用户名: 密码: 验证码:
功能DNA纳米结构在生物成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA纳米技术的发展使得DNA作为一种材料被广泛使用,通过应用高度特异性和可编程特性的DNA碱基配对,完美的设计合成大量不同维度,形状和几何结构DNA纳米结构。由于DNA的生物分子属性,在DNA纳米结构的许多潜在应用方向中,生物和生物医学的许多潜在用途是非常有吸引力的。
     DNA分子由于是生物大分子并且富含负电荷,所以并不能直接穿透质膜进入细胞。值得注意的是,现有的研究表明具有一定结构DNA纳米材料能有效的被细胞摄取。我们发展了能对外来刺激做出构型转换反应的智能DNA四面体。同过采用一系列嵌合DNA四面体结构,包括i-motif、抗ATP适配体(AAA)、T-rich水银特异结合寡聚核苷酸(MSO)、和发卡结构嵌合到DNA四面体中(图1),我们构建了AND、 OR、XOR和INH四种逻辑门,以及半加器运算。进一步我们利用DNA逻辑门检测了活细胞内的ATP含量。
     由于DNA纳米结构的生物相容性,能构建非病毒智能运输系统,因此具有很好的生物应用前景。然而DNA纳米进入细胞的机制仍然不太清楚,我们通过单颗粒示踪研究了哺乳动物细胞内吞DNA四面体和DNA四面体在细胞内的运输。我们发现DNA四面体同过小窝蛋白介导的内吞途径迅速内吞的机制,以及DNA四面体在细胞内的通过微观依赖的途径有序运输到细胞溶酶体内,并且DNA四面体在细胞仍然保持其结构相当长的时间。转运到溶酶体中使得DNA四面体不能有效的运输载体,为了改变DNA四面体在细胞内的命运,我们采用核定位序列功能化的DNA四面体使其逃脱转运到溶酶体中的命运,运输到细胞核内。这些研究使人们对DNA四面体进入细胞的途径和细胞内转运的途径有了更深的了解。
     利用DNA纳米技术,能非常有效的合成高FRET效率DNA纳米探针。我们阐明了基于DNA纳米技术方法编码高FRET效率分子对荧光探针,具有非线性荧光响应,能突破衍射极限成像。我们在一台普通的共聚焦显微镜上实现了细胞微管65nm的分辨率成像。我们希望这种廉价并简单的超分辨方法能广泛的应用于生物学和生物医学研究。
     DNA纳米探针能与抗体非常高效共价偶联而保持彼此的活性。抗体具有非常特异的分识别能力,在靶向运输、靶向治疗和荧光成像等方面具有不可替代的作用, DNA与抗体共价偶联能极大的拓展DNA纳米材料在生物医学领域的应用。FRET效应不仅可以用来检测蛋白分子的相互作用,亦能在荧光成像中起到降低背景荧光,提高信噪比,并且高的FRET效率能实现DNS超分辨显微成像。利用抗体的种属多样性,进一步实现可双FRET细胞内两种蛋白荧光成像。
The use of DNA as a material has become commonplace, especially with theemergence of DNA nanotechnology.A large number of well-defined DNAnanostructures of varying dimensions, shapes and geometries have been assembled byexploiting the highly specific and programmable nature of DNA base pairing. Amongthe many potential uses of DNA nanostructures, biological and biomedicalapplications are very attractive given the biological nature of DNA.
     DNA is typically impermeable to the plasma membrane due to its polyanionicnature. Interestingly, several different DNA nanostructures can be readily uptaken bycells in the absence of transfection agents.we developed DNA tetrahedra that showprogrammed configuration switching in response to external stimuli. By adapting aseries of DNA structures (i-motif,anti-ATP aptamer (AAA),T-rich mercury-specificoligonucleotide (MSO),and hairpin structures) to DNA tetrahedra, we constructedAND, OR, XOR, and INH logic gates, as well as a half-adder operation. In addition,we also demonstrated the use of DNA logic gates for intracellular detection of ATP inliving cells.
     It suggest new opportunities for constructing intelligent cargo delivery systemsfrom these biocompatible, non-viral DNA nanocarriers.However, the underlyingmechanism of entry of DNA nanostructures into cells remains unknown. Here, weinvestigated the endocytotic internalization and subsequent transport of tetrahedralDNA nanostructures (TDNs) by mammalian cells through single-particle tracking. Wefound that the TDNs were rapidly internalized by a caveolin-dependent pathway.After endocytosis, the TDNs were transported tolysosomes in a highly ordered,microtubule-dependent manner. Whereas the TDNs retained their structural integrity within cells over long time periods, their localization in lysosomes precludes their useas effective delivery agents. To modulate the cellular fate of the TDNs, wefunctionalized them with nuclear localization signals (NLSs) that directed their escapefrom lysosomes and entry into cellular nuclei. This study improves our understandingof DNA nanostructure entry into cells and transport pathways, and can be used as thebasis for designing DNA nanostructure-based drug delivery nanocarriers for targetedtherapy.
     DNA nanoprobes with high FRET efficiency are synthetised effectively usingDNA nanotechenology. We demonstrate a DNA nanotechnology-based approach toencode the non-linearity of fluorescence required for sub-diffraction imaging influorescent probes with an internal high-efficiency F rster resonance energy transferpair. We have achieved65-nm resolution imaging of microtubule filaments using astandard confocal microscope. we expect this low-cost, easy super-resolutionmicroscopy will find widespread applications in biological and biomedical studies.
     DNA nanoprobes can covalently coupled with antibodies very efficiently andeach other keep the activity. Antibodies have the ability to identify very specificpoints, plays an irreplaceable role in the targeted delivery,targeted therapy and otheraspects of fluorescence imaging. DNA covalently coupled with antibody will greatlyexpand the application of DNA nanomaterials in the biomedical field. The FRETeffect can be used not only to detect interaction of protein molecules but also influorescence imaging which can reduce the background fluorescence, improve theratio of signal to noise. FRET with high efficiency can achieve DNS super-resolutionmicroscopy imaging. Given to the specie diversity of antibodies,we can realize doubleFRET cell fluorescence imaging of two proteins.
引文
1Hell, S. W.&Wichmann, J. BREAKING THE DIFFRACTION RESOLUTION LIMITBY STIMULATED-EMISSION-STIMULATED-EMISSION-DEPLETIONFLUORESCENCE MICROSCOPY. Optics Letters19,780-782,doi:10.1364/ol.19.000780(1994).
    2Klar, T. A.&Hell, S. W. Subdiffraction resolution in far-field fluorescencemicroscopy. Optics Letters24,954-956, doi:10.1364/ol.24.000954(1999).
    3Westphal, V.&Hell, S. W. Nanoscale Resolution in the Focal Plane of anOptical Microscope. Physical Review Letters94,143903(2005).
    4Dyba, M.&Hell, S. W. Focal spots of size lambda/23open up far-fieldflorescence microscopy at33nm axial resolution. Physical Review Letters88,doi:16390110.1103/PhysRevLett.88.163901(2002).
    5Donnert, G. et al. Macromolecular-scale resolution in biological fluorescencemicroscopy. Proceedings of the National Academy of Sciences of the UnitedStates of America103,11440-11445, doi:10.1073/pnas.0604965103(2006).
    6Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. NatureMethods3,721-723, doi:10.1038/nmeth922(2006).
    7Hell, S. W. Far-field optical nanoscopy. Science316,1153-1158,doi:10.1126/science.1137395(2007).
    8Hell, S. W.&Kroug, M. GROUND-STATE-DEPLETION FLUORESCENCEMICROSCOPY-A CONCEPT FOR BREAKING THE DIFFRACTION RESOLUTIONLIMIT. Applied Physics B-Lasers and Optics60,495-497,doi:10.1007/bf01081333(1995).
    9Bretschneider, S., Eggeling, C.&Hell, S. W. Breaking the diffraction barrier influorescence microscopy by optical shelving. Physical Review Letters98,doi:21810310.1103/PhysRevLett.98.218103(2007).
    10Hofmann, M., Eggeling, C., Jakobs, S.&Hell, S. W. Breaking the diffractionbarrier in fluorescence microscopy at low light intensities by using reversiblyphotoswitchable proteins. Proceedings of the National Academy of Sciencesof the United States of America102,17565-17569,doi:10.1073/pnas.0506010102(2005).
    11Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-fieldfluorescence imaging with theoretically unlimited resolution. Proceedings ofthe National Academy of Sciences of the United States of America102,13081-13086, doi:10.1073/pnas.0406877102(2005).
    12Thompson, R. E., Larson, D. R.&Webb, W. W. Precise nanometer localizationanalysis for individual fluorescent probes. Biophysical Journal82,2775-2783(2002).
    13Gelles, J., Schnapp, B. J.&Sheetz, M. P. Tracking kinesin-driven movementswith nanometre-scale precision. Nature331,450-453(1988).
    14Ghosh, R. N.&Webb, W. W. AUTOMATED DETECTION AND TRACKING OFINDIVIDUAL AND CLUSTERED CELL-SURFACE LOW-DENSITY-LIPOPROTEINRECEPTOR MOLECULES. Biophysical Journal66,1301-1318(1994).
    15Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R.&Block, S. M.Direct observation of base-pair stepping by RNA polymerase. Nature438,460-465, doi:10.1038/nature04268(2005).
    16Moerner, W. E.&Kador, L. OPTICAL-DETECTION AND SPECTROSCOPY OFSINGLE MOLECULES IN A SOLID. Physical Review Letters62,2535-2538,doi:10.1103/PhysRevLett.62.2535(1989).
    17Orrit, M.&Bernard, J. SINGLE PENTACENE MOLECULES DETECTED BYFLUORESCENCE EXCITATION IN A PARA-TERPHENYL CRYSTAL. Physical ReviewLetters65,2716-2719, doi:10.1103/PhysRevLett.65.2716(1990).
    18Yildiz, A. et al. Myosin V walks hand-over-hand: Single fluorophore imagingwith1.5-nm localization. Science300,2061-2065,doi:10.1126/science.1084398(2003).
    19van Oijen, A. M., Kohler, J., Schmidt, J., Muller, M.&Brakenhoff, G. J.3-Dimensional super-resolution by spectrally selective imaging. ChemicalPhysics Letters292,183-187, doi:10.1016/s0009-2614(98)00673-3(1998).
    20Lacoste, T. D. et al. Ultrahigh-resolution multicolor colocalization of singlefluorescent probes. Proceedings of the National Academy of Sciences of theUnited States of America97,9461-9466, doi:10.1073/pnas.170286097(2000).
    21Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F.&Spudich, J. A. Singlemolecule high-resolution colocalization of Cy3and Cy5attached tomacromolecules measures intramolecular distances through time.Proceedings of the National Academy of Sciences of the United States ofAmerica102,1419-1423, doi:10.1073/pnas.0409487102(2005).
    22Gordon, M. P., Ha, T.&Selvin, P. R. Single-molecule high-resolution imagingwith photobleaching. Proceedings of the National Academy of Sciences of theUnited States of America101,6462-6465, doi:10.1073/pnas.0401638101(2004).
    23Qu, X. H., Wu, D., Mets, L.&Scherer, N. F. Nanometer-localized multiplesingle-molecule fluorescence microscopy. Proceedings of the NationalAcademy of Sciences of the United States of America101,11298-11303,doi:10.1073/pnas.0402155101(2004).
    24Lidke, K. A., Rieger, B., Jovin, T. M.&Heintzmann, R. Superresolution bylocalization of quantum dots using blinking statistics. Optics Express13,7052-7062, doi:10.1364/opex.13.007052(2005).
    25Lagerholm, B. C., Averett, L., Weinreb, G. E., Jacobson, K.&Thompson, N. L.Analysis method for measuring submicroscopic distances with blinkingquantum dots. Biophysical Journal91,3050-3060,doi:10.1529/biophysj.105.079178(2006).
    26Rust, M. J., Bates, M.&Zhuang, X. Sub-diffraction-limit imaging by stochasticoptical reconstruction microscopy (STORM). Nature Methods3,793-795,doi:10.1038/nmeth929(2006).
    27Betzig, E. et al. Imaging Intracellular Fluorescent Proteins at NanometerResolution. Science313,1642-1645, doi:10.1126/science.1127344(2006).
    28Hess, S. T., Girirajan, T. P. K.&Mason, M. D. Ultra-high resolution imaging byfluorescence photoactivation localization microscopy. Biophysical Journal91,4258-4272, doi:10.1529/biophysj.106.091116(2006).
    29Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronouslocalization of photoswitching emitters. Biophysical Journal93,3285-3290,doi:10.1529/biophysj.107.112201(2007).
    30Sharonov, A.&Hochstrasser, R. M. Wide-field subdiffraction imaging byaccumulated binding of diffusing probes. Proceedings of the NationalAcademy of Sciences of the United States of America103,18911-18916,doi:10.1073/pnas.0609643104(2006).
    31Bates, M., Huang, B., Dempsey, G. T.&Zhuang, X. Multicolor super-resolutionimaging with photo-switchable fluorescent probes. Science317,1749-1753,doi:10.1126/science.1146598(2007).
    32Kubitscheck, U., Kuckmann, O., Kues, T.&Peters, R. Imaging and tracking ofsingle GFP molecules in solution. Biophysical Journal78,2170-2179(2000).
    33Deindl, S. et al. ISWI Remodelers Slide Nucleosomes with CoordinatedMulti-Base-Pair Entry Steps and Single-Base-Pair Exit Steps. Cell152,442-452,doi:http://dx.doi.org/10.1016/j.cell.2012.12.040(2013).
    34Vale, R. D. The molecular motor toolbox for intracellular transport. Cell112,467-480, doi:10.1016/s0092-8674(03)00111-9(2003).
    35Spudich, J. A. The myosin swinging cross-bridge model. Nature ReviewsMolecular Cell Biology2,387-392, doi:10.1038/35073086(2001).
    36Yildiz, A., Tomishige, M., Vale, R. D.&Selvin, P. R. Kinesin walkshand-over-hand. Science303,676-678, doi:10.1126/science.1093753(2004).
    37Okamoto, K.&Shaw, J. M. in Annual Review of Genetics Vol.39AnnualReview of Genetics503-536(2005).
    38Frey, T. G.&Mannella, C. A. The internal structure of mitochondria. Trends inBiochemical Sciences25,319-324, doi:10.1016/s0968-0004(00)01609-1(2000).
    39Mannella, C. A. Structure and dynamics of the mitochondrial inner membranecristae. Biochimica Et Biophysica Acta-Molecular Cell Research1763,542-548,doi:10.1016/j.bbamcr.2006.04.006(2006).
    40Perkins, G., Renken, C., Martone, M. E., Young, S. J.&Ellisman, M. Electrontomography of neuronal mitochondria: Three-dimensional structure andorganization of cristae and membrane contacts. Journal of Structural Biology119,260-272, doi:10.1006/jsbi.1997.3885(1997).
    41Jans, D. C. et al. STED super-resolution microscopy reveals an array of MINOSclusters along human mitochondria. Proc. Natl. Acad. Sci. U. S. A.,doi:10.1073/pnas.1301820110(2013).
    42Dent, E. W.&Gertler, F. B. Cytoskeletal dynamics and transport in growthcone motility and axon guidance. Neuron40,209-227,doi:10.1016/s0896-6273(03)00633-0(2003).
    43Cingolani, L. A.&Goda, Y. Actin in action: the interplay between the actincytoskeleton and synaptic efficacy. Nature Reviews Neuroscience9,344-356,doi:10.1038/nrn2373(2008).
    44Xu, K., Zhong, G.&Zhuang, X. Actin, Spectrin, and Associated Proteins Form aPeriodic Cytoskeletal Structure in Axons. Science339,452-456,doi:10.1126/science.1232251(2013).
    45Huang, B., Wang, W., Bates, M.&Zhuang, X. Three-dimensionalsuper-resolution imaging by stochastic optical reconstruction microscopy.Science319,810-813, doi:10.1126/science.1153529(2008).
    46Kem, A. S., Gleb, S., Schuyler, B. v. E., Harald, F. H.&Justin, W. T. Correlativesuper-resolution fluorescence and metal-replica transmission electronmicroscopy. Nat. Methods11, doi:10.1038/nmeth.2816(2014).
    47Xu, K., Babcock, H. P.&Zhuang, X. Dual-objective STORM revealsthree-dimensional filament organization in the actin cytoskeleton. NatureMethods9,185-188, doi:10.1038/nmeth.1841(2012).
    48Tian, J., Ma, K.&Saaem, I. Advancing high-throughput gene synthesistechnology. Molecular Biosystems5,714-722, doi:10.1039/b822268c (2009).
    49Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNApools from high-fidelity microchips. Nature Biotechnology28,1295-U1108,doi:10.1038/nbt.1716(2010).
    50Li, Z. et al. Molecular Behavior of DNA Origami in Higher-Order Self-Assembly.Journal of the American Chemical Society132,13545-13552,doi:10.1021/ja106292x (2010).
    51Liu, W., Zhong, H., Wang, R.&Seeman, N. C. Crystalline Two-DimensionalDNA-Origami Arrays. Angewandte Chemie-International Edition50,264-267,doi:10.1002/anie.201005911(2011).
    52Zhao, Z., Yan, H.&Liu, Y. A Route to Scale Up DNA Origami Using DNA Tiles asFolding Staples. Angewandte Chemie-International Edition49,1414-1417,doi:10.1002/anie.200906225(2010).
    53Endo, M. et al. Two-dimensional DNA origami assemblies using a four-wayconnector. Chemical Communications47,3213-3215, doi:10.1039/c0cc05306f(2011).
    54Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K.&Sugiyama, H. ProgrammedTwo-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces. AcsNano5,665-671, doi:10.1021/nn1031627(2011).
    55Woo, S.&Rothemund, P. W. K. Programmable molecular recognition basedon the geometry of DNA nanostructures. Nature Chemistry3,620-627,doi:10.1038/nchem.1070(2011).
    56Zhao, Z., Liu, Y.&Yan, H. Organizing DNA Origami Tiles into Larger StructuresUsing Preformed Scaffold Frames. Nano Letters11,2997-3002,doi:10.1021/nl201603a (2011).
    57Hung, A. M., Noh, H.&Cha, J. N. Recent advances in DNA-based directedassembly on surfaces. Nanoscale2,2530-2537, doi:10.1039/c0nr00430h(2010).
    58Ding, B. et al. Interconnecting Gold Islands with DNA Origami Nanotubes.Nano Letters10,5065-5069, doi:10.1021/nl1033073(2010).
    59Kershner, R. J. et al. Placement and orientation of individual DNA shapes onlithographically patterned surfaces. Nature Nanotechnology4,557-561,doi:10.1038/nnano.2009.220(2009).
    60Hung, A. M. et al. Large-area spatially ordered arrays of gold nanoparticlesdirected by lithographically confined DNA origami. Nature Nanotechnology5,121-126, doi:10.1038/nnano.2009.450(2010).
    61Chen, Y.-X., Triola, G.&Waldmann, H. Bioorthogonal Chemistry forSite-Specific Labeling and Surface Immobilization of Proteins. Accounts ofChemical Research44,762-773, doi:10.1021/ar200046h (2011).
    62Singh, Y., Murat, P.&Defrancq, E. Recent developments in oligonucleotideconjugation. Chemical Society Reviews39,2054-2070, doi:10.1039/b911431a(2010).
    63Sharma, J. et al. DNA-tile-directed self-assembly of quantum dots intotwo-dimensional nanopatterns. Angewandte Chemie-International Edition47,5157-5159, doi:10.1002/anie.200801485(2008).
    64Bui, H. et al. Programmable Periodicity of Quantum Dot Arrays with DNAOrigami Nanotubes. Nano Letters10,3367-3372, doi:10.1021/nl101079u(2010).
    65Tikhomirov, G. et al. DNA-based programming of quantum dot valency,self-assembly and luminescence. Nat Nano6,485-490,doi:http://www.nature.com/nnano/journal/v6/n8/abs/nnano.2011.100.html#supplementary-information (2011).
    66Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensionalgeometries using DNA origami templates. Nature Nanotechnology5,61-66,doi:10.1038/nnano.2009.311(2010).
    67Diederich, F.&Gomez-Lopez, M. Supramolecular fullerene chemistry.Chemical Society Reviews28,263-277, doi:10.1039/a804248i (1999).
    68Richter, J. Metallization of DNA. Physica E-Low-Dimensional Systems&Nanostructures16,157-173, doi:Pii s1386-9477(02)00670-710.1016/s1386-9477(02)00670-7(2003).
    69Samano, E. C. et al. Self-assembling DNA templates for programmed artificialbiomineralization. Soft Matter7,3240-3245, doi:10.1039/c0sm01318h(2011).
    70Liu, J. et al. Metallization of Branched DNA Origami for Nanoelectronic CircuitFabrication. ACS Nano5,2240-2247, doi:10.1021/nn1035075(2011).
    71Schreiber, R. et al. DNA Origami-Templated Growth of Arbitrarily ShapedMetal Nanoparticles. Small7,1795-1799, doi:10.1002/smll.201100465(2011).
    72Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302, doi:10.1038/nature04586(2006).
    73Stein, I. H., Schueller, V., Boehm, P., Tinnefeld, P.&Liedl, T. Single-MoleculeFRET Ruler Based on Rigid DNA Origami Blocks. Chemphyschem12,689-695,doi:10.1002/cphc.201000781(2011).
    74Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E.&Shih, W. M. Self-assembly ofthree-dimensional prestressed tensegrity structures from DNA. NatureNanotechnology5,520-524, doi:10.1038/nnano.2010.107(2010).
    75Steinhauer, C., Jungmann, R., Sobey, T. L., Simmel, F. C.&Tinnefeld, P. DNAOrigami as a Nanoscopic Ruler for Super-Resolution Microscopy. AngewandteChemie-International Edition48,8870-8873, doi:10.1002/anie.200903308(2009).
    76Hirokawa, N., Niwa, S.&Tanaka, Y. Molecular Motors in Neurons: TransportMechanisms and Roles in Brain Function, Development, and Disease. Neuron68,610-638, doi:10.1016/j.neuron.2010.09.039(2010).
    77Welte, M. A. Bidirectional transport along microtubules. Current Biology14,R525-R537, doi:10.1016/j.cub.2004.06.045(2004).
    78Bryantseva, S. A.&Zhapparova, O. N. Bidirectional transport of organelles:unity and struggle of opposing motors. Cell Biology International36,1-6,doi:10.1042/cbi20110413(2012).
    79Derr, N. D. et al. Tug-of-War in Motor Protein Ensembles Revealed with aProgrammable DNA Origami Scaffold. Science338,662-665,doi:10.1126/science.1226734(2012).
    80Verhey, K. J., Kaul, N.&Soppina, V. in Annual Review of Biophysics, Vol40Vol.40Annual Review of Biophysics eds D. C. Rees, K. A. Dill,&J. R. Williamson)267-288(2011).
    81Goldstein, L. S. B.&Yang, Z. H. Microtubule-based transport systems tnneurons: The roles of kinesins and dyneins. Annual Review of Neuroscience23,39-71, doi:10.1146/annurev.neuro.23.1.39(2000).
    82Nedelec, F. J., Surrey, T., Maggs, A. C.&Leibler, S. Self-organization ofmicrotubules and motors. Nature389,305-308(1997).
    83Hess, H. et al. Molecular self-assembly of "nanowires" and "nanospools"using active transport. Nano Letters5,629-633, doi:10.1021/nl0478427(2005).
    84Sanchez, T., Welch, D., Nicastro, D.&Dogic, Z. Cilia-Like Beating of ActiveMicrotubule Bundles. Science333,456-459, doi:10.1126/science.1203963(2011).
    85Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T.&Uyeda, T. Q. P. Controlling thedirection of kinesin-driven microtubule movements along microlithographictracks. Biophysical Journal81,1555-1561(2001).
    86Dennis, J. R., Howard, J.&Vogel, V. Molecular shuttles: directed motion ofmicrotubules slang nanoscale kinesin tracks. Nanotechnology10,232-236,doi:10.1088/0957-4484/10/3/302(1999).
    87Vale, R. D., Reese, T. S.&Sheetz, M. P. IDENTIFICATION OF A NOVELFORCE-GENERATING PROTEIN, KINESIN, INVOLVED IN MICROTUBULE-BASEDMOTILITY. Cell42,39-50, doi:10.1016/s0092-8674(85)80099-4(1985).
    88Wollman, A. J. M., Sanchez-Cano, C., Carstairs, H. M. J., Cross, R. A.&Turberfield, A. J. Transport and self-organization across different length scalespowered by motor proteins and programmed by DNA. Nat Nano9,44-47,doi:10.1038/nnano.2013.230http://www.nature.com/nnano/journal/v9/n1/abs/nnano.2013.230.html#supplementary-information (2014).
    89Giannone, G. et al. Dynamic Superresolution Imaging of Endogenous Proteinson Living Cells at Ultra-High Density. Biophysical Journal99,1303-1310,doi:10.1016/j.bpj.2010.06.005(2010).
    90Lew, M. D. et al. Three-dimensional superresolution colocalization ofintracellular protein superstructures and the cell surface in live Caulobactercrescentus. Proceedings of the National Academy of Sciences of the UnitedStates of America108, E1102-E1110, doi:10.1073/pnas.1114444108(2011).
    91Flors, C., Ravarani, C. N. J.&Dryden, D. T. F. Super-Resolution Imaging of DNALabelled with Intercalating Dyes. Chemphyschem10,2201-2204,doi:10.1002/cphc.200900384(2009).
    92Schoen, I., Ries, J., Klotzsch, E., Ewers, H.&Vogel, V. Binding-ActivatedLocalization Microscopy of DNA Structures. Nano Letters11,4008-4011,doi:10.1021/nl2025954(2011).
    93Jungmann, R. et al. Single-Molecule Kinetics and Super-ResolutionMicroscopy by Fluorescence Imaging of Transient Binding on DNA Origami.Nano Letters10,4756-4761, doi:10.1021/nl103427w (2010).
    94Tokunaga, M., Imamoto, N.&Sakata-Sogawa, K. Highly inclined thinillumination enables clear single-molecule imaging in cells. Nature Methods5,159-161, doi:10.1038/nmeth.1171(2008).
    95Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodesself-assembled from DNA. Nature Chemistry4,832-839,doi:10.1038/nchem.1451(2012).
    96Vaughan, J. C., Jia, S.&Zhuang, X. Ultrabright photoactivatable fluorophorescreated by reductive caging. Nature Methods9,1181-U1135,doi:10.1038/nmeth.2214(2012).
    97Jungmann, R. et al. Multiplexed3D cellular super-resolution imaging withDNA-PAINT and Exchange-PAINT. Nature Methods11,313-U292,doi:10.1038/nmeth.2835(2014).
    98Chen, J. H.&Seeman, N. C. SYNTHESIS FROM DNA OF A MOLECULE WITH THECONNECTIVITY OF A CUBE. Nature350,631-633, doi:10.1038/350631a0(1991).
    99Winfree, E., Liu, F. R., Wenzler, L. A.&Seeman, N. C. Design and self-assemblyof two-dimensional DNA crystals. Nature394,539-544, doi:10.1038/28998(1998).
    100Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensionalshapes. Nature459,414-418, doi:10.1038/nature08016(2009).
    101Wei, B., Dai, M. J.&Yin, P. Complex shapes self-assembled fromsingle-stranded DNA tiles. Nature485,623-+, doi:10.1038/nature11075(2012).
    102Linko, V.&Dietz, H. The enabled state of DNA nanotechnology. CurrentOpinion in Biotechnology24,555-561, doi:10.1016/j.copbio.2013.02.001(2013).
    103Erben, C. M., Goodman, R. P.&Turberfield, A. J. A self-assembled DNAbipyramid. Journal of the American Chemical Society129,6992-+,doi:10.1021/ja071493b (2007).
    104Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-U75, doi:10.1038/nature07971(2009).
    105He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecularpolyhedra. Nature452,198-U141, doi:10.1038/nature06597(2008).
    106Ke, Y. G. et al. Scaffolded DNA Origami of a DNA Tetrahedron MolecularContainer. Nano Letters9,2445-2447, doi:10.1021/nl901165f (2009).
    107Zhang, C. et al. Symmetry Controls the Face Geometry of DNA Polyhedra.Journal of the American Chemical Society131,1413-+, doi:10.1021/ja809666h(2009).
    108Iinuma, R. et al. Polyhedra Self-Assembled from DNA Tripods andCharacterized with3D DNA-PAINT. Science344,65-69(2014).
    1Baron, R., Lioubashevski, O., Katz, E., Niazov, T.&Willner, I. Elementaryarithmetic operations by enzymes: A model for metabolic pathway basedcomputing. Angewandte Chemie-International Edition45,1572-1576,doi:10.1002/anie.200503314(2006).
    2de Silva, A. P.&Uchiyama, S. Molecular logic and computing. NatureNanotechnology2,399-410, doi:10.1038/nnano.2007.188(2007).
    3Guo, Z., Zhu, W., Shen, L.&Tian, H. A fluorophore capable of crosswordpuzzles and logic memory. Angewandte Chemie-International Edition46,5549-5553, doi:10.1002/anie.200700526(2007).
    4Qu, D. H., Wang, Q. C.&Tian, H. A half adder based on a photochemicallydriven2rotaxane. Angewandte Chemie-International Edition44,5296-5299,doi:10.1002/anie.200501215(2005).
    5Saghatelian, A., Volcker, N. H., Guckian, K. M., Lin, V. S. Y.&Ghadiri, M. R.DNA-based photonic logic gates: AND, NAND, and INHIBIT. Journal of theAmerican Chemical Society125,346-347, doi:10.1021/ja029009m (2003).
    6Shlyahovsky, B., Li, Y., Lioubashevski, O., Elbaz, J.&Willner, I. Logic Gates andAntisense DNA Devices Operating on a Translator Nucleic Acid Scaffold. AcsNano3,1831-1843, doi:10.1021/nn900085x (2009).
    7Stojanovic, M. N., Mitchell, T. E.&Stefanovic, D. Deoxyribozyme-based logicgates. Journal of the American Chemical Society124,3555-3561,doi:10.1021/ja016756v (2002).
    8Elbaz, J. et al. DNA computing circuits using libraries of DNAzyme subunits.Nature Nanotechnology5,417-422, doi:10.1038/nnano.2010.88(2010).
    9Seelig, G., Soloveichik, D., Zhang, D. Y.&Winfree, E. Enzyme-free nucleic acidlogic circuits. Science314,1585-1588, doi:10.1126/science.1132493(2006).
    10Pei, R., Matamoros, E., Liu, M., Stefanovic, D.&Stojanovic, M. N. Training amolecular automaton to play a game. Nature Nanotechnology5,773-777,doi:10.1038/nnano.2010.194(2010).
    11Stojanovic, M. N.&Stefanovic, D. A deoxyribozyme-based molecularautomaton. Nature Biotechnology21,1069-1074, doi:10.1038/nbt862(2003).
    12Qian, L.&Winfree, E. Scaling Up Digital Circuit Computation with DNA StrandDisplacement Cascades. Science332,1196-1201,doi:10.1126/science.1200520(2011).
    13Qian, L., Winfree, E.&Bruck, J. Neural network computation with DNA stranddisplacement cascades. Nature475,368-372, doi:10.1038/nature10262(2011).
    14Benenson, Y., Gil, B., Ben-Dor, U., Adar, R.&Shapiro, E. An autonomousmolecular computer for logical control of gene expression. Nature429,423-429, doi:10.1038/nature02551(2004).
    15Leisner, M., Bleris, L., Lohmueller, J., Xie, Z.&Benenson, Y. Rationallydesigned logic integration of regulatory signals in mammalian cells. NatureNanotechnology5,666-670, doi:10.1038/nnano.2010.135(2010).
    16Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates inmammalian cells. Nature Biotechnology25,795-801, doi:10.1038/nbt1307(2007).
    17Shapiro, E.&Gil, B. RNA computing in a living cell. Science322,387-388,doi:10.1126/science.1165665(2008).
    18Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R.&Benenson, Y. Multi-InputRNAi-Based Logic Circuit for Identification of Specific Cancer Cells. Science333,1307-1311, doi:10.1126/science.1205527(2011).
    19Delebecque, C. J., Lindner, A. B., Silver, P. A.&Aldaye, F. A. Organization ofIntracellular Reactions with Rationally Designed RNA Assemblies. Science333,470-474, doi:10.1126/science.1206938(2011).
    20Gil, B., Kahan-Hanum, M., Skirtenko, N., Adar, R.&Shapiro, E. Detection ofMultiple Disease Indicators by an Autonomous Biomolecular Computer. NanoLetters11,2989-2996, doi:10.1021/nl2015872(2011).
    21Langer, R.&Tirrell, D. A. Designing materials for biology and medicine.Nature428,487-492, doi:10.1038/nature02388(2004).
    22Seeman, N. C. DNA in a material world. Nature421,427-431,doi:10.1038/nature01406(2003).
    23Pinheiro, A. V., Han, D., Shih, W. M.&Yan, H. Challenges and opportunities forstructural DNA nanotechnology. Nature Nanotechnology6,763-772,doi:10.1038/nnano.2011.187(2011).
    24He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecularpolyhedra. Nature452,198-U141, doi:10.1038/nature06597(2008).
    25Krishnan, Y.&Simmel, F. C. Nucleic Acid Based Molecular Devices.Angewandte Chemie-International Edition50,3124-3156,doi:10.1002/anie.200907223(2011).
    26Simmel, F. C. Towards biomedical applications for nucleic acid nanodevices.Nanomedicine2,817-830, doi:10.2217/17435889.2.6.817(2007).
    27Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-U75, doi:10.1038/nature07971(2009).
    28Liu, H.&Liu, D. DNA nanomachines and their functional evolution. ChemicalCommunications,2625-2636, doi:10.1039/b822719e (2009).
    29Liu, J., Cao, Z.&Lu, Y. Functional Nucleic Acid Sensors. Chemical Reviews109,1948-1998, doi:10.1021/cr030183i (2009).
    30Xing, Y., Yang, Z.&Liu, D. A Responsive Hidden Toehold To Enable ControllableDNA Strand Displacement Reactions. Angewandte Chemie-InternationalEdition50,11934-11936, doi:10.1002/anie.201105923(2011).
    31Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks formolecular nanofabrication. Science310,1661-1665,doi:10.1126/science.1120367(2005).
    32Goodman, R. P., Berry, R. M.&Turberfield, A. J. The single-step synthesis of aDNA tetrahedron. Chemical Communications,1372-1373,doi:10.1039/b402293a (2004).
    33Li, J. et al. Self-Assembled Multivalent DNA Nanostructures for NoninvasiveIntracellular Delivery of Immunostimulatory CpG Oligonucleotides. Acs Nano5,8783-8789, doi:10.1021/nn202774x (2011).
    34Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. A.&Turberfield, A. J. DNA CageDelivery to Mammalian Cells. Acs Nano5,5427-5432, doi:10.1021/nn2005574(2011).
    35Liu, D. S.&Balasubramanian, S. A proton-fuelled DNA nanomachine.Angewandte Chemie-International Edition42,5734-5736,doi:10.1002/anie.200352402(2003).
    36Hermann, T.&Patel, D. J. Biochemistry-Adaptive recognition by nucleic acidaptamers. Science287,820-825, doi:10.1126/science.287.5454.820(2000).
    37Ono, A.&Togashi, H. Highly selective oligonucleotide-based sensor formercury(II) in aqueous solutions. Angewandte Chemie-International Edition43,4300-4302, doi:10.1002/anie.200454172(2004).
    38Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNAnanostructures. Nature Nanotechnology3,93-96, doi:10.1038/nnano.2008.3(2008).
    39Leroy, J. L., Gehring, K., Kettani, A.&Gueron, M. ACID MULTIMERS OFOLIGODEOXYCYTIDINE STRANDS-STOICHIOMETRY, BASE-PAIRCHARACTERIZATION, AND PROTON-EXCHANGE PROPERTIES. Biochemistry32,6019-6031, doi:10.1021/bi00074a013(1993).
    40Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302, doi:10.1038/nature04586(2006).
    41Zhang, Z. et al. Mixed DNA-functionalized nanoparticle probes forsurface-enhanced Raman scattering-based multiplex DNA detection. ChemicalCommunications47,7407-7409, doi:10.1039/c1cc11062d (2011).
    42Pei, H. et al. A DNA Nanostructure-based Biomolecular Probe Carrier Platformfor Electrochemical Biosensing. Advanced Materials22,4754-+,doi:10.1002/adma.201002767(2010).
    43Pei, H. et al. Regenerable electrochemical immunological sensing at DNAnanostructure-decorated gold surfaces. Chemical Communications47,6254-6256, doi:10.1039/c1cc11660f (2011).
    44Wen, Y. et al. DNA Nanostructure-Decorated Surfaces for EnhancedAptamer-Target Binding and Electrochemical Cocaine Sensors. AnalyticalChemistry83,7418-7423, doi:10.1021/ac201491p (2011).
    45Modi, S. et al. A DNA nanomachine that maps spatial and temporal pHchanges inside living cells. Nature Nanotechnology4,325-330,doi:10.1038/nnano.2009.83(2009).
    46Douglas, S. M., Bachelet, I.&Church, G. M. A Logic-Gated Nanorobot forTargeted Transport of Molecular Payloads. Science335,831-834,doi:10.1126/science.1214081(2012).
    47Liu, D., Cheng, E.&Yang, Z. DNA-based switchable devices and materials. NpgAsia Materials3,109-114, doi:10.1038/asiamat.2011.147(2011).
    1Seeman, N. C. DNA in a material world. Nature421,427-431,doi:10.1038/nature01406(2003).
    2Dietz, H., Douglas, S. M.&Shih, W. M. Folding DNA into twisted and curvednanoscale shapes. Science325,725-730, doi:10.1126/science.1174251(2009).
    3Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E.&Shih, W. M. Self-assembly ofthree-dimensional prestressed tensegrity structures from DNA. NatureNanotechnology5,520-524, doi:10.1038/nnano.2010.107(2010).
    4Han, D. et al. DNA origami with complex curvatures in three-dimensionalspace. Science332,342-346, doi:10.1126/science.1202998(2011).
    5Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.Nature440,297-302, doi:10.1038/nature04586(2006).
    6Fu, Y. M. et al. Single-step rapid assembly of DNA origami nanostructures foraddressable nanoscale bioreactors. Journal of the American Chemical Society135,696-702, doi:10.1021/ja3076692(2013).
    7Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. A.&Turberfield, A. J. DNA cagedelivery to mammalian cells. Acs Nano5,5427-5432, doi:10.1021/nn2005574(2011).
    8Li, J. et al. Self-assembled multivalent DNA nanostructures for noninvasiveintracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano5,8783-8789, doi:10.1021/nn202774x (2011).
    9Pei, H. et al. Reconfigurable three-dimensional DNA nanostructures for theconstruction of intracellular logic sensors. Angewandte Chemie InternationalEdition51,9020-9024, doi:10.1002/anie.201202356(2012).
    10Modi, S. et al. A DNA nanomachine that maps spatial and temporal pHchanges inside living cells. Nature Nanotechnology4,325-330,doi:10.1038/nnano.2009.83(2009).
    11Benenson, Y., Gil, B., Ben-Dor, U., Adar, R.&Shapiro, E. An autonomousmolecular computer for logical control of gene expression. Nature429,423-429, doi:10.1038/nature02551(2004).
    12Ko, S., Liu, H., Chen, Y.&Mao, C. DNA nanotubes as combinatorial vehicles forcellular delivery. Biomacromolecules9,3039-3043, doi:10.1021/bm800479e(2008).
    13Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles fortargeted in vivo siRNA delivery. Nature Nanotechnology7,389-393,doi:http://www.nature.com/nnano/journal/v7/n6/abs/nnano.2012.73.html#supplementary-information (2012).
    14Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance.Journal of the American Chemical Society134,13396-13403,doi:10.1021/ja304263n (2012).
    15Douglas, S. M., Bachelet, I.&Church, G. M. A Logic-Gated Nanorobot forTargeted Transport of Molecular Payloads. Science335,831-834,doi:10.1126/science.1214081(2012).
    16Lakadamyali, M., Rust, M. J.&Zhuang, X. Ligands for clathrin-mediatedendocytosis are differentially sorted into distinct populations of earlyendosomes. Cell124,997-1009,doi:http://dx.doi.org/10.1016/j.cell.2005.12.038(2006).
    17Chen, C.&Zhuang, X. Epsin1is a cargo-specific adaptor for theclathrin-mediated endocytosis of the influenza virus. Proceedings of theNational Academy of Sciences of the United States of America105,11790-11795, doi:10.1073/pnas.0803711105(2008).
    18Goodman, R. P., Berry, R. M.&Turberfield, A. J. The single-step synthesis of aDNA tetrahedron. Chemical Communications,1372-1373,doi:10.1039/b402293a (2004).
    19Pei, H. et al. A DNA nanostructure-based biomolecular probe carrier platformfor electrochemical biosensing. Advanced Materials22,4754-+,doi:10.1002/adma.201002767(2010).
    20Axelrod, D. Total internal reflection fluorescence microscopy in cell biology.Traffic2,764-774(2001).
    21Vaughan, J. C., Brandenburg, B., Hogle, J. M.&Zhuang, X. Rapidactin-dependent viral motility in live cells. Biophysical Journal97,1647-1656,doi:http://dx.doi.org/10.1016/j.bpj.2009.07.011(2009).
    22Kumagai, Y., Takeuchi, O.&Akira, S. TLR9as a key receptor for the recognitionof DNA. Advanced Drug Delivery Reviews60,795-804(2008).
    23Kam, N. W. S., Liu, Z.&Dai, H. Carbon nanotubes as intracellular transportersfor proteins and DNA: An investigation of the uptake mechanism and pathway.Angewandte Chemie International Edition118,591-595(2006).
    24Rejman, J., Oberle, V., Zuhorn, I. S.&Hoekstra, D. Size-dependentinternalization of particles via the pathways of clathrin-andcaveolae-mediated endocytosis. Biochemical Journal377,159-169,doi:10.1042/bj20031253(2004).
    25Brandenburg, B.&Zhuang, X. Virus trafficking-learning from single-virustracking. Nature Reviews Microbiology5,197-208,doi:http://www.nature.com/nrmicro/journal/v5/n3/suppinfo/nrmicro1615_S1.html (2007).
    26Qaddoumi, M. G. et al. Clathrin and caveolin-1expression in primarypigmented rabbit conjunctival epithelial cells: Role in PLGA nanoparticleendocytosis. Molecular Vision9,559-568(2003).
    27Heuser, J. E.&Anderson, R. G. W. Hypertonic media inhibitreceptor-mediated endocytosis by blocking clathrin-coated pit formation.Journal of Cell Biology108,389-400, doi:10.1083/jcb.108.2.389(1989).
    28Mor, A. et al. Dynamics of single mRNP nucleocytoplasmic transport andexport through the nuclear pore in living cells. Nature Cell Biology12,543-552,doi:http://www.nature.com/ncb/journal/v12/n6/suppinfo/ncb2056_S1.html(2010).
    29Zanta, M. A., Belguise-Valladier, P.&Behr, J. P. Gene delivery: A single nuclearlocalization signal peptide is sufficient to carry DNA to the cell nucleus.Proceedings of the National Academy of Sciences of the United States ofAmerica96,91-96(1999).
    30Dix, J. A.&Verkman, A. S. in Annual Review of Biophysics Vol.37AnnualReview of Biophysics247-263(2008).
    31Kirchhausen, T. Clathrin. Annual Review of Biochemistry69,699-727,doi:10.1146/annurev.biochem.69.1.699(2000).
    32Nichols, B. J.&Lippincott-Schwartz, J. Endocytosis without clathrin coats.Trends in Cell Biology11,406-412, doi:10.1016/s0962-8924(01)02107-9(2001).
    33Spudich, J. A. Mow molecular motors work. Nature372,515-518,doi:10.1038/372515a0(1994).
    34Vale, R. D.&Milligan, R. A. The way things move: Looking under the hood ofmolecular motor proteins. Science288,88-95,doi:10.1126/science.288.5463.88(2000).
    35Soldati, T.&Schliwa, M. Powering membrane traffic in endocytosis andrecycling. Nature Reviews Molecular Cell Biology7,897-908,doi:10.1038/nrm1960(2006).
    1Abbe, E. Beitrage zur Theorie des Mikroskops und der mikroskopischenWahrnehmung. Arch. Mikroskop Anat9,413-420(1873).
    2Hell, S. W. Far-field optical nanoscopy. Science316,1153-1158,doi:10.1126/science.1137395(2007).
    3Hell, S. W.&Wichmann, J. BREAKING THE DIFFRACTION RESOLUTION LIMITBY STIMULATED-EMISSION-STIMULATED-EMISSION-DEPLETIONFLUORESCENCE MICROSCOPY. Optics Letters19,780-782,doi:10.1364/ol.19.000780(1994).
    4Hess, S. T., Girirajan, T. P. K.&Mason, M. D. Ultra-high resolution imaging byfluorescence photoactivation localization microscopy. Biophysical Journal91,4258-4272, doi:10.1529/biophysj.106.091116(2006).
    5Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometerresolution. Science313,1642-1645, doi:10.1126/science.1127344(2006).
    6Rust, M. J., Bates, M.&Zhuang, X. W. Sub-diffraction-limit imaging bystochastic optical reconstruction microscopy (STORM). Nature Methods3,793-795, doi:10.1038/nmeth929(2006).
    7Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-fieldfluorescence imaging with theoretically unlimited resolution. Proceedings ofthe National Academy of Sciences of the United States of America102,13081-13086, doi:10.1073/pnas.0406877102(2005).
    8Donnert, G. et al. Macromolecular-scale resolution in biological fluorescencemicroscopy. Proceedings of the National Academy of Sciences103,11440-11445, doi:10.1073/pnas.0604965103(2006).
    9Xu, K., Babcock, H. P.&Zhuang, X. Dual-objective STORM revealsthree-dimensional filament organization in the actin cytoskeleton. Nat Meth9,185-188,doi:http://www.nature.com/nmeth/journal/v9/n2/abs/nmeth.1841.html#supplementary-information (2012).
    10Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R.&Hell, S. W. STED microscopyreveals that synaptotagmin remains clustered after synaptic vesicle exocytosis.Nature440,935-939,doi:http://www.nature.com/nature/journal/v440/n7086/suppinfo/nature04592_S1.html (2006).
    11Wang, W., Li, G.-W., Chen, C., Xie, X. S.&Zhuang, X. ChromosomeOrganization by a Nucleoid-Associated Protein in Live Bacteria. Science333,1445-1449, doi:10.1126/science.1204697(2011).
    12Schonle, A., Hanninen, P. E.&Hell, S. W. Nonlinear fluorescence throughintermolecular energy transfer and resolution increase in fluorescencemicroscopy. Annalen Der Physik8,115-133,doi:10.1002/(sici)1521-3889(199902)8:2<115::aid-andp115>3.3.co;2-m(1999).
    13Chen, J. F.&Cheng, Y. Far-field superresolution imaging with dual-dye-dopednanoparticles. Optics Letters34,1831-1833(2009).
    14Deng, S. H., Chen, J. F., Huang, Q., Fan, C. H.&Cheng, Y. Saturated Forsterresonance energy transfer microscopy with a stimulated emission depletionbeam: a pathway toward single-molecule resolution in far-field bioimaging.Optics Letters35,3862-3864, doi:10.1364/ol.35.003862(2010).
    15Seeman, N. C. DNA in a material world. Nature421,427-431,doi:10.1038/nature01406(2003).
    16Yan, H. Nucleic Acid Nanotechnology. Science306,2048-2049,doi:10.1126/science.1106754(2004).
    17Dietz, H., Douglas, S. M.&Shih, W. M. Folding DNA into Twisted and CurvedNanoscale Shapes. Science325,725-730, doi:10.1126/science.1174251(2009).
    18Langecker, M. et al. Synthetic Lipid Membrane Channels Formed by DesignedDNA Nanostructures. Science338,932-936, doi:10.1126/science.1225624(2012).
    19Ke, Y., Ong, L. L., Shih, W. M.&Yin, P. Three-Dimensional StructuresSelf-Assembled from DNA Bricks. Science338,1177-1183,doi:10.1126/science.1227268(2012).
    20Stojanovic, M. N.&Stefanovic, D. A deoxyribozyme-based molecularautomaton. Nat Biotech21,1069-1074,doi:http://www.nature.com/nbt/journal/v21/n9/suppinfo/nbt862_S1.html(2003).
    21Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructureswith tailored optical response. Nature483,311-314,doi:http://www.nature.com/nature/journal/v483/n7389/abs/nature10889.html#supplementary-information (2012).
    22Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with acontrollable lid. Nature459,73-76,doi:http://www.nature.com/nature/journal/v459/n7243/suppinfo/nature07971_S1.html (2009).
    23Schmied, J. J. et al. Fluorescence and super-resolution standards based onDNA origami. Nat Meth9,1133-1134,doi:http://www.nature.com/nmeth/journal/v9/n12/abs/nmeth.2254.html#supplementary-information (2012).
    24Bojarski, P. et al. Long-Distance FRET Analysis: A Monte Carlo SimulationStudy. The Journal of Physical Chemistry B115,10120-10125,doi:10.1021/jp202152m (2011).
    25Clapp, A. R. et al. Fluorescence Resonance Energy Transfer Between QuantumDot Donors and Dye-Labeled Protein Acceptors. Journal of the AmericanChemical Society126,301-310, doi:10.1021/ja037088b (2003).
    1Pinheiro, A. V., Han, D., Shih, W. M.&Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology6,763-772, doi:10.1038/nnano.2011.187(2011).
    2Shlyahovsky, B., Li, Y., Lioubashevski,0., Elbaz, J.&Willner, I. Logic Gates and Antisense DNA Devices Operating on a Translator Nucleic Acid Scaffold. Acs Nano3,1831-1843, doi:10.1021/nn900085x (2009).
    3Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R.&Benenson, Y. Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells. Science333,1307-1311, doi:10.1126/science.1205527(2011).
    4Douglas, S. M., Bachelet, I.&Church, G. M. A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science335,831-834, doi:10.1126/science.1214081(2012).
    5Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. A.&Turberfield, A. J. DNA Cage Delivery to Mammalian Cells. Acs Nano5,5427-5432, doi:10.1021/nn2005574(2011).
    6Liu, D., Cheng, E.&Yang, Z. DNA-based switchable devices and materials. Npg Asia Materials3,109-114, doi:10.1038/asiamat.2011.147(2011).
    7Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature459,73-U75, doi:10.1038/nature07971(2009).
    8Rust, M. J., Bates, M.&Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods3,793-795, doi:10.1038/nmeth929(2006).
    9Richards, C. I., Hsiang, J.-C., Khalil A. M., Hull N. P.&Dickson, R. M. FRET-Enabled Optical Modulation for High Sensitivity Fluorescence Imaging. Journal of the American Chemical Society132,6318-6323, doi:10.1021/ja100175r (2010).
    10Jares-Erijman, E. A.&Jovin, T. M. FRET imaging. Nat Biotech21,1387-1395(2003).
    11Truong, K.&Ikura, M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Current Opinion in Structural Biology11,573-578, doi:http://dx.doi.org/10.1016/S0959-440X(00)00249-9(2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700