用户名: 密码: 验证码:
Cytophaga hutchinsonii纤维素利用及运动相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油、煤炭等非可再生资源的逐渐枯竭,新的可再生能源的开发已经成为人们迫切的需求,以纤维素为主要成分的植物生物质是地球上最丰富的可再生资源。然而由于纤维素的结构,使其难以被高效降解。结晶纤维素的有效降解是实现木质纤维素高效转化的关键之一。自然界中多种生物具有纤维素降解能力,除了以游离纤维素酶系模式降解纤维素的真菌和以纤维小体模式降解纤维素的厌氧细菌外,某些好氧噬纤维菌如Cytophaga hutchinsonii同样具有极强的结晶纤维素降解能力。随着C. hutchinsonii基因组测序的完成,发现该菌基因组中不具有编码外切纤维素酶的基因,且内切纤维素酶缺少纤维素结合结构域,同时也没有编码典型运动器官的各个基因。因此可以认为,与已经阐明的微生物纤维素降解模式不同,C.hutchinsonii可能具有独特的纤维素水解代谢机制。
     初步研究结果表明,C. hutchinsonii对结晶纤维素降解呈现底物接触依赖性,大部分纤维素酶活定位于细胞表面,且小分子纤维寡糖的吸收利用可能构成了噬纤维菌整个纤维素降解过程的一个重要环节。C. hutchinsonii可以在固体介质表面快速滑动,gldJ滑动基因的失活导致菌体滑动性丧失,同时无法利用纤维素,说明运动也很可能与纤维素降解之间存在某种联系。由于纤维素酶历来难于进行有活性的异源表达,为了有效的寻找纤维素降解过程中参与的相关基因,建立高效的遗传操作体系就成为了深入开展实验的前提。本论文探索了C. hutchinsonii各种遗传操作手段,初步完善了其遗传操作体系,并且在此基础上进行了大量的转座子筛选工作,获得了一些有价值的与纤维素利用相关的突变株;同时,通过与亲缘关系较近的菌株的生物信息学分析比较,推测了C. hutchinsonii可能的纤维寡糖转运模型,并对其进行了研究。本论文的主要研究内容及创新性结果如下:
     一、优化了C. hutchinsonii固体培养条件的优化及其遗传操作体系,使得C.hutchinsonii的遗传操作更易于进行。
     针对已初步建立的C. hutchinsonii遗传操作体系的研究,首先优化了培养条件。对野生型菌株不同抗生素的耐受程度进行了摸索,发现红霉素、氯霉素、四环素等均可作为C. hutchinsonii的抗性筛选标记。通过比较接合和电转化两种基因转移方式,发现电转化具有更高的转移效率和更稳定的遗传性,并成功将复制型及转座质粒转入C. hutchinsonii中,验证了能在该菌中发挥作用的抗性筛选基因并确定了合适的筛选浓度。在此基础上构建了氯霉素抗性的回补质粒,找到可用于蛋白体内表达的系列启动子序列,包括一些组成型或未知功能启动子(Pgap,P1276,P1284)和阿拉伯糖诱导型启动子(ParaB),能够启动GFP在C. hutchinsonii体内的表达。构建的C. hutchinsonii遗传操作体系为其各种内源或外源蛋白的表达,甚至是特定条件下表达提供了可能。
     二、构建了纤维素酶基因chu_1107、chu_1280、chu_1335插入失活突变株,证明单一纤维素酶基因失活突变并不影响菌株的纤维素利用生长能力。
     为了研究C. hutchinsonii独特的纤维素酶系中是否存在某个关键性的酶组分,我们构建了三个纤维素酶基因(基因编号分别为chu_1107、chu_1280和chu1335)各自的插入失活突变株。研究发现失活突变株Chin1107, Chin1280和Chin1335在葡萄糖上的生长与野生型差别不大,而且在以纤维素为碳源的液体培养基以及滤纸等不溶性碳源的固体平板上的生长也与野生型基本相同。这一结果说明单一纤维素酶的缺失,并不会严重影响C. hutchinsonii对纤维素的利用。不同碳源培养野生型菌体,细胞分级分离提取各组分蛋白后,发现纤维二糖培养的可溶性组分中存在一条稳定的诱导条带,经质谱鉴定为BglX,是位于周质空间的β-葡萄糖苷酶,且该蛋白编码基因在纤维素条件下转录上调。该葡萄糖苷酶可能在纤维二糖甚至纤维素的利用中具有重要作用。
     三、转座诱变获得一株固体培养基上纤维素利用缺陷的突变株,同时发现与野生型菌株相比,其菌体扩散能力下降,外膜蛋白组分发生变化。
     经转座诱变筛选到一纤维素利用缺陷突变株ChT68,经鉴定该突变株中转座子的插入位置为chu_1719,编码一个位置功能的蛋白。ChT68具有较为特殊的纤维素利用表型,即在以纤维素为碳源的固体培养基中生长明显弱于野生型,而液体培养基中则无差异。利用单插入失活的方法定点插入失活了chu_1719,获得了突变株Chin1719。突变株Chin1719的生长表型与转座突变株ChT68一致;硬琼脂平板表面扩散能力一定程度缺失,显微镜下观察到边缘整齐,与野生型差别明显;突变株膜蛋白的CMCase酶活比野生型降低约40%,提取的外膜蛋白吸附纤维素后,SDS-PAGE结果表明突变株与野生型的吸附蛋白存在明显差异,差异蛋白包括GldJ、GldN、CHU_0007、CHU_3434和CHU3732。由此说明,CHU1719可能在纤维素利用、运动性或蛋白分泌等方面发挥一定的作用。
     四、对基因组中注释的两个susC-like基因分别失活,突变株对纤维素的利用基本不发生变化;转座子诱变鉴定到的一个TonB-dependent receptors编码基因chu1276,与上下游基因构成一个Sus-like系统,参与纤维素的降解。
     分析显示,C. hutchinsonii基因组中存在类似Bacteroides thetaiotaomicron中淀粉降解利用系统(starch utilization system, Sus)中的两个重要蛋白组分SusC和SusD。对C. hutchinsonii的两个susC-like基因进行插入失活后,证明单独的susC-like基因对于C. hutchinsonii降解纤维素不是必需的。通过转座子诱变,获得插入位点分别为chu_1276、chu_1277和chu1278的转座突变株T127,T423,C-34,突变株的纤维素降解能力丧失。此外,T127除了和T423一样在纤维二糖碳源上生长延迟外,对低浓度葡萄糖的利用也具有明显延迟,但经过低浓度葡萄糖预培养后这种延迟现象消失。进一步分析发现基因chu_1276及其上下游的基因座位符合Sus-like系统中多糖利用座位(polysaccharide utilization loci, PUL)的组成。基因簇上游预测的双组分调控系统编码基因chu_1265/chu_1266的失活突变株Chin1265和Chin1266在纤维素碳源上的生长与野生型没有显著差异。CHU1276预测为外膜蛋白,其C端预测含有DNA结合结构域,可以响应低浓度葡萄糖信号的诱导,推测可能参与纤维素水解产物的结合过程,同时该SusC-like蛋白自身还起到转录因子的作用,调控下游基因甚至其他纤维素利用相关基因的表达。CHU1278具有明显的脂蛋白特征,它可能定位于外膜可能作为SusD-like蛋白参与纤维素水解产物的结合过程。
     五、通过高通量转录组测序,从全基因组水平上考察了野生型和chu_1276失活突变株在不同碳源上的转录差异,从而系统分析了C. hutchinsonii对不同碳源的响应,以及chu1276失活对各相关基因转录表达的影响。
     分别提取同样诱导条件下野生型和chu1276失活突变株T127的总RNA,分离mRNA后进行全序列测定,对测序得到的数据进行分析归类后,得到了以下结果:以葡萄糖或纤维素为碳源时,相比于无碳源条件,既有表现为上调也有表现为下调的基因,其中未知功能蛋白编码基因占很大一部分;通过GO和Pathway显著性富集分析,并没有发现参与碳水化合物降解和代谢的相关过程;野生型中,相比葡萄糖碳源,内切纤维素酶可以被无碳源诱导表达,并不是纤维素特异性诱导,而p-葡萄糖苷酶则为纤维素特异性诱导;chu_1276~chu_1279的表达为纤维素特异性诱导,且在突变株中其表达均下调,该基因座位在C. hutchinsonii降解纤维素的过程中可能发挥重要作用。
With oil, coal and other non-renewable resources gradually depleting, exploring renewable energy utilization has become an urgent need. As the main component of plant biomass, cellulose is the most abundant renewable resource on earth. Degradation of crystalline cellulose is the key factor for lignocellulosic biomass conversion. In addition to the free cellulase system of fungi and complexed cellulosome of anaerobic bacteria, some aerobic bacteria such as Cytophaga hutchinsonii have a strong ability to degrade crystalline cellulose in a different manner. Genome sequences of C. hutchinsonii suggested that it do not have cellobiohydrolases and endoglucanases lack the cellulose binding domain, genes encoding typical motility organelles are also absent.
     Preliminary results indicated that C. hutchinsonii degrade crystalline cellulose depending on its contact to the subsrate, and the cellulase activities mostly located in the cell surface. Besides, the uptake and utilization of cello-oligosaccharide may constitute an important step of the cellulose degradation process. C. hutchinsonii can glide quickly along the surface of solid medium. Inactivation of the gliding motility gene gldJ led to the loss of cell motility as well as the ability of cellulose degradation. It was inferred that there may be a link between cellulose degradation and cell motility. Since cellulases are always difficult to be heterologously expressed with activities, it's urgent to establish an efficient genetic manipulation system so that genes involved in cellulose degradation can be efficiently identified. This thesis explored the genetic manipulation tools of C.hutchinsoni and initially established the genetic manipulation system; on the basis of a lot of transposon screening, some cellulose-utilization deficient mutants were gained; according to the bioinformatic analysis, a hypothetical model of cellooligosaccharides transport by C. hutchinsonii was proposed. The main contents and results are as follows:
     1. Cultivation of C. hutchinsonii on solid medium was optimized and genetic manipulation system was developed preliminarily.
     In order to establish the genetic manipulation system of C. hutchinsonii, cultivation of strains on solid culture was been promoted at first and we found that the appropriate agar concentration for colony formation was0.6%. Tolerance of different antibiotics for wild-type strain was explored and results indicated that erythromycin, chloramphenicol or tetracycline can be used as resistance selection markers for C. hutchinsonii. A variety of genetic transformation methods had been tried. The efficiency of electroporation was found relatively higher and more stable than that of conjunction. Then a replicating plasmid carrying the replication origin from C. hutchinsonii genome and a transpon plasmid were successfully transported into C. hutchinsonii. It was verified that these resistance gene can work in the strain and the appropriate screening concentrations were determined. Then a complement plamid with chloramphenicol resistance gene was constructed. Some promoters which could promote GFP expression in C. hutchinsonii can be used to express many other proteins in vivo in future.
     2. Inactivation mutant Chin1107, Chin1280and Chinl335were constructed by targeted gene insertion and it was indicated that inactivation of any one of cellulase genes may not decrease the ability of cellulose degradation of C. hutchinsonii.
     A single cellulase may play different roles in different bacteria. As is known, C. hutchinsonii has a unique cellulose degradation mechnism, wherein in order to study whether a critical component of the noncomplexed cellulase system is existed, we constructed insertion inactivation mutant strains of three cellulase genes, respectively. The growth of Chin1107, Chin1280and Chin1335were similar to wild type strain, no matter glucose or avicel as the sole carbon source in liquid medium. The difference was also not apparent when cultivated on filter paper plate. Perhaps the lack of a single cellulase did not seriously affect the cellulose utilization of C. hutchinsonii. Outer membrane, inner membrane and cytoplasmic proteins were seperated from wild-type cells incubated in PY10supplied with different carbon sources. Among all the proteins, one was induced in cellobiose compared to glucose. By mass spectrometry, it was identified as Bg1X which is located in the periplasmic and annotated as β-glucosidase. The transcriptional of bglx gene was upregulated in cellulose cultures. The β-glucosidase Bg1X may play an important role in utilization of cellobiose and cellulose.
     3. A mutant deficient in cellulose degradation was obtained by transposon mutagenesis screening. The ability of colony spreading and components of outer membrane proteins were both different between the mutant and wild type strains.
     A transposon mutant ChT68was obtained with the phenotype of nomal growth in liquid medium but weaker growth on solid medium with cellulose as the sole carbon source compared to the wild type. It was identified that the insertion position of transposon was chu_1719encoding a hypothetical protein. Targeted gene inactivation of chu_1719was achieved by electroporation of suicide vector pLYIN1719. The inactivation muant Chin1719exhibited same phenotypes with ChT68. Colony spread of Chin1719was deficient on hard agar plate. CMCase activity of membrane proteins was reduced by about40%than the wild type and cellulose adhesion proteins from outer membrane proteins of Chin1719and WT were significant different. Differential proteins included G1dJ, G1dN, CHU_0007, CHU_3434and CHU_3732. These results suggested that CHU_1719may play a role in cellulose utilization, spreading and protein secretion.
     4. Inactivation of chu_0546and chu_0553which were annotated as susC-like genes did not influence cellulose utilization of mutant strains. However, a predicted TonB-dependent receptor-encoding gene, chu_1276, was considered to play an important role in cellulose utilization by constituting the sus-like system with its downstream genes.
     As is known, a cell envelope-associated multiprotein system named Sus (starch utilization system) enables Bacteroides thetaiotaomicron to bind and degrade starch, of which SusC and SusD are essential components. Chin0546and Chin0553, of which susC-like genes chu_0546and chu_0553was inactivated respectively, grew normally on glucose and cellulse. T127, T423and C-34, the transpons mutants of chu_1276, chu_1277and chu_1278could not degrate cellulose. A quite long lag phase can be observed when T127was cultivated on liquid medium with0.1%glucose or cellobiose as the sole carbon source. Upstream genes chu_1265/chu_1266was also inactivated, but no differential phenotypes between mutants and WT were detected. CHU_1276was located in outer membrane and could respond to low concentration glucose. As a DNA-binding module was also predicted at its C-terminal, we speculated that CHU_1276was not only a SusC-like protein but also a transcription regulator. The transcription of some cellulases was down regulated in T127correspondingly. CHU_1278should be located to lipid bilayer of outer membrane to function normally.
     5. The gene expression differentiation was evaluated by transcriptome analysis between wild-type and inactivated mutant of chu_1276on different carbon sources. Several genes including those respond to cellulase inducing signals, involved in metabolic pathway and signal transduction were identified. These results supplied us with more details about the transcriptional regulation of cellulase in C. hutchinsonii.
     Total RNA of wild-type and T127were extracted from similarly induction conditions with different carbon sources. mRNA sequence were separated and sequenced. The data were analyzed and classified giving the following results:Compared to the non-carbon source condition, there were up-regulated genes and down-regulated genes both when cultured on glucose and cellulose. Among them, genes encoding hypothetical proteins accounting for a large part. Through GO and Pathway significant enrichment analysis, no processes involved in carbohydrate metabolism were figured out. In wild type strain, the most endoglucanases can be induced in non-carbon condition, but not specifically cellulose induced; while3β-glucosidases were specifically induced by cellulose. The expression of chu_1276~chu_1279was cellulose-specific induced, and their transcription levels in T127were down-regulated. So it is inferred that the chu_1276~chu_1279loci may play an important role in the cellulose degradation of C. hutchinsonii.
引文
Agarwal, S., Hunnicutt, D.W., and McBride, M.J. (1997). Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A 94,12139-12144.
    Alvarez, B., Secades, P., McBride, M.J., and Guijarro, J.A. (2004). Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 70,581-587.
    Alvarez, B., Secades, P., Prieto, M., McBride, M.J., and Guijarro, J.A. (2006). A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microbiol 72,4044-4053.
    Andersen, C. (2003). Channel-tunnels:outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem Pharmacol 147,122-165.
    Andersen, C., Rak, B., and Benz, R. (1999). The gene bglH present in the bgl operon of Escherichia coli, responsible for uptake and fermentation of beta-glucosides encodes for a carbohydrate-specific outer membrane porin. Mol Microbiol 31,499-510.
    Anderson, K.L., and Salyers, A.A. (1989a). Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171,3192-3198.
    Anderson, K.L., and Salyers, A.A. (1989b). Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171,3199-3204.
    Bayer, E.A., Belaich, J.P., Shoham, Y., and Lamed, R. (2004). The cellulosomes:multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58,521-554.
    Bayer, E.A., Shimon, L.J., Shoham, Y, and Lamed, R. (1998). Cellulosomes-structure and ultrastructure. J Struct Biol 124,221-234.
    Bayley, D.P., Rocha, E.R., and Smith, C J. (2000). Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193,149-154.
    Beguin, P., and Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiol Rev 13, 25-58.
    Benz, R. (1994). Solute Uptake through Bacterial Outer Membranes. Bacterial Cell Wall,397-423.
    Bhat, S., Hutson, R.A., Owen, E., and Bhat, M.K. (1997). Determination of immunological homology between cellulosome subunits and cloned endoglucanases and xylanase of Clostridium thermocellum. Anaerobe 3,347-352.
    Blodgett, A.B., Kothinti, R.K., Kamyshko, I., Petering, D.H., Kumar, S., and Tabatabai, N.M. (2011). A fluorescence method for measurement of glucose transport in kidney cells. Diabetes Technol Ther 73,743-751.
    Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72,248-254.
    Braun, T.F., Khubbar, M.K., Saffarini, D.A., and McBride, M.J. (2005). Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 187,6943-6952.
    Buttner, D., and Bonas, U. (2002). Port of entry-the type III secretion translocon. Trends Microbiol 10,186-192.
    Cases, I., Velazquez, F., and de Lorenzo, V. (2007). The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 158,666-670.
    Chang, L.E., Pate, J.L., and Betzig, R.J. (1984). Isolation and characterization of nonspreading mutants of the gliding bacterium Cytophaga johnsonae. J Bacteriol 159,26-35.
    Chang, W.T., and Thayer, D.W. (1977). The cellulase system of a Cytophaga species. Can J Microbiol 23,1285-1292.
    Charbit, A., Andersen, C., Wang, J., Schiffler, B., Michel, V., Benz, R., and Hofnung, M. (2000). In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin. Mol Microbiol 35,777-790.
    Charlson, E.S., Werner, J.N., and Misra, R. (2006). Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol 188,7186-7194.
    Chen, S., Bagdasarian, M., Kaufman, M.G., Bates, A.K., and Walker, E.D. (2007a). Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 189,5108-5118.
    Chen, S., Bagdasarian, M., Kaufman, M.G., and Walker, E.D. (2007b). Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 73,1089-1100.
    Cooper, D.N., Millar, D.S., Wacey, A., Pemberton, S., and Tuddenham, E.G. (1997). Inherited factor X deficiency:molecular genetics and pathophysiology. Thromb Haemost 78,161-172.
    Dashtban, M., Schraft, H., and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5,578-595.
    Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72,317-364, table of contents.
    De Gier, J.W., Valent, Q.A., Von Heijne, G., and Luirink, J. (1997). The E. coli SRP:preferences of a targeting factor. FEBS Lett 408,1-4.
    Death, A., Notley, L., and Ferenci, T. (1993). Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J Bacteriol 175,1475-1483.
    Delepelaire, P. (2004). Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694, 149-161.
    Gleiter, S., and Bardwell, J.C. (2008). Disulfide bond isomerization in prokaryotes. Biochim Biophys Acta 1783,530-534.
    Gold, N.D., and Martin, V.J. (2007). Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189,6787-6795.
    Gong, F.Q. (1989). [Pathologic study of precancerous lesion of the gallbladder]. Zhonghua Zhong Liu Za Zhi 11,127-129.
    Gong, J., and Forsberg, C.W. (1993). Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanases and cellobiase. J Bacteriol 175,6810-6821.
    Goswitz, V.C., and Brooker, R.J. (1995). Structural features of the uniporter/symporter/antiporter superfamily. Protein Sci 4,534-537.
    Hagan, C.L., Kim, S., and Kahne, D. (2010). Reconstitution of outer membrane protein assembly from purified components. Science 328,890-892.
    Han, W., Xu, Z., Su, J., Lu, X., and Gao, P. (2009). Morphologic changes in the life cycle of Cytophaga hutchinsonii. Wei Sheng Wu Xue Bao 49,18-22.
    Hardesty, C., Ferran, C., and DiRienzo, J.M. (1991). Plasmid-mediated sucrose metabolism in Escherichia coli:characterization of scrY, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin. J Bacteriol 173,449-456.
    Hartzell, P.L., Shi, W. & Youderian, P. (2007). in Multicellularity and Differentiation Among the Myxobacteria and Their Neighbors (eds. Kaplan, H.B. & Whitworth, D.) Ch.6 (American Society for Microbiology Press, Washington, DC).
    Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C., and Ala'Aldeen, D. (2004). Type V protein secretion pathway:the autotransporter story. Microbiol Mol Biol Rev 68,692-7'44.
    Henderson, P.J. (1990). Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22, 525-569.
    Hofer, M., and Misra, P.C. (1978). Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J 172,15-22.
    Jacob-Dubuisson, F., Fernandez, R., and Coutte, L. (2004). Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 1694,235-257.
    Jarrell, K.F., and McBride, M.J. (2008). The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6,466-476.
    Ji, X., Bai, X., Li, Z., Wang, S., Guan, Z., and Lu, X. (2013). A novel locus essential for spreading of Cytophaga hutchinsonii colonies on agar. Appl Microbiol Biotechnol 97,7311-7324.
    Ji, X., Xu, Y., Zhang, C., Chen, N., and Lu, X. (2012). A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96,161-170.
    Jun, H.S., Qi, M., Gong, J., Egbosimba, E.E., and Forsberg, C.W. (2007). Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J Bacteriol 189,6806-6815.
    Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38, D355-360.
    Kim, K.H., Brown, K.M., Harris, P.V., Langston, J.A., and Cherry, J.R. (2007). A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry. J Proteome Res 6,4749-4757.
    Knowles, T.J., Browning, D.F., Jeeves, M., Maderbocus, R., Rajesh, S., Sridhar, P., Manoli, E., Emery, D., Sommer, U., Spencer, A., et al. (2011). Structure and function of BamE within the outer membrane and the beta-barrel assembly machine. EMBO Rep 12,123-128.
    Knowles, T.J., Scott-Tucker, A., Overduin, M., and Henderson, I.R. (2009). Membrane protein architects:the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7, 206-214.
    Kuhls, K., Lieckfeldt, E., Samuels, G.J., Kovacs, W., Meyer, W., Petrini, O., Gams, W., Borner, T., and Kubicek, C.P. (1996). Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci U S A 93,7755-7760.
    Kutter, S., Buhrdorf, R., Haas, J., Schneider-Brachert, W., Haas, R., and Fischer, W. (2008). Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 190,2161-2171.
    Lamed, R., Setter, E., and Bayer, E.A. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156,828-836.
    Larkin, J.M., T.Staley, M.P. Bryant, N.Pfennig, and J.G. Holt (ed.) (1989). Nonphotosynthetic, nonfruiting gliding bacteria. Bergey's manual of systematic bacteriology 3,2010-2138.
    LeBlanc, D.J., Lee, L.N., Titmas, B.M., Smith, C.J., and Tenover, F.C. (1988). Nucleotide sequence analysis of tetracycline resistance gene tetO from Streptococcus mutans DL5. J Bacteriol 170, 3618-3626.
    Lengeler, J.W., and Jahreis, K. (2009). Bacterial PEP-dependent carbohydrate:phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol 16,65-87.
    Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. (2008). Evolution of mammals and their gut microbes. Science 320,1647-1651.
    Leyton, D.L., Rossiter, A.E., and Henderson, I.R. (2012). From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10,213-225.
    Li, L.Y., Shoemaker, N.B., and Salyers, A.A. (1995). Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol 177, 4992-4999.
    Lory, S. (1998). Secretion of proteins and assembly of bacterial surface organelles:shared pathways of extracellular protein targeting. Curr Opin Microbiol 1,27-35.
    Louime, C., Abazinge, M., Johnson, E., Latinwo, L., Ikediobi, C., and Clark, A.M. (2007). Molecular cloning and biochemical characterization of a family-9 endoglucanase with an unusual structure from the gliding bacteria Cytophaga hutchinsonii. Appl Biochem Biotechnol 141,127-138.
    Louime, C., Abazinge, M., Johnson, E. (2006). Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii. Int J Mol Sci 7,1-11.
    Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, Ⅰ.S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66,506-577, table of contents.
    Malinverni, J.C., Werner, J., Kim, S., Sklar, J.G., Kahne, D., Misra, R., and Silhavy, T.J. (2006). YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61,151-164.
    Manavathu, E.K., Hiratsuka, K., and Taylor, D.E. (1988). Nucleotide sequence analysis and expression of a tetracycline-resistance gene from Campylobacter jejuni. Gene 62,17-26.
    Martens, E.C., Koropatkin, N.M., Smith, T.J., and Gordon, J.I. (2009). Complex glycan catabolism by the human gut microbiota:the Bacteroidetes Sus-like paradigm. J Biol Chem 284,24673-24677.
    Martin, P., Trieu-Cuot, P., and Courvalin, P. (1986). Nucleotide sequence of the tetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545. Nucleic Acids Res 14,7047-7058.
    Mattick, J.S., Whitchurch, C.B., and Alm, R.A. (1996). The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa--a review. Gene 179,147-155.
    Mauriello, E.M., Mignot, T., Yang, Z., and Zusman, D.R. (2010). Gliding motility revisited:how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 74,229-249.
    McBride, M.J. (2001). Bacterial gliding motility:multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55,49-75.
    McBride, M.J., and Baker, S.A. (1996). Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62,3017-3022.
    McBride, M.J., and Kempf, M.J. (1996). Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178,583-590.
    McBride, M.J., Xie, G., Martens, E.C., Lapidus, A., Henrissat, B., Rhodes, R.G., Goltsman, E., Wang, W., Xu, J., Hunnicutt, D.W., et al. (2009). Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75,6864-6875.
    McBride, M.J., and Zhu, Y. (2013). Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes. J Bacteriol 195,270-278.
    Meng, G., Surana, N.K., St Geme, J.W.,3rd, and Waksman, G. (2006). Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25,2297-2304.
    Mignot, T., Shaevitz, J.W., Hartzell, P.L., and Zusman, D.R. (2007). Evidence that focal adhesion complexes power bacterial gliding motility. Science 315,853-856.
    Miller, G.L., Jr. (1959). Cardiac arrest. Miss Doct 37,149-151.
    Moniruzzaman, M., Lai, X., York, S.W., and Ingram, L.O. (1997). Isolation and molecular characterization of high-performance cellobiose-fermenting spontaneous mutants of ethanologenic Escherichia coli KO11 containing the Klebsiella oxytoca casAB operon. Appl Environ Microbiol 63, 4633-4637.
    Morrison, M., Pope, P.B., Denman, S.E., and McSweeney, C.S. (2009). Plant biomass degradation by gut microbiomes:more of the same or something new? Curr Opin Biotechnol 20,358-363.
    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5,621-628.
    Nelson, D.L., Cox, M.M. (2008). Lehninger Principles of Biochemistry.
    Nelson, S.S., Bollampalli, S., and McBride, M.J. (2008). SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190,2851-2857.
    Nelson, S.S., Glocka, P.P., Agarwal, S., Grimm, D.P., and McBride, M.J. (2007). Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J Bacteriol 189,7145-7150.
    Nesin, M., Svec, P., Lupski, J.R., Godson, G.N., Kreiswirth, B., Kornblum, J., and Projan, S.J. (1990). Cloning and nucleotide sequence of a chromosomally encoded tetracycline resistance determinant, tetA(M), from a pathogenic, methicillin-resistant strain of Staphylococcus aureus. Antimicrob Agents Chemother 34,2273-2276.
    Nikaido, H. (1992). Porins and specific channels of bacterial outer membranes. Mol Microbiol 6, 435-442.
    Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67,593-656.
    Nikaido, H., and Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49,1-32.
    Nikolich, M.P., Shoemaker, N.B., and Salyers, A.A. (1992). A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. Antimicrob Agents Chemother 36,1005-1012.
    Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125,14300-14306.
    Olson, D.G., Tripathi, S.A., Giannone, R.J., Lo, J., Caiazza, N.C., Hogsett, D.A., Hettich, R.L., Guss, A.M., Dubrovsky, G., and Lynd, L.R. (2010). Deletion of the Ce148S cellulase from Clostridium thermocellum. Proc Natl Acad Sci U S A 107,17727-17732.
    Pao, S.S., Paulsen, I.T., and Saier, M.H., Jr. (1998). Major facilitator superfamily. Microbiol Mol Biol Rev 62,1-34.
    Pelling, A.E., Li, Y., Shi, W., and Gimzewski, J.K. (2005). Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci U S A 102,6484-6489.
    Pukatzki, S., McAuley, S.B., and Miyata, S.T. (2009). The type VI secretion system:translocation of effectors and effector-domains. Curr Opin Microbiol 12,11-17.
    Robinson, C., and Bolhuis, A. (2001). Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2,350-356.
    Saier, M.H., Jr. (2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64,354-411.
    Salyers, A.A., West, S.E., Vercellotti, J.R., and Wilkins, T.D. (1977). Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34, 529-533.
    Sandkvist, M. (2001). Type Ⅱ secretion and pathogenesis. Infect Immun 69,3523-3535.
    Sato, K., Naito, M., Yukitake, H., Hirakawa, H., Shoji, M., McBride, M.J., Rhodes, R.G., and Nakayama, K. (2010). A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107,276-281.
    Sekar, R., Shin, H.D., and Chen, R. (2012). Engineering Escherichia coli cells for cellobiose assimilation through a phosphorolytic mechanism. Appl Environ Microbiol 78,1611-1614.
    Shi, W., and Lux, R. (2007). Focal adhesion:getting a grasp on myxobacterial gliding. Nat Chem Biol 3,205-206.
    Shi, W., and Zusman, D.R. (1993). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90,3378-3382.
    Shipman, J.A., Berleman, J.E., and Salyers, A.A. (2000). Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182,5365-5372.
    Shoji, M., Sato, K., Yukitake, H., Kondo, Y., Narita, Y., Kadowaki, T., Naito, M., and Nakayama, K. (2011). Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 6, e21372.
    Shrivastava, A., Johnston, J.J., van Baaren, J.M., and McBride, M.J. (2013). Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 195,3201-3212.
    Shrivastava, A., Rhodes, R.G., Pochiraju, S., Nakane, D., and McBride, M.J. (2012). Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J Bacteriol 194,3678-3688.
    Shrivastava, S., and Mande, S.S. (2008). Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One 3, e2955.
    Sklar, J.G., Wu, T., Gronenberg, L.S., Malinverni, J.C., Kahne, D., and Silhavy, T.J. (2007). Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 104,6400-6405.
    Soares, C.R., Gomide, F.I., Ueda, E.K., and Bartolini, P. (2003). Periplasmic expression of human growth hormone via plasmid vectors containing the lambdaPL promoter:use of HPLC for product quantification. Protein Eng 16,1131-1138.
    Stanier, R.Y. (1942). The Cytophaga Group:A Contribution to the Biology of Myxobacteria. Bacteriol Rev 6,143-196.
    Staroscik, A.M., Hunnicutt, D.W., Archibald, K.E., and Nelson, D.R. (2008). Development of methods for the genetic manipulation of Flavobacterium columnare. BMC Microbiol 8,115.
    Su, H., Shao, Z., Tkalec, L., Blain, F., and Zimmermann, J. (2001). Development of a genetic system for the transfer of DNA into Flavobacterium heparinum. Microbiology 147,581-589.
    Sun, H., Yang, Z., and Shi, W. (1999). Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 96,15178-15183.
    Sun, H., Zusman, D.R., and Shi, W. (2000). Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10,1143-1146.
    Tarr, P.T., Tarling, E.J., Bojanic, D.D., Edwards, P.A., and Baldan, A. (2009). Emerging new paradigms for ABCG transporters. Biochim Biophys Acta 1791,584-593.
    Tolonen, A.C., Chilaka, A.C., and Church, G.M. (2009). Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 74,1300-1313.
    Urban, A., Leipelt, M., Eggert, T., and Jaeger, K.E. (2001). DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J Bacteriol 183,587-596.
    Walker, E., and Warren, F.L. (1938). Decomposition of cellulose by Cytophaga. I. Biochem J 32, 31-43.
    Wall, D., and Kaiser, D. (1999). Type IV pili and cell motility. Mol Microbiol 32,1-10.
    Wang, L., Feng, Z., Wang, X., and Zhang, X. (2010). DEGseq:an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26,136-138.
    Wilson, D.B. (2008). Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125,289-297.
    Xie, G., Bruce, D.C., Challacombe, J.F., Chertkov, O., Detter, J.C., Gilna, P., Han, C.S., Lucas, S., Misra, M., Myers, G.L., et al. (2007). Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73,3536-3546.
    Xu, Y., Ji, X., Chen, N., Li, P., Liu, W., and Lu, X. (2012). Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 93,697-705.
    Zhang, Y.H., and Lynd, L.R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems. Biotechnol Bioeng 88,797-824.
    Zhu, Y, Li, H., Zhou, H., Chen, G., and Liu, W. (2010). Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii. Bioresour Technol 101,6432-6437.
    Zhu, Y, and McBride, M.J. (2014). Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98,763-775.
    Zhu, Y., Zhou, H., Bi, Y., Zhang, W., Chen, G., and Liu, W. (2013). Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Appl Microbiol Biotechnol 97,3925-3937.
    Zverlov, V.V., and Schwarz, W.H. (2008). Bacterial cellulose hydrolysis in anaerobic environmental subsystems--Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 1125,298-307.
    毕言琳(2013).Cytophaga hutchinsonii遗传操作体系的构建及纤维素利用缺陷菌的筛选与鉴定.山东大学硕士学位论文.
    高培基(1998).天然纤维素在生物降解过程中超分子——氢键断裂在纤维素降解中作用的探讨.
    李绘绘(2011). Cytophaga hutchinsonii纤维素吸附突变株筛选及相关吸附蛋白的研究.山东大学硕士学位论文.
    李颖杰(2009).哈氏噬纤维素菌纤维素降解酶的研究.山东大学硕士学位论文.
    王璋保(2003).对我国能源可持续发展战略问题的思考.
    朱永涛(2011).Cytophaga hutchinsonii纤维素降解机制的研究.山东大学博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700