用户名: 密码: 验证码:
复动力系统的混沌控制与同步及其在通信中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,复动力系统己广泛地应用到通信、金融、生物等多个学科中.复混沌系统就是一个典型的复动力系统.自从1982年复Lorenz方程被提出以来,复混沌系统在物理学的许多领域发挥了重要作用,尤其是通信系统.复变量增加了所传输信息的内容并提高了安全性.复混沌系统的控制和同步成为混沌保密通信的热点问题.因此,本文对复混沌系统的控制和同步及其在安全通信中的应用进行了一系列基础研究,其主要工作和创新点如下:
     1.实混沌系统的控制与同步
     对于连续系统,提出了累积误差控制器.该控制器采用了累积误差的线性函数,在实际工程上可由RC电路实现.对于离散系统,提出了误差反馈矩阵控制.它类似于线性系统的状态反馈,但是该矩阵是时变的,包含状态变量的耦合信息,根据梯度下降法在线更新,并趋于一个恒定矩阵.结合变量间的耦合关系,本文还提出了部分矩阵控制和全矩阵控制.部分矩阵控制仅采用对部分变量的控制就实现全部变量达到期望值,易于工程实现.但是,上述控制器只能实现不动点控制和自同步.因此,结合速度梯度法和非线性函数控制,本文实现了带有未知参数的连续混沌系统的跟踪任意有界参考信号和参数辨识.
     2.复混沌系统的复比例因子投影同步与参数辨识
     提出了复比例因子投影同步(CMPS).完全同步(CS),反同步(AS),投影同步(PS)和修正投影同步(MPS)都是CMPS的特殊情况,因此它包含了以前的工作并进行推广.考虑到复混沌系统的未知参数和有界干扰的各种可能情形,本文设计了带有收敛因子和动态控制力量CMPS控制器;同时基于可持续激励和线性独立给出了参数收敛到真值的充分条件和必要条件,给出了改变比例因子的方法以辨识出参数真值.另外,CMPS在实混沌系统和复混沌系统之间建立同步联接.因此,本文首次讨论了实混沌系统和复混沌系统的复比例因子投影同步,基于速度梯度法设计了包含伪梯度条件的同步控制器.
     3.复混沌系统的复函数同步及其通信方案
     提出复函数投影同步(CFPS). CS, AS, PS, MPS,全状态组合投影同步(FSHPS),函数投影同步(FPS),修正函数投影同步(MFPS),广义函数投影同步(GFPS)和CMPS都是CFPS的特殊情形.CFPS几乎没有被研究过,而且将包括大部分存在的同步情形.针对带有未知参数的复混沌系统,设计了CFPS控制器,并针对耦合复混沌系统,设计了基于CFPS的通信方案.该通信方案本质上是混沌掩盖,但是所传输的信号是信息信号(作为复比例函数)与混沌信号积的导数.因为复比例函数比实函数更加不可预测和复杂,则入侵者从传输信号中提取信息的可能性更小.
     4.复混沌系统的差函数投影同步及其通信方案
     从两复函数相减的角度提出了差函数投影同步(DFPS),自同步和相位同步均是其特殊情形.设计了DFPS控制器,并将其应用到耦合复混沌系统中,提出了基于DFPS的通信方案.该通信方案本质上仍是混沌掩盖,但是所传输的信号是信息信号和混沌信号的和的导数.它避免了CFPS中由于驱动系统状态(作为除数)接近零时产生的算法误差.
     5.时滞复混沌系统的自时滞同步及其通信方案
     提出了复混沌系统的自时滞同步(STDS),它是自同步的扩展,进一步拓宽了同步问题的视野,并避免了因时滞而产生的各种问题.时滞复混沌系统能产生高度随机性和不可预测性的时间序列,应用在混沌保密通信中能够提高保密性能.因此,本文研究了时滞复Lorenz系统的混沌特性,并设计控制器实现了时滞复Lorenz系统的自时滞同步.针对耦合时滞复混沌系统,给出了基于STDS的通信方案.该通信方案考虑了信息传输中产生的时滞,更接近实际情况,时滞复混沌系统也进一步增强了保密效果.
     综上所述,本文围绕复动力系统的混沌控制与同步及其在通信中的应用展开了研究,提出了复比例因子投影同步,复函数投影同步,差函数投影同步及自时滞同步等概念,并将复变量引入到混沌通信中,促进了复动力系统的发展,为进一步加强通信安全提供了理论依据.
At present, the complex dynamic system is widely used in communications, finance, biology and many other subjects. Complex chaotic system is a typical com-plex dynamic system. Since complex Lorenz equation has been proposed in1982, complex chaotic systems have played an important role in many fields of physics, es-pecially in communication. The complex variables increase the content of transmit-ted information and improve the safety. The control and synchronization of complex chaotic systems is becoming one of hot spots of chaos-communication. Therefore, this thesis focuses on the control and synchronization of complex chaotic system and its application in secure communication. The main work and innovation points are as follows,
     1. The control and synchronization of real chaotic system
     For continuous system, we propose cumulative error controller. The controller is the linear function of cumulative error in essence, which can be realized by RC circuit in practical engineering. For discrete system, we put forward error feedback dynamic matrix. It is similar to the state feedback matrix for linear systems; but the former is time-varying and converges to a constant matrix. The controller includes coupling information of state variables, and updates online according to the gradi-ent descent method. Using the coupling relationship between variables, we present whole matrix control and partial matrix control. For partial matrix control, all vari-ables can reach the expected value only by the control of some variables, which is easy to implement in practice. However, the above controllers only can realize the stabilization of the fixed point and self-synchronization. Therefore, we combine with the speed gradient method and the nonlinear function control, and realize the smooth tracking of arbitrary bounded reference signal and parameter identification for continuous chaotic systems with unknown parameters.
     2. The modified projective synchronization with complex scaling factor and parameter identification
     We propose modified projective synchronization with complex scaling factors (CMPS). Since complete synchronization (CS), anti-synchronization (AS), projec-tive synchronization (PS) and modified projective synchronization (MPS) are special cases of CMPS, CMPS contains existing works and extend previous works. Consid-ering all possible cases of unknown parameters and bounded disturbance, we design CMPS controller which contains convergence factor and dynamical control strength, and then we draw on the sufficient condition and necessary condition that the un-known parameters converge to their true values based on the persistency of excitation and linear independence. We also discuss the method to change the scaling factors to identify the true values of the parameters, which is important in the practical control system. In addition, CMPS establishes a link between real chaos and complex chaos. Therefore, based on speed-gradient method, we first design adaptive CMPS schemes including pseudogradient condition.
     3. Complex function projective synchronization of complex chaotic system and its application in communication
     We present complex function projective synchronization (CFPS). CS, AS, PS, MPS, full states hybrid projective synchronization (FSHPS), function projective syn-chronization (FPS), modified function projective synchronization (MFPS), general-ized function projective synchronization (GFPS) and CMPS are the special cases of CFPS. Therefore, CFPS, which has rarely been explored, will contain most existing works and extend previous works. For complex system with unknown parameters, we report CFPS schemes. Aiming at coupled complex chaotic systems, we design a novel communication scheme based on CFPS. The essence of this scheme is chaotic masking, but the transmitted signal is the derivative of the product of the information signal (used as complex scaling function) and chaotic signal. As the complex scal-ing functions are arbitrary and more unpredictable than real scaling functions, the possibility that an interceptor extracts the information from the transmitted signal is greatly reduced.
     4. Difference function projective synchronization of complex chaotic system and its application in communication
     We put forward difference function projection synchronization (DFPS) from the view of the difference of two functions. CS and phase synchronization are its special cases. We design DFPS controller, and apply it to the coupling complex chaotic system, and design the communication scheme based on DFPS. This com-munication scheme is still chaos masking in essence, but the transmitted signal is the derivative of the sum of information signal and chaotic signal. It avoids the error which is produced when the state of drive system (as the divisor) is close to zero in the communication scheme based on CFPS.
     5. Self-time-delay synchronization of complex chaotic system arid its applica-tion in communication
     We put forward self-time-delay synchronization (STDS) of complex chaotic systems. STDS is an extension of self-synchronization, which further broadens the horizons of synchronization issues, and avoids several problems caused by time-delay. Time-delay complex chaotic systems can generate time series with high ran-domness and unpredictability which can improve the security in chaos-communication. Therefore, we study the characteristics of time-delay complex Lorenz system, and design a feedback controller to realize STDS. For coupling time-delay complex chaotic systems, we discuss the communication scheme based on STDS. This com-munication scheme refers to the time-delay produced in the transmission process, which is more close to the real situation. The adoption of time-delay complex chaotic systems further enhances the effect of secrecy.
     To sum up, we study chaos control and synchronization of complex dynamical system and its applications in communication, and present the definitions such as modified projective synchronization with complex scaling factors, complex function projective synchronization, difference function projective synchronization and self-time-delay synchronization. We introduce the complex variables into the chaos- communication, which promote the development of the complex dynamic system, and provide the theoretical basis for strengthening security of communications.
引文
[1]A. C. Fowler, J. D. Gibbon, The complex Lorenz equations[J]. Physica D. 1982,4(2):139-163.
    [2]A. C. Fowler, J. D. Gibbon, M. J. McGuinness, The real and complex Lorenz equations and their relevance to physical systems[J]. Physica D,1983,7(1-3): 126-134.
    [3]J. D. Gibbon, M. J. McGuinness, The real and complex Lorenz equations in rotating fluids and laser[J]. Physica D,1982,5(1):108-122.
    [4]C. Z. Ning, H. Haken, Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations [J]. Physical Review A,1990, 41(7):3826-3837.
    [5]A. Rauh, L. Hannibal, N. B. Abraham, Global stability properties of the com-plex Lorenz model[J]. Physica D,1996,99(1):45-58.
    [6]H. Richter, Controlling the Lorenz system:combining global and local schemes[J]. Chaos Solitons & Fractals,2001,12(13):2375-2380.
    [7]G. M. Mahmoud, T. Bountis, E. E. Mahmoud, Active control and global syn-chronization of complex Chen and Lu systems [J]. International Journal of Bifurcation & Chaos,2007,17(12):4295-4308.
    [8]T. Y. Li, J. A. Yorke, Period three implies chaos [J]. The American Mathemat-ical Monthly.1975,82(10):985-992.
    [9]R. Devaney, An introduction to chaotic dynamical systems [M]. New York:Addison-Wesley Publishing Company,1989.
    [10]阂富红,混沌系统同步控制的有关问题研究[D].博士论文,南京:南京理工大学,2007.
    [11]L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems[J]. Physical Review Letters,1990,64(8):821-824.
    [12]L. Glass, M. C. Mackay, From clocks to chaos:the rhythms of life[M]. Prince-ton NJ:Princeton University Press,1988.
    [13]J. Q. Lu, J. D. Cao, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters [J]. Chaos,2005,15(4):043901.
    [14]C. Kim, S. Rim, W. Kye, J. Ryu, Y. Park, Anti-synchronization of chaotic oscillators [J]. Physics Letters A,2003,320(1):39-46.
    [15]J. Hu, S. Chen, L. Chen. Adaptive control for anti-synchronization of Chua's chaotic system[J]. Physics Letters A,2005,339(6):455-460.
    [16]R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems[J]. Physical Review Letters,1999,82:3042-3045.
    [17]L. Guo, Z. Xu, Projective Synchronization in Drive-Response Networks via Impulsive Control[J]. Chinese Physics Letters,2008,25:2816-2819.
    [18]L. Guo, Z. Xu, Adaptive projective synchronization with different scaling fac-tors in networks[J]. Chinese Physics B,2008,17:4067-4072.
    [19]G. Li, Modified projective synchronization of chaotic system[J]. Chaos, Soli-tons & Fractals,2007,32(5):1786-1790.
    [20]J. H. Park, Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters [J]. Journal of Compu-tational and Applied Mathematics,2008,213(1):288-293.
    [21]G. L. Wen, D. Xu, Nonlinear observer control for full-state projective syn-chronization in chaotic continuous-time systems[J]. Chaos, Solitons and Frac-tals,2005,26:71-77.
    [22]M. F. Hu, Z. Y. Xu, R. Zhang, Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems[J]. Physics Letters A,2007,361(3):231-237.
    [23]M. F. Hu, Z. Y. Xu, R. Zhang, Adaptive full state hybrid projective synchro-nization of chaotic systems with the same and different order[J]. Physics Let-ters A,2007,365:315-327.
    [24]M. F. Hu, Z. Y. Xu, R. Zhang, Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems[J]. Communications in Non-linear Science and Numerical Simulation,2008,13(2):456-464.
    [25]K. S. Sudheer, Sabir M, Adaptive modified function projective synchroniza-tion between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters[J]. Physics Letters A,2009,373(41):3743-3748.
    [26]H. Y. Du, Q. S. Zeng, C. H. Wang, Modified function projective synchroniza-tion of chaotic system[J]. Chaos Solitons & Fractals 2009,42(4):2399-2404.
    [27]S. Zheng, G. G. Dong, Q. S. Bi, Adaptive modified function projective syn-chronization of hyperchaotic systems with unknown parameters[J]. Com-munications in Nonlinear Science and Numerical Simulation,2010,15(11): 3547-3556.
    [28]G. Y. Fu, Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance[J]. Communi-cations in Nonlinear Science and Numerical Simulation,2012,17(6):2602-2608.
    [29]S. Zheng, Adaptive modified function projective synchronization of unknown chaotic systems with different order[J]. Applied Mathematics and Computa-tion,2012,218(10):5891-5899.
    [30]Y. G. Yu, H. X. Li, Adaptive generalized function projective synchronization of uncertain chaotic systems[J]. Nonlinear Analysis:Real World Applica-tions,2010,11(4):2456-2464.
    [31]X. J. Wu, H. Wang, H. T. Lu. Hyperchaotic secure communication via general-ized function projective synchronization[J]. Nonlinear Analysis:Real World Applications,2011,12(2):1288-1299.
    [32]Z. B. Li, X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters [J]. Nonlinear Anal-ysis:Real World Applications,2011,12(5):2607-2615.
    [33]X. J. Wu, H. T. Lu, Generalized function projective (lag, anticipated and com-plete) synchronization between two different complex networks with noniden-tical nodes[J]. Communications in Nonlinear Science and Numerical Simula-tion,2012,17(7):3005-3021.
    [34]N. F. Rulkov, M. M. Sushchik, L. S. Tsimring et al., Generalized synchroniza-tion of chaos in directionally coupled chaotic systems[J]. Physical Review E, 1995,51:980-994.
    [35]L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equiv-alence of unidirectionally coupled dynamical systems[J]. Physical Review Letters,1996,76:1816-1819.
    [36]H. D. Abarbanel, N. F. Rulkov, M. M. Sushchik, Generalized synchronization of chaos:The auxiliary system approach[J]. Physical Review E,1996,53: 4528-4535.
    [37]M. Zhan, X. G. Wang, X. F. Gong et al, Complete synchronization and gen-eralized synchronization of one-way coupled time-delay systems [J]. Physical Review E,2003,68:036208.
    [38]M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phase to lag synchronization in coupled chaotic oscillators [J]. Physical Review Letters,1997,78:4193-4196.
    [39]S. Taherion, Y. C. Lai. Observability of lag synchronization of coupled chaotic oscillators[J]. Physical Review E,59(6):R6247.
    [40]E. M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Lag synchronization in time-delayed systems[J]. Physics Letters A,2002,292(6):320-324.
    [41]Li C. D., Liao X. F, Lag synchronization of Rossler system and Chua circuit via a scalar signal[J]. Physics Letters A,2004,329(4-5),301-308.
    [42]M. G. Rosenblum, Pikovsky A S, Kurths J., Phase Synchronization of Chaotic Oscillators[J]. Physical Review Letters,1996,76:1804-1807.
    [43]B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchroniza-tion in spatially extended ecological systems[J]. Nature,1999,399(6734): 354-359.
    [44]U. Parlitz, L. Junge, W. Lauterborn, Experimental observation of phase syn-chronization [J]. Physical Review E,1996,54:2115-2117.
    [45]E. Ott, C. Grebogi, J. A. Yorke, Controlling chaos[J]. Physical Review Letters, 1990,64(11):1196-1199.
    [46]L. Kocarev, U. Parlitz, General approach for chaotic synchronization with application to communication [J]. Physical Review Letters,1995,74:5028-5038.
    [47]Y. Zhang, M. Dai et al, Digital communication by active-passive-decomposition synchronization in hyperchaotic systems [J]. Physical Review E,1998,58(3):3022-3027.
    [48]K. Pyragad, Continuous control of chaos by self-controlling feedback [J]. Physical Letter A,1992,170:421-428.
    [49]K. Pyragad, Tamasevicius, Experimental control of chaos by delayed self-controlling feedback [J]. Physics Letters A,1993,180:99-102.
    [50]K. Pyragad, Control of chaos via extended delay feedback [J]. Physics Letters A,1995,206:323-330.
    [51]H. Richter, K. J.Reinschke, Local control of chaotic systems-a Lyapunov ap-proach [J]. International Journal of Bifurcation & Chaos,1998,8(7):1565-1573.
    [52]A. L. Panas, T. Yanag et al., Experimental result of impulsive syncharoniza-tion between two Chau's circuits[J]. International Journal of Bifurcation & Chaos,1998,8(3):639-644.
    [53]M. Itoh, T. Yang, L. O.Chua, Conditions for impulsive synchronization of chaotic and hyperchaotic systems[J]. International journal of bifurcation & chaos,2001,11:551-560.
    [54]D. Chen, J. Sun, C. Huang, Impulsive control and synchronization of general chaotic system[J]. Chaos Solitons & Fractals,2006,28:213-218.
    [55]N. Henk, M. Y. Iven, An observer looks at synchronization[J]. IEEE Transac-tion on Circuits and System-1,1997,44:882-889.
    [56]X. F. Wang, Z. Q. Wang, Synchronizing chaos and hyperchaos with any scalar transmitted signal[J]. IEEE Transaction on Circuits and System,1998,45: 1101-1103.
    [57]G. Giuseppe, M. Saverio, Synchronization of high-dimensional chaos genera-tors by observer design[J]. International journal of bifurcation & chaos,1999, 9:1175-1180.
    [58]T. L. Liao, S. H. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications[J]. Chaos, Solitons & Fractals,2000, 11:1387-1396.
    [59]U. E. Vincent, A. N. Njah, J. A. Laoye, Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control[J]. Physica D, 2007,231:130-136.
    [60]H. Zhang, X. K. Ma, M. Li, Controlling and tracking hyperchaotic Rossler system via active backstepping design[J]. Chaos, Solitions & Fractals,2005, 26:353-361.
    [61]D. Huang, Stabilizing Near-Nonhyperbolic Chaotic Systems with Applica-tions[J]. Physical Review Letters,2004,93:214101.
    [62]R. W. Guo, A simple adaptive controller for chaos and hyperchaos synchro-nization[J]. Physics Letters A,2008,372:5593-5597.
    [63]W. Lin, Adaptive chaos control and synchronization in only locally Lipschitz systems[J]. Physics Letters A,2008,372:3195-3200.
    [64]B. A. Huberman, Dynamics of Adaptive Systems [J]. IEEE Transaction on Circuits and System-I,1990,37:547-550.
    [65]D. Huang, Simple adaptive-feedback controller for identical chaos synchro-nization[J]. Physical Review E,2005,71(3):037203.
    [66]G. X. Chen, A simple adaptive feedback control method for chaos and hyper-chaos control[J]. Applied Mathematics and Computation,2011,217(17): 7258-7264.
    [67]E. R. Weeks, J. M. Burgess, Evolving artificial neural networks to control chaotic systems[J]. Physical Review E,1997,56:1531-1540.
    [68]K. Hirasawa, X. F. Wang, J. Murata, J. L. Hu, C. Z. Jin, Universal learning network and its application to chaos control[J]. Neural Networks,2000,13: 239-253.
    [69]K. Tanaka, T. Ikeda, H. O. Wang, A unified approach to controlling chaos via an LMI-Based fuzzy control system design[J]. IEEE Transaction on Circuits and System I,1998,45:1021-1040.
    [70]O. Calvo, J. H. E. Cartwright, Fuzzy control of chaos[J]. International journal of bifurcation & chaos,1998,8 (8):1743-1748.
    [71]L. Chen, G. R. Chen, Fuzzy modeling, prediction, and control of uncertain chaotic systems based on time series [J]. IEEE Transaction on Circuits and System I,2000,47:1527-1531.
    [72]Y. Hung, T. Liao, J. Yan, Adaptive variable structure control for chaos sup-pression of unified chaotic systems[J]. Applied Mathematics and Computa-tion,2009,209(2):391-398.
    [73]N. J. Corron, S. D. Pethel, B. A. Hopper, Controlling Chaos with Simple Limiters[J]. Physical Review Letters,2000,84:3835-3838.
    [74]L. X. Li, H. P. Peng, H. B. Lu, X. P. Guan, Control and synchronization of Henon chaotic system[J]. Acta Physica Sinica,2001,50(4):629-632.
    [75]X. Y. Wang, Q. J. Shi, Tracking control and synchronization of the Rossler' s chaotic system[J]. Acta Physica Sinica,2005,54(12):5591-5596.
    [76]L. Chen, D. S. Wang, Adaptive tracking control of the Chen system[J]. Acta Physica Sinica,2007,56(10):5662-5664.
    [77]F. H. Min, Z. Q. Wang, Generalized projective synchronization and tracking control of complex dynamos systems[J]. Acta Physica Sinica,2008,57(1): 31-36.
    [78]F. H. Min, Y. Yu, C. J. Ge, Circuit implementation and tracking control of the fractional-order hyper-chaotic Lu system[J]. Acta Physica Sinica, 2009,58(3):1456-1461
    [79]J. B. Hu, Y. Han, L. D. Zhao, Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters [J]. Acta Physica Sinica,2009,58(3):1441-1445.
    [80]L. D. Zhao, J. B. Hu, X. H. Liu, Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters[J]. Acta Physica Sinica 2010,59(4):2305-2309.
    [81]N. Li, J. F. Li, Y. P. Liu, Tracking control and parameters identification of a class of chaotic system with unkown parameters[J]. Acta Physica Sinica. 2011,60(5):050507
    [82]G. M. Mahmoud, Approximate solutions of a class of complex nonlinear dy-namical systems[J]. Physica A,1998,253(1):211-222.
    [83]L. Cveticanin, Analytical approach for the solution of the complex valued strongly nonlinear differential equation of Duffing type[J]. Physica A,2001, 297(3):348-360.
    [84]G. M. Mahmoud, A. A. Mohamed, S. A. Aly, Strange attractors and chaos control in periodically forced complex Duffing's oscillators[J]. Physica A, 2001,292(1):193-206.
    [85]Y. Xu, G. M. Mahmoud, W. Xu, et al, Suppressing chaos of a complex Duff-ing's system using a random phase[J]. Chaos, Solitons & Fractal,2005,3(1): 265-273.
    [86]G. M. Mahmoud, T. Bountis, The dynamics of systems of complex nonlinear oscillators:a review[J]. International Journal of Bifurcation and Chaos,2004, 14(11):3821-3846.
    [87]G. M. Mahmoud, S. A. Aly, M. A. Al-Kashif, Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system[J]. Nonlinear Dy-namics,2008,51:171-181.
    [88]G. M. Mahmoud, E. E. Mahmoud, M. E. Ahmed, On the hyperchaotic com-plex Lii system[J]. Nonlinear Dynamics,2009,58:725-738.
    [89]E. E. Mahmoud, Dynamics and synchronization of new hyperchaotic complex Lorenz system[J]. Mathematical and Computer Modelling,2012,55:1951-1962.
    [90]G. M. Mahmoud, T. Bountis, G. M. Abdel-Latif, E. E. Mahmoud, Chaos syn-chronization of two different chaotic complex Chen and Lu systems[J]. Non-linear Dynamics,2009,55:43-53.
    [91]G. M. Mahmoud, E. E. Mahmoud, Complete synchronization of chaotic com-plex nonlinear systems with uncertain parameters[J]. Nonlinear Dynamics, 2010,62:875-882.
    [92]G. M. Mahmoud, E. E. Mahmoud, Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems [J]. Nonlinear Dynam-ics,2010,61(1-2):141-152.
    [93]G. M. Mahmoud, E. E. Mahmoud, Synchronization and control of hyer-chaotic complex Lorenez system[J]. Mathematics and Computers in Simu-lation,2010,80(12):2286-2296.
    [94]G. M. Mahmoud, E. E. Mahmoud, Lag synchronization of hyperchaotic com-plex nonlinear systems[J]. Nonlinear Dynamics,2012,67:1613-1622.
    [95]E. E. Mahmoud, Modified projective phase synchronization of chaotic com-plex nonlinear systems[J]. Mathematics and Computers in Simulation,2013, 89:69-85.
    [96]S. T. Liu, P. Liu, Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters[J]. Nonlinear Analysis:Real World Appli-cations 2011,12(6):3046-3055.
    [97]P. Liu, S. T. Liu, Anti-synchronization between different chaotic complex sys-tems[J]. Phys. Physica Scripta,2011,83(6):065006.
    [98]P. Liu, S. T. Liu, Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances [J]. Nonlinear Dynamics,2012,70(1):585-599.
    [99]P. Liu, S. T. Liu, Adaptive modified function projective synchronization of general uncertain chaotic complex systems[J]. Physica Scripta,2012,85: 035005.
    [100]C. Luo, X. Y. Wang, Chaos in the fractional-order complex Lorenz system and its synchronization[J]. Nonlinear Dynamics,2013,71:241-257.
    [101]C. Luo, X. Y. Wang, Chaos generated from the fractional-order complex Chen system and its application to digital secure communication[J]. International Journal of Modern Physics C,2013,24(4):1350025
    [102]C. Luo, X. Y. Wang, Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identi-fication[J]. Journal of the Franklin Institute,2013,350:2646-2663.
    [103]C. Luo, X. Y. Wang, Adaptive modified function projective lag synchro-nization of hyperchaotic complex systems with fully uncertain parameters [J]. Journal of Vibration and Control,2013, doi:10.1177/1077546313476727
    [104]X. Y. Wang, H. Zhang, Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system[J]. Chinese Physics B,2013, 22(4):048902.
    [105]K. M. Cuomo, A. V. Oppenheim, S. H. Strogatz, Synchronization of Lorenz-based chaotic circuits with application to communications [J]. IEEE Transac-tion on Circuits and Systems I,1993,40:626-633.
    [106]M. J. Ogorzalek, Taming chaos[J]. IEEE Transaction on Circuits and Systems I,1993,40(10):693-706
    [107]方锦清,驾驭混沌与发展高新技术[M].原子能出版社,北京,2002.
    [108]V. Milanovic, M. E. Zaghloul, Improved masking algorithm chaotic commu-nication systems[J]. Electronic Letters,1996,32(1):11-12.
    [109]O. Morgula, M. Fekib, A chaotic masking scheme by using synchronized chaotic systems[J]. Physics Letters A,251(3):169-176.
    [110]M. Sushchik, L. S. Tsimring, A. R. Volkovskii, Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transac-tion on Circuits and Systems I,2001,48 (12):1684-1691.
    [111]H. Dedieu, M. P. Kennedy, M. Hasler, Chaos shift keying:modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits[J]. IEEE Transaction on Circuits and Systems II,1993,40:634-642.
    [112]A. Abel, W. Schwatz, M. Gotz, Noise performance of chaotic communication systems[J]. IEEE Transaction on Circuits and Systems I,2000,47 (12):1726-1732.
    [113]M. P. Kennedy, G. Kolumban, G. Kis et al, Performance evaluation of FM-DCSK modulation in multipath environments [J]. IEEE Transaction on Cir-cuits and Systems I,2001,48 (12):1702-1717.
    [114]P. Palaniyandi, M. Lankshmanan, Secure digital signal transmission by multi-step parameter modulation and alternative driving of transmitter variables[J]. International journal of bifurcation & chaos,2001,11 (7):2031-2036.
    [115]H. Puebla, J. Albarez-Ramirez, Stability of inverse-system approach in coher-ent chaotic communication[J]. IEEE Transaction on Circuits and Systems I, 2001,48(12):1413-1423.
    [116]T. Yang, C. W. Wu, L. O. Chua, Cryptography based on chaotic systems[J]. IEEE Transaction Circuits and Systems 1,1997,44 (5):469-472.
    [117]T. Liao, N. Huang, Chaotic secure communication systems design via nonlin-ear state observer technique [C]. Proceedings of ICSP'98:201-204.
    [118]S. Li, X. Mou, Y. Cai, Improving security of a chaotic encryption approach[J]. Physics Letters A,2001,290 (3):127-133.
    [119]K. Li, Y. C. Soh, Z. G. Li, Chaotic cryptosystem with sensitivity to parameter mismatch[J]. IEEE Transaction on Circuits and Systems I,2003,50(4):579-583.
    [120]L. Illing, Digital communication using chaos and nonlinear dynamics[J]. Non-linear Analysis:Theory, Methods & Applications,2009,71(12):2958-2964.
    [121]D. Wu, J. J. Li, Generalized projective synchronization via the state observer and its application in secure communication[J]. Chinese Physics B,2010, 19(12):120505.
    [122]D. S. Yang, Z. W. Liu, Y. Zhao, Z. B. Liu, Exponential networked synchro-nization of master-slave chaotic systems with time-varying communication topologies[J]. Chinese Physics B,2012,21(4):040503.
    [123]D. L. Xu, C. Y. Chee, Controlling the ultimate state of projective synchroniza-tion in chaotic systems of arbitrary dimension[J]. Physical Review E,2002, 66(4):046218.
    [124]C. Y. Chee, D. L. Xu, Secure Digital Communication Using Con-399 trolled Projective Synchronisation of Chaos[J]. Chaos, Solitons & Fractals,2005, 23(3):1063-1070.
    [125]C. Y. Chee, D. L. Xu, Chaos-based M-nary digital communication technique using controlled projective synchronization[C]. IEE Proceedings-Circuits, Devices and Systems,2006,153(4):357-360.
    [126]H. Y. Du, Q.S. Zeng, et al., Function projective synchronization in cou-pled chaotic systems[J]. Nonlinear Analysis:Real World Applications,2010, 11(2):705-712.
    [127]I. M. Olga, A. K. Alexey, E. H. Alexander, Generalized synchronization of chaos for secure communication:Remarkable stability to noise[J]. Physics Letters A,2010,374(29):2925-2931.
    [128]A. Z. Ashraf, A. R. Abdulnasser, On the design of chaos-based secure com-munication systems[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(9):3721-3737.
    [129]M. Eisencraft, R. D. Fanganiello et al., Chaos-based communication systems in nonideal channels[J]. Communications in Nonlinear Science and Numeri-cal Simulation,2012,17(12):4707-4718.
    [130]G. M. Mahmoud, E. E. Mahmoud, A. A. Arafa, On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications[J]. Physica Scripta,2013,87(5):055002.
    [131]Hassan K Khalil,朱义胜,董辉,李作洲等译.非线性系统(第三版)[M].北京:电子工业出版社,2005.7.
    [132]V. Lakshmikautham, D. Trigiante, Theory of Difference Equation-Numerical Methods and Applications[M]. Academic Press Inc., Boston, BSN,1988.
    [133]J. Hale, Theory of Functional Differential Equations (3)[M]. Berlin:Springer-Verlag,1977.
    [134]L. F. Alexander, Y. P. Alexander, Speed gradient control of chaotic continuous-time systems[J]. IEEE Transactions on circuits and systems-I: Fundamental theory and applications,1996,43(11):907-913.
    [135]G. Tao, A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control,1997,42(5):698.
    [136]方能文,一类弱对角占优矩阵特征值的性质及其应用[J].安徽大学学报(自然科学版),1995,1:18-22.
    [137]D. Huang, Adaptive-feedback control algorithm [J]. Physical Review E,2006, 73(6):066204.
    [138]D. Huang, Synchronization in adaptive weighted networks[J]. Physical Re-view E,2006,74(4):046208.
    [139]B. R. Andrievskii, A. L. Fradkov, Control of chaos:methods and applica-tions.I. Methods [J]. Automation and Remote Control,2003,64(5):103-197.
    [140]A. L. Fradkov, R. J. Evans, A. L. Fradkov, Control of chaos:methods and applications in engineering[J]. Annual Reviews in Control,2005,29(1):33-56.
    [141]O. E. Rossler, An equation for continuous chaos[J]. Physical Letters A,1976, 57:397-398
    [142]E. N. Lorenz, Deterministic non-periodic flow[J]. Journal of the Atmospheric Sciences.1963,20(2):130-141.
    [143]J. Y. Chen, K. Wong, J. Shuai, Finding the chaotic synchronizing state with gradient descent algorithm[J]. Physics Letters A,1999,263(4-6):315-322.
    [144]A. L. Fradkov, A. Y. Pogromsky, Introduction to control of oscillations and chaos[M]. Singapore:World Scientific,1998.
    [145]I. P. Marino, J. Miguez, An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems[J]. Physics Letters A,2006,351(4-5):262-267.
    [146]L. L. Teh, S. Lin, Adaptive control and synchronization of chua's circuits[J]. Asian Journal of control,1999,1(2):75-87.
    [147]W. Yu, G. Chen, J. Cao, Adaptive synchronization of uncertain coupled stochastic complex networks[J]. Asian Journal of control,2011,13(3):418-429.
    [148]K. M. Cuomo, A. V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications[J]. Physical Review Letters,1993, 71(1):65-68.
    [149]G. D. VanWiggeren, R. Roy, Communication with chaotic lasers[J]. Science, 1998,279(5354):1198-1200.
    [150]G. D. VanWiggeren, R. Roy, Optical communication with chaotic wave-forms[J]. Physical Review Letters,1998,81(16):3547-3550.
    [151]A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series[J]. Physica D,1985,16:285-317.
    [152]L. X. Li, H. P. Peng, Y. X. Yang, X. D. Wang, On the chaotic synchroniza-tion of Lorenz systems with time-varying lags[J]. Chaos, Solitons & Fractals, 2009,41(2):783-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700