Meteorology,2011,151:1016-1022
    Johnson RC. The interception, throughfall and stemflow in a forest highland in Scotland and the comparisonwith other upland forests in the U. K. Journal of Hydrology,1990,118(1/4):281-287
    Jonckheere I, Fleck S, Nackaerts K et al. Review of methods for in situ leaf area index determination. Part I.Theories, sensors and hemispherical photography Agricultural and Forest Meteorology,2004,121:19-35
    Kiersch B,Tognetti S.Land-water linkages in rural watersheds:Results from the FAO electronic workshop,18Sept.-27Oct.FAO,2000
    Kirkby M. Hillslope runoff processes and models. Journal of Hydrology,1988,100:315-339
    Kirsten W, Marc S. Advantages of a Topographically Controlled Runoff Simulation in aSoil–Vegetation–Atmosphere Transfer Model.American Meteorological Society,2002,4:131-148
    Komnitsas K, Guo XY, Li DL. Mapping of soil nutrients in an abandoned Chinese coal mine and wastedisposal site. Minerals Engineering,2010,23:627-635
    Kumagai T, Aoki S, Shimizu T, et al. Sap flow estimates of stand transpiration at two slope positions in aJapanese cedar firest watershed. Tree Physiology,2007,27:161-168
    Kumagai T, Tateishi M, Miyazawa Y, et al. Estimation of annual forest evapotranspiration from a coniferousplantation watershed in Japan: water use components in Japanese cedar stands. Journal of Hydrology,2014,508:66-76
    Kumagai T, Tateishi M, Shimizu T, et al. Transpiration and canopy conductance at two slope positions in aJapanese cedar forest watershed. Agricultural and Forest Meteorology,2008,148:1444-1455
    Leonard RE. Net precipitation in a northern hardwood forest. J Geophys Res,1961,66:2417-2421
    Lin Y, Wang GX. Scale effect on runoff in alpine mountain catchments on China's Gongga Mountain.Hydrology and Earth Systen Sciences Discussions,2010,7:2157-2186
    Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions. A review ofstudies in Europe. Journal of Hydrology,2007,335:37-54
    Ludwig JA, Tongway DJ, Marsden SG. Stripes, strands or stipples: modelling the influence of threelandscape banding patterns on resource capture and productivity in semiarid woodlands, Australia.Catena,1999,37:257-273
    Mc Culloch JG,Robinson M. History of forest hydrology.Journal of Hydrology,1993,150:189-216
    Mitchell PJ, Veneklaas E, Lambers H, et al. Partitioning of evapotranspiration in a semi-arid eucalyptwoodland in south-western Australia. Agriculture and Forest Meteorology,2009,149(1):25-37
    Molina AJ, del Campo AD. The effects of experimental thinning on throughfall and stemflow: A contributiontowards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management,2012,269:206-213
    Murakami S, Tsuboyama Y, Shimizu T, et al. Variation of evapotranspiration with stand age and climate in asmall Japanese forested catchment.Journal of Hydrology,2000,227:114-127
    Nasahara KN, Muraoka H, Nagai S et al. Vertical integration of leaf area index in a Japanese deciduousbroad-leaved forest. Agricultural and Forest Meteorology,2008,148:1136-1146
    Oishi AC, Oren R, Stoy PC. Estimating components of forest evapotranspiration: A footprint approach forscaling sap flux measurements. Agricultural and forest meteorology,2008,148:1719-1732
    Ojima DD,Galvin KA, Turner BL. The global impact of land-use change. BioScience,1994,44(5):300-304
    Pfautsch S, Bleby TM, Rennenberg H. Sap flow measurements reveal influence of temperature and standstructure on water use of Eucalyptus regnans forests. Forest Ecology and Management,2010,259:1190-1199
    Raz-Yaseef N, Yakir D, Schiller G, et al. Dynamics of evapotranspiration partitioning in a semi-arid forest asaffected by temporal rainfall patterns.Agricultural and Forest Meteorology,2012,157(15),77-85
    Rutter AJ, Kershaw KA, Robins PC, et al. A predictive model of rainfall interception in forests I. Derivationof the model from observations in a plantation of Corsican pine. Agric Meteorol,1971,9:367-384
    Samba SAN, CamiréC, Margolis HA. Allometry and rainfall interception of Cordyla pi nnata in a semi-aridagroforestry park-lard. Senegal For Ecol Man,2001,154:277-288
    Schaap MG. Forest floor water content dynamics in a Douglas fir stand.Journal of Hydrology,1997,201(1-4):367-383
    Schiller G, Cohen Y. Water balance of Pinus halepensis Mill. Afforestation in an arid region. Forest Ecologyand Management.,1998,105,121-128
    Schleppi P, Conedera M, Sedivy I, et al. Correcting non-linearity and slope effects in the estimation of theleaf area index of forests from hemispherical photographs. Agricultural and Forest Meteorology,2007,144:236-242
    Scott AW, Jetse D. Regional scale hydrological modelling using multiple~parameter landscape zones and aquasi distributed water balance model, Regional scale hydrological modelling using multipleparameter Hydrology and Earth System Sciences,2001,5(1):59-74
    Sharpley AP, Kleinman. Effect of Rainfall Simulator and Plot Scale on Overland Flow and PhosphorusTransport. Journal of environmental quality,2003,32(6):2172-2179
    Sprintsin M, Cohen S, Maseyk K, et al. Long term and seasonal courses of leaf area index in a semi-aridforest plantation. Agricultural and Forest Meteorology,2011,151:565–574
    Staudt K, Serafimovich A, LukasSiebicke, et al. Vertical structure of evapotranspiration at a forest site (acase study). Agricultural and Forest Meteorology,2010,709-729
    Stednick JD. Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology,1996,176:79-95
    Stoyan H, De-polli H, Bohm S, et al. Spatial heterogeneity of soil respiration and related properties at theplant scale. Plantand Soil,2000,222:203-214
    Turner BL,Meyer WB,SKloe DL. Global land use/land cover change: towards an integrated program ofstudy. Ambio,1994,23(1):91-95
    Vertesy RA, Hatton TJ. Long-term growth and water balance predictions for a mountain ash (Eucalyptusregnans) forest catchment subject to clear-felling and regeneration. Tree Physiology,1996,16:221-232
    Wasseige CD, Bastin D, Defourny P. Seasonal variation of tropical forest LAI based on field measurementsin Central African Republic. Agricultural and Forest Meteorology,2003,119:181-194
    Watson DJ. Comparative physiological studies on the growth of field crops. I. Variation in net assimilationrate and leaf area between species and varieties, and within and between years. Annals of Botany,1947,11:41-76
    Weiss M, Baret F, Smith GJ, et al. Review of methods for in situ leaf area index (LAI) determination Part II.Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology,2004,121:37-53
    Wiens JA. Spatial scaling in ecology. Functional Ecology,1989,3:385-397
    阿拉木萨,蒋德明,骆永明.半干旱区人工固沙灌丛发育过程土壤水分及水量平衡研究.水土保持学报,2005,19(4):107-110
    曹恭祥,王绪芳,熊伟等.宁夏六盘山人工林和天然林生长季的蒸散特征.应用生态学报,2013,24(8):2089-2096
    曹恭祥,熊伟,王彦辉等.宁夏六盘山华山松树干液流的动态研究.内蒙古农业大学学报,2010,31(2):42-47
    曹丽娟,刘晶淼.陆面水文过程研究进展.气象科技,2005,32(2):97-103
    常丹东,刁鸣军,王礼先.黄河流域水土保持减水定额研究.中国水土保持科学,2005a,3(2):57-64
    常丹东,王礼先.黄河上中游人工造林对年径流量的影响.山地学报,2005b,23(6):678-686
    陈吉虎.关于森林对降水截留过程的研究.河南水利与南水北调,2008,12:23-29
    陈莉莉,王得祥,于飞等.林分密度对土壤物理性质的影响.东北林业大学学报,2013,41(8):61-64
    程根伟,陈桂蓉.贡嘎山暗针叶林区森林蒸散发特征与模拟.水科学进展2003a,14(5):617-621
    程根伟,余新晓,赵玉涛等.贡嘎山亚高山森林带蒸散特征模拟研究.北京林业大学学报,2003b,25(1):23-27
    丹利,季劲钧,马柱国.新疆植被生产力与叶面积指数的变化及其对气候的响应.生态学报,2007,27(9):3582-3592
    杜阿朋,于澎涛,王彦辉等.六盘山北侧叠叠沟小流域土壤物理性质空间变异的研究.林业科学研究,2006,19(5):547-554
    段旭.六盘山地区水文要素坡面变化.北京:中国林业科学研究院博士学位论文,2011
    范世香,裴铁,蒋德明等.两种不同林分截留能力的比较研究.应用生态学报,2000,11(5):671-674
    傅伯杰,杨志坚,王仰麟等.黄土丘陵地区土壤水分空间分布数学模型.中国科学,2001,31(3):185-191
    高人.辽宁东部山区几种主要森林植被类型水量平衡研究.水土保持通报,2002,22(2):5-8
    郭明春,于澎涛,王彦辉等.林冠截持降雨模型的初步研究,应用生态学报,2005,16(9):1633-1637
    郭瑞萍,莫兴国.森林、草地和农田典型植被蒸散量的差异.应用生态学报,2007,18(8):1751-1757
    郭志华,向洪波,刘世荣等.落叶收集法测定叶面积指数的快速取样方法.生态学报,2010,30(5):1200-1209
    郭忠升,邵明安.黄土丘陵半干旱区柠条锦鸡儿人工林对土壤水分的影响.林业科学,2010,46(12):1-7
    贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟.生态学报,2003,32(2):251-258
    贺庆棠.气象学.北京:中国林业出版社,1988,11
    胡振华,王治国.晋西黄土残垣区坡面的日蒸散模型.中国水土保持科学,2003,1(1):95-98
    黄新会,王占礼,牛振华.水文过程及模型研究主要进展.水土保持研究,2004,11(4):105-108
    姜娜,邵明安,雷廷武等.黄土高原六道沟小流域坡面土壤入渗特性的空间变异研究.水土保持学报,2005,19(1):14-17
    靳甜甜,傅伯杰,刘国华等.不同坡位沙棘光合日变化及其主要环境因子.生态学报,2011,31(7):1783-1793
    巨关升,刘奉觉等.选择树木蒸腾耗水测定方法的研究.林业科技通讯,1998,10:12-14
    李广德,贾黎明,孔俊杰.运用热技术检测树干边材液流研究进展.西北林学院学报,2008,23(3):94-100
    李民义,张建军,郭宝妮等.晋西黄土区不同密度油松人工林林下植物多样性及水文效应.生态学杂志,2013,32(5):1083-1090
    李润奎,朱阿兴,李宝林等.流域水文模型对土壤数据响应的多尺度分析.地理科学进展.2011,30(1):80-86
    刘建立,王彦辉,于澎涛等.六盘山叠叠沟小流域典型坡面土壤水分的植被承载力.植物生态学报,2009,33(6):1101-1111
    刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996:203-206.
    刘向东,吴钦孝,赵鸿雁等.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响.中国科学院西北水土保持研究所集刊,1991,(14):9-20
    刘章文,陈仁升,宋耀选等.祁连山典型灌丛降雨截留特征.生态学报,2012,32(4):1337-1346
    刘志军,张万军,曹健生等.太行山石质山地石榴中幼龄林林地蒸散规律研究.应用生态学报,2003,14(6):879-881
    吕一河,傅伯杰.生态学中的尺度及尺度转换方法.生态学报,2001,21(12):2096-2105
    吕瑜良,刘世荣,孙鹏森等.川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征.林业科学,2007,43(8):1-7
    马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换.北京林业大学学报.2001,23(4):1-5
    马雪华.森林水文学.北京:中国林业出版社,1993
    牛志明,解明曙.新一代土壤水蚀预测模型-WEPP.中国水土保持,2001,(1):20-23
    潘成忠,上官周平.黄土半干旱区坡地土壤水分、养分及生产力空间变异.应用生态学报,2004,15(11):2061-2066
    彭舜磊,王得祥,赵辉等.我国人工林现状与近自然经营途径探讨.西北林学院学报,2008,23(2):184-188
    綦俊谕,蔡强国,蔡乐等.岔巴沟、大理河与无定河水土保持减水减沙作用的尺度效应.地理科学进展,201130(1):95-102
    秦耀东.土壤物理学.北京:高等教育出版社,2003
    邱治军,曾振军,周光益等.流溪河小流域3重林分的土壤水分物理性质.南京林业大学学报(自然科学版),2010,34(3):62-66
    冉大川.黄河中游河龙区间水沙变化研究综述.泥沙研究,2006(3):72-81
    邵明安,黄明斌.土-根系统水动力学.西安:陕西科学技术出版社,2000
    沈泽昊.山地森林样带植被一环境关系的多尺度研究.生态学报,2002,23(4):461-470
    石培礼,李文华.森林植被变化对水文过程和径流的影响效应.自然资源学报,2001,16(5):481-487
    时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响.北京:中国林业科学研究院博士学位论文,2006
    孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展.应用生态学报.2004,15(6):1074-1078
    孙嘉,王海燕,丁国栋等.不同密度华北落叶松人工林土壤物理性质研究.林业资源管理,2011,1:62-66
    孙林,熊伟,管伟等.华北落叶松树体储水利用及其对土壤水分和潜在蒸散的响应:基于模型模拟的分析.植物生态学报,2011,35(4):411-421
    孙鹏森,刘世荣,刘京涛等.利用不同分辨率卫星影像的NDVI数据估算叶面积指数(LAI)——以岷江上游为例.生态学报,2006,26(11):3826-3834
    孙向阳,王根绪,吴勇等.川西亚高山典型森林生态系统截留水文效应.生态学报,2013,33(2):501-508
    覃世杰,廖承锐,陈孟等.不同经营密度对柳杉纯林土壤理化性质的影响.广州农业科学,2013,4:40-46
    汤立群,陈国祥.流域尺度与治理对产流模式的影响分析研究.土壤侵蚀与水土保持学报,1996,2(1):22-28
    童鸿强,王玉杰,王彦辉等.六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征.林业科学研究,2011,24(1):13-20
    王金叶,于澎涛,王彦辉等.生态水文过程研究.北京:科学出版社,2008.
    王俊玲,金红喜,杨占彪等.六盘山华北落叶松人工林多样性、生产力研究.兰州大学学报(自然科学版),2008,(1):31-42
    王彦辉,熊伟,于彭涛等.干旱缺水地区森林植被蒸散耗水研究.中国水土保持科学,2006,4(4):19-25
    王轶浩,王彦辉,谢双喜等.六盘山小流域地形、植被特征与土壤水文物理性质的关系.生态学杂志,2012,31(1):145-151
    王云霓,熊伟,王彦辉等.宁夏六盘山三种针叶林初级净生产力年际变化及其气象因子响应.生态学报,2013,33(13):4002-4010
    王政权,王庆成.森林土壤物理性质的空间异质性研究.生态学报,2000,20:945-950
    卫正新,李树怀.不同林地林冠截留降雨特征的研究.中国水土保持,1997,(5):19-21
    魏焕奇,何洪林,刘敏等.基于遥感的千烟洲人工林蒸散及其组分模拟研究.自然资源学报,2012,27(5):778-789
    魏强,张秋良,代海燕等.大青山不同植被下的地表径流和土壤侵蚀.北京林业大学学报,2008,30(5):111-117
    魏天兴,朱金兆等.林分蒸散耗水量测定方法述评.北京林业大学学报.1999,21(3):86-91
    魏晓华,李文华,周国逸等.森林与径流关系—一致性和复杂性.自然资源学报,2005,20(5)761-770
    夏军.水文尺度问题.水利学报,1993(5):32-37
    肖文发,徐德应.森林能量利用与产量形成的生理生态基础.中国林业出版社.1999
    熊伟,王彦辉,于澎涛等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学,2008,44(1):34-40
    徐德应.森林的蒸散:方法与实践.见:中国林学会主编森林水文学术讨论会文集.北京:测绘出版社,1989.177-182
    徐丽宏,时忠杰,王彦辉等.六盘山主要植被类型冠层截留特征.应用生态学报,2010,21(10):2487-2493
    薛立,梁丽丽,任向荣等.华南典型人工林的土壤物理性质及其水源涵养功能.土壤通报,2008,39(5):986-989
    尹黎明,潘剑君,王秀英.APEX模型在淮河中上游坡面尺度的适宜性研究.中国水土保持科学,2012,10(2):1-7
    于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征.北京:科学出版社,2008
    于澎涛.分布式水文模型在森林水文学中的应用.林业科学研究,2000,13(4):431-438
    于维忠.论流域产流.水利学报,1985,2:1-11
    余新晓,陈丽华.晋西黄土地区小老树的防治与改造,干旱区资源与环境.1996,10(1):81-86
    余新晓,张建军,朱今兆等.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,1996,32(4):289-296
    余新晓,张振明,朱建刚.八达岭森林土壤养分空间异质性研究.土壤学报,2009,46:959-964
    余新晓,张志强,陈丽华等.森林水文.北京:中国林业出版社,2004
    余新晓.秦永胜.森林植被对坡地不同空间尺度侵蚀产沙影响分析.水土保持研究,2001,8(4):66-69
    余新晓.森林生态水文研究进展与发展趋势.应用基础与工程科学学报,2013,21(3):391-402
    张洪江,孙艳红,成云等.重庆缙云山不同植被类型对地表径流系数的影响.水土保持学报,2006,20(6):11-13
    张佳华,符淙斌,延晓冬等.全球植被叶面积指数对温度和降水的响应研究.地球物理学报,2002,45(5):631-638
    张庆,牛建明,Alexander B等.不同坡位植被分异及土壤效应—以内蒙古短花针茅草原为例.植物生态学报,2011,35(11):1167-1181
    张淑兰,王彦辉,于澎涛等.定量区分人类活动和降水量变化对泾河上游径流变化的影响.水土保持学报,2010,24(4):53-58
    张天曾.森林影响河川径流的流域因素.自然资源学报,1998,4(1):37-45
    张新建,袁凤辉,陈妮娜等.长白山阔叶红松林能量平衡和蒸散.应用生态学报,2011,22(3):607-613
    张远东,刘世荣,顾峰雪.西南亚高山森林植被变化对流域产水量的影响.生态学报,2011,31(24):7601-7608
    张志强,王礼先,余新晓等.森林植被影响径流形成机制研究进展.自然资源学报,2001,16(1):79-84
    张志强,王盛萍,孙阁等.流域径流泥沙对多尺度植被变化响应研究进展.生态学报,2006,26(7):2356-2364
    张志强.森林水文:过程与机制.北京:中国环境科学出版社,2002
    赵平,孙谷畴,倪广艳等.成熟马占相思水力导度对水分利用和光合响应的季节性差异.应用生态学报,2013,24(1):49-56
    郑怀舟,朱锦懋,魏霞等.5种热动力学方法在树干液流研究中的应用评述.福建师范大学学报.2007,23(4):119-123
    周萍,刘国彬,侯喜禄.黄土丘陵区侵蚀环境下不同坡面及坡位土壤理化特征研究.水土保持学报,2008,22(1):7-12
    邹杰,阎广建.森林冠层地面叶面积指数光学测量方法研究进展.应用生态学报,2010,21(11):2971-2979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700