用户名: 密码: 验证码:
数据包络分析(DEA)的交叉效率理论方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实生活中经常需要对若干个相似的决策单元进行评价和筛选。为此,一些专家学者设计了若干种评价方法,其中数据包络分析方法(Data Envelopment Analysis, DEA)已经普遍被相关学者和研究人员所接受。DEA是用来评价一组具有多输入和多输出决策单元之间相对效率的数学方法,该方法显著特点是不需要预先估计任何参数,亦不需要假定投入与产出之间的函数关系,因此一定程度上避免了主观性的干扰。正是由于具有这种独特的客观性优势,DEA在理论研究中取得了大量的成果,并且被广泛应用于实践中。然而,经典的DEA方法也存在一些缺陷,如只能将被评价决策单元区分为有效单元与非有效单元,不能进一步对有效决策单元进行优劣排序;自评体系下得到的权重容易夸大被评价决策单元某些投入或产出指标的长处,规避另一些投入和产出指标短处,从而产生评价效率值过高的问题。针对这些缺陷,DEA研究不断走向深入,一些新的理论和方法被提出来,交叉效率方法则是其中典型的代表。交叉效率方法有效结合了自评和他评体系,不但可以给所有的决策单元进行完全排序,而且还能有效解决部分极端权重的问题,从而避免评价效率值过高现象。但是交叉效率方法依旧存在一些不足,如交叉效率的权重经常存在很多组解的情况,交叉效率值的随意性比较大,使得该方法的稳定性和实用性已经受到了严重影响;采用平均交叉效率值的方案使最终交叉效率值和权重缺少相应的关联性,因此决策单元很难得到有价值的信息改进自身存在的不足;现有交叉效率方法很少考虑决策单元之间存在竞争、合作甚至竞争合作同时存在的情况。为了解决上述问题,本文将多属性决策理论和博弈理论引入交叉效率方法中进行研究,开展的研究工作主要有以下几个方面:
     第一章为绪论,首先简要介绍DEA和交叉效率相关的基本理论,然后介绍与本文研究内容相关的研究现状与研究不足,主要包括:基于DEA评价排序方法、DEA交叉效率的研究现状以及污染排放权的主要分配方式。最后,在这些研究现状和不足的基础上提出本文的研究内容与研究结构。
     第二章研究交叉效率不唯一性问题。首先指出了交叉效率方法在对决策单元进行效率评价时存在交叉效率多组权重的问题,并讨论了现有的改进方法存在的弊端,然后引出了本章提出的两种交叉效率二次目标模型。每种模型不但可以有效解决交叉效率多解性的缺陷,而且能尽量减少加权投入和加权产出之间的离差,使其在效率评价过程中尽可能发挥作用。
     第三章针对采用平均交叉效率所存在的弊端,从多属性决策分析角度出发,提出两种不同的交叉效率集结模型来放松交叉效率的平均假设性。这两种模型既能够与经典DEA交叉效率模型保持理论一致性,又能够从不同的角度保证决策单元的优劣可比性。针对决策单元含有区间数据的情形,本章又提出了区间交叉效率模型和区间交叉效率集结模型。每种提出的模型的合理性与有效性都通过具体的实例得到了验证。
     第四章首先分析了现有交叉效率方法的一些不足,即考虑决策单元之间仅存在竞争或仅存在合作的情况。然而现实中一些决策单元之间是同盟合作关系,而另一些决策单元之间可能表现出竞争关系。因此在对这些决策单元进行评价时,现有交叉效率方法就显得不适用,因为没有考虑到不同决策单元之间的实际关联关系。然后针对这个问题,本章提出两种竞争合作交叉效率方法分别对应于不同的实际博弈应用场景,最后的实例说明提出的两种方法的有效性。
     第五章首次将交叉效率方法应用在污染物排放权分配中,分别从整体理性和协调个体理性角度提出不同的分配模型,解决污染物排放权初始分配和减排分摊问题。与传统排放权分配方法相比,本章提出的方法的特点就是将企业的投入和产出因素全部考虑在内,即依据企业的生产技术效率分配排污排放权。造纸厂的实例验证了本章节提出的方法的有效性和合理性,并且分配方法不存在极端不合理的分配结果。
     第六章总结归纳全文所有研究的内容和主要结论,并在此基础之上指出未来需要进一步深入研究的方向。
In reality, the evaluation and selection of the decision making units (DMUs) are the common and important work. In order to evaluate DMUs, many evaluation methods have been proposed by experts and scholars. Among these methods, Data Envelopment Analysis (DEA) has been generally accepted by scholars and researchers, which could evaluate efficiencies of a set of homogenous DMUs with multiple inputs and multiple outputs. The significant characteristic of DEA is that it does not require any preliminary parameter estimation and functional relation assumptions between inputs and outputs, which avoids bias caused by human factors. Because of this advantage, DEA method has been rapidly developed and widely used. However, traditional DEA models only classify all DMUs into efficient and inefficient DMUs, and those efficient DMUs cannot be differentiated any further. In addition, these traditional models usually generate the case that the weights at very small values (or even zero) are assigned to some inputs or outputs and very large values to other inputs or outputs. This may lead to that the efficiency of DMU under evaluation is overestimated. In order to solve these problems, cross-efficiency evaluation based on DEA has been proposed, which evaluates efficiencies of DMUs through self-and peer-evaluations. This method has two main advantages. On one hand, cross-efficiency evaluation has a strong discrimination power and usually provides a full ranking for all evaluated DMUs. On the other hand, unrealistic weight results could be avoided without requiring any weight restrictions. However, there are still some defects in cross-efficiency evaluation. Firstly, the optimal weights calculated by the traditional DEA model are generally not unique, which lead to non-uniqueness of cross-efficiency scores. This has reduced the usefulness of cross-efficiency evaluation. Secondly, averaging the cross-efficiency will lose the association between weights and results, thus it will not provide information for decision makers to improve the performance of DMUs. Lastly, the existing cross-efficiency methods pay little attention to case that some specific DMUs may have a cooperative relationship while some form of competition may exist among other DMUs. To overcome these drawbacks, this paper introduces multiple attribute decision making theory and game theory into DEA for proposing new cross-efficiency approaches. The main researches of the paper are as follows.
     Chapter1firstly summarizes the fundamental theory of DEA, and then comprehensively reviews the existing research results related to this thesis. These research results include the evaluation methods based on DEA, cross-efficiency evaluation methods and the main allocation methods of emission permits. Finally, the research contents and structure of this paper are provided.
     Chapter2studies on the non-uniqueness of cross-efficiency evaluation. This chapter firstly discusses the problem of non-uniqueness when cross-efficiency evaluation is used to evaluate the DMUs, and points out the disadvantages of the existing improved approaches. Then two different secondary models are proposed. Each model could not only effectively deal with the problem of non-uniqueness, but also reduce the differences between the weighted inputs or weighted outputs during the evaluation process. Thus all inputs and outputs in these newly proposed models can be fully used as much as possible.
     Chapter3proposes two different cross-efficiency aggregation methods from the perspective of multiple attribute decision making to eliminate the assumption of average. The new methods not only keep theories consist with classical cross-efficiency method, but also evaluate and rank DMUs from different angles. In addition, this chapter also proposes interval cross-efficiency evaluation and aggregation methods to evaluate the efficiencies of DMUs with interval data. The validity of each proposed method is examined by the empirical example.
     Chapter4firstly points out that traditional cross-efficiency methods consider the DMUs only have competitive or cooperative relationships. In reality, some specific DMUs may have a cooperative relationship, and some form of direct or indirect competition may exist among other DMUs. However, the existing DEA models cannot deal with this case. To address the need to simultaneously consider competition and cooperation, two cross-efficiency methods are proposed through comprehensively consider the defects of existing game cross-efficiency methods. Two empirical examples are illustrated to examine the validity of the proposed method.
     Chapter5studies the allocation of emission permits using DEA. This chapter proposed several models from the perspectives of centralization and coordination of individual rationality to research initial allocation and reallocation of emission permits. Compared with the traditional allocation methods, the proposed DEA models consider the input and output levels simultaneously, and could provide the reasonable allocation results. A paper mill example is illustrated to examine the validity of the proposed methods.
     Chapter6summarized the main research work of the thesis, and points out possible extensions for future study and improvement.
引文
Ackerman F, Moomaw W.1997. SO2 Emissions Trading Does it Work[J]. Electricity Journal,10: 61-66.
    Adler N, Lea F. Zilla SS.2002. Review of ranking methods in the data envelopment analysis context[J]. European Journal of Operational Research,140:249-265.
    Ahman M, Burtraw D, Kruger J, Zetterberg L.2007. A ten-year rule to guide the allocation of EU emission allowances[J]. Energy Policy,35:1718-1730.
    Andersen P, Petersen NC.1993. A procedure for ranking efficient units in data envelopment analysis[J]. Management Science,39:1261-1294.
    Angiza MZ, Mustafab A, Kamalic MJ.2013. Cross-ranking of Decision Making Units in Data Envelopment Analysis [J]. Applied Mathematical Modelling,37:398-405.
    Baker PC, Talluri S.1997. A closer look at the use of data envelopment analysis for technology selection[J]. Computers & Industrial Engineering,32:101-108.
    Banker RD.1984. Estimating most productive scale size using data envelopment analysis[J]. European Journal of Operational Research,17:35-44.
    Braglia M, Petroni A.1999. Evaluating and selecting investments in industrial robots[J]. International Journal of Production Research,37:4157-4178.
    Charnes A, Cooper WW, Rhodes E.1978. Measuring the efficiency of decision making units[J]. European Journal of Operational Research,2:429-444.
    Charnes A. Clark CT, Cooper WW, Golany B.1985. A development study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces[J]. Annals of Operations Research,2:95-112.
    Charnes A, Cooper WW.1985. Preface to topics in data envelopment analysis[J]. Annals of Operations Research,2:59-94.
    Charnes A, Cooper WW, Wei QL.1987. A semi-infinite multicriteria programming approach to data envelopment analysis with infinitely many decision making units [J]. Texas University at Austin Center for Cybernetic Studies Reports, CCS 511.
    Charnes A, Cooper WW, Wei QL, Huang ZM.1989. Cone ratio data envelopment analysis and multi-objective programming[J], International Journal of Systems Science,20:1099-1118.
    Chen Y, Du J, Huo J.2013. Super-efficiency based on a modified directional distance function[J]. Omega,41:621-625.
    Co HC, Chew KS.1997. Performance and R&D expenditures in American and Japanese manufacturing firms[J]. International Journal of Production Research,35:3333-3348.
    Cook WD, Kress M.1990. A data envelopment model for aggregating preference rankings[J]. Management Science,36:1302-1310.
    Cook WD, Kress M, Seiford LM.1993. On the use of ordinal data in data envelopment analysis[J]. Journal of the Operational Research Society,44:133-140.
    Despotis DK.2002. Improving the discriminating power of DEA:Focus on globally efficient units [J]. Journal of the Operational Research Society,53,314-323.
    Doyle J, Green R.1994. Efficiency and cross-efficiency in DEA:Derivations, meanings and uses[J]. Journal of the Operations Research Society,45:567-578.
    Dyson RG, Thanassoulis E.1988. Reducing weight flexibility in data envelopment analysis[J]. Journal of the Operational Research Society,39:563-576.
    Fare R, Grosskopf S.1985. A nonparametric cost approach to scale efficiency[J]. Journal of Economics,87:594-604.
    Farrell MJ.1957. The measurement of productive efficiency[J]. Journal of the Royal Statistical Society,120:253-290.
    Fischer C, Fox AK.2007. Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions[J]. Land Economics,83:575-599.
    Friedman L, Zilla SS.1997. Scaling units via the canonical correlation analysis and the data envelopment analysis[J]. European Journal of Operational Research,100:629-637.
    Goulder LH, Parry IAW, Williams RC, Burtraw D.1999. The Cost-effectiveness of Alternative Instruments for Environmental Protection in a Second-best Setting[J]. Journal of Public Economics,72:329-360.
    Golany B, Roll YA.1994. Incorporation standards via data envelopment analysis [M]. In:Charnes A., Cooper W.W., Lewin A. and Seiford L.M. (Eds.), Data envelopment analysis:theory, methodology and applications. Kluwer Academic Publishers, Norwell.
    Hashimoto A.1997. A ranked voting system using a DEA/AR exclusion model:A note[J]. European Journal of Operational Research,97:600-604.
    Jahanshahloo GR, Memariani A, Lotfi FH, Rezai HZ.2005. A note on some of DEA models and finding efficiency and complete ranking using common set of weights[J]. Applied Mathematics and Computation,166:265-281.
    Jahanshahloo GR, Junior HV, Lotfi FH, Akbarian D.2007. A new DEA ranking system based on changing the reference set [J]. European Journal of Operational Research,181:331-337.
    Jahanshahloo GR, Khodabakhshi M, Hosseinzadeh Lotfi F, Moazami Goudarzi MR.2011. A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case[J]. Mathematical and Computer Modelling,53: 1946-1955.
    Jahanshahloo GR, Hosseinzadeh Lotfi F, Jafari Y, Maddahi R.2011. Selecting symmetric weights as a secondary goal in DEA cross-efficiency evaluation[J]. Applied Mathematical Modelling, 35:544-549.
    Johns N, Howcroft B, Drake L.1997. The use of data envelopment analysis to monitor hotel productivity [J]. Progress in Tourism and Hospitality Research,3:19-127.
    Lam KF.2010. In the determination of weight sets to compute cross-efficiency rations in DEA[J]. Journal of the operational research society,61:134-143.
    Liang L, Wu J, Cook WD, Zhu J.2008. Alternative secondary goals in DEA cross-efficiency evaluation[J]. International Journal of Production Economics,113:1025-1030.
    Liang L, Wu J, Cook WD, Zhu J.2008. The DEA game cross efficiency model and its Nash equilibrium[J]. Operations Research,56:1278-1288.
    Lim S.2012. Minimax and maximin formulations of cross efficiency in DEA[J]. Computers & Industrial Engineering,62:726-731.
    Liu FHF, Hsuan Peng H.2008. Ranking of units on the DEA frontier with common weights[J]. Computers and Operations Research,35:1624-1637.
    Lotfi FH. Jahanshahloo GR, Khodabakhshi M, Malkhlifeh MR, Moghaddas Z, Ghasemi MV.2013. A Review of Ranking Models in Data Envelopment Analysis[J]. Journal of Applied Mathematics,2013.
    Mehrabian S, Alirezaee MR, Jahanshahloo GR.1999. A complete efficiency ranking of decision making units in data envelopment analysis [J]. Computational Optimization and Applications, 14:261-266.
    Neuhoff K, Keats Martinez K, Sato, M.2006. Allocation, Incentives and Distortions:The Impact of EU ETS Emissions Allowance Allocations to the Electricity Sector[J]. Climate Policy,6: 73-91.
    Orkcii HH, Bal H.2012. A new approach to cross efficiency in data envelopment analysis and performance evolution of Turkey cities[J]. Gazi University Journal of Science,25:107-117.
    Palmisano.1996. Air Permit Trading Paradigms for Green house Gases:Why Allowances won't work and credits will, Discussion Draft[M]. London:Enron Europe Ltd.
    Ramon N, Ruiz JL, Sirvent I.2010. On the choice of weights profiles in crossefficiency evaluations[J]. European Journal of Operational Research,207:1564-1572.
    Reichmann G, Sommersguter-Reichmann M.2006. University library benchmarking:An international comparison using DEA[J]. International Journal of Production Economics,100: 131-147.
    Seiford LM, Thrall RM.1990. Recent development in DEA:the mathematical programming approach to frontier analysis[J]. Journal of Econometrics,46:7-38.
    Seiford LM, Zhu J.1999. Infeasibility of super-efficiency data envelopment analysis models[J]. INFOR,37:174-187.
    Sexton TR, Silkman RH, Hogan AJ.1986. Data envelopment analysis:Critique and extensions. In: Silkman RH. (Ed.), Measuring Efficiency:An Assessment of Data Envelopment Analysis[M]. Jossey-Bass, San Francisco,32; 73-105.
    Shang J, Sueyoshi T.1995. A unified framework for the selection of a flexible manufacturing system[J]. European Journal of Operational Research,85:297-315.
    Sinuany-Stern Z, Mehrez A, Barboy A.1994. Academic departments efficiency via data envelopment analysis[J]. Computers and Operations Research,21:543-556.
    Sinuany-Stern Z, Friedman L.1998. Data envelopment analysis and the discriminant analysis of ratios for ranking units[J]. European Journal of Operational Research,111:470-478.
    Sueyoshi T.1999. Data envelopment analysis non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives[J]. Omega,27: 315-326.
    Sun JS, Wu J, Guo D.2013. Performance ranking of units considering ideal and anti-ideal DMU with common weights[J]. Applied Mathematical Modelling,37:6301-6310.
    Sun S.2002. Assessing computer numerical control machines using data envelopment analysis[J]. International Journal of Production Research,40:2011-2039.
    Thompson RG, Singleton FD, Thrall RM, Smith BA.1986. Comparative site evaluations for locating a high energy physics lab in Texas[J]. Interfaces,16:35-49.
    Thrall RM.1996. Duality, classification and slacks in data envelopment analysis[J]. Annals of Operations Research,66:109-138.
    Torgersen AM, Forsund FR, Kittelsen SAC.1996. Slack-adjusted efficiency measures and ranking of efficient units[J]. Journal of Productivity Analysis,7:379-398.
    Tone K.2001. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research,130:498-509.
    Wang YM, Chin KS.2010. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications,37:3666-3675.
    Wang YM, Chin KS.2011. Some alternative models for DEA cross-efficiency evaluation[J]. International Journal of Production Economics,128:332-338.
    Wang YM, Chin KS, Jiang P.2011a. Weight determination in the cross efficiency evaluation[J]. Computers & Industrial Engineering,61:497-502.
    Wang YM, Chin KS, Luo Y.2011b. Cross-efficiency evaluation based on ideal and anti-ideal decision making units[J]. Expert Systems with Applications,38:10312-10319.
    Wang YM, Chin KS, Wang S.2012. DEA models for minimizing weight disparity in cross-efficiency evaluation[J]. Journal of the Operational Research Society,63:1079-1088.
    Wang YM, Chin KS.2011. The use of OWA operator weights for cross-efficiency aggregation[J]. Omega,39:493-503.
    Wang YM, Luo Y, Hua Z.2007. Aggregating preference rankings using OWA operator weights[J]. Information Sciences,177:3356-3363.
    Wang RT, Ho CTB, Oh K.2010. Measuring production and marketing efficiency using grey relation analysis and data envelopment analysis[J]. International Journal of Production Research,48:183-199.
    Wei QL, Zhang J, Zhang XS.2000. An inverse DEA model for input/output estimate[J]. European Journal of Operational Research,121:151-163.
    Wu J, Liang L, Wu D, Yang F.2008. Olympics ranking and benchmarking based on cross-efficiency evaluation method and cluster analysis:The case of Sydney 2000[J]. International Journal of Enterprise Network Management,2:377-392.
    Wu J, Liang L, Yang F.2008. Determination of Cross Efficiency under the Principle of Rank Priority in Cross-evaluation[J]. Expert Systems with Applications,36:4826-4829.
    Wu J, Liang L, Yang F, Yan H.2009. Bargaining game model in the evaluation of decision making units[J]. Expert Systems with Applications,36:4357-4362.
    Wu J, Liang L, Chen Y.2009. DEA game cross-efficiency approach to Olympic rankings[J]. Omega,37:909-918.
    Yang F, Ang S, Xia Q, Yang CC.2012. Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis[J]. European Journal of Operational Research,223: 483-488.
    Yang F, Yang JB, Liu WB, Li XX.2013. Cross-efficiency aggregation in DEA models using the evidential-reasoning approach[J]. European Journal of Operational Research,231:393-404.
    Zhu J.1996. Robustness of the efficient decision making units in data envelopment analysis[J]. European Journal of Operational Research,90:451-460.
    李兆琼.2010.含有双性变量的系统的DEA研究[D]:[博士].合肥:中国科学技术大学出版社.
    刘君华.2010排污权交易的初始分配问题研究[D]:[硕士].上沙:湖南大学出版社.
    李寿德,黄桐城.2004.基于经济最优性与公平性的初始排污权免费分配模型[J].系统工程 理论方法应用,13:282-285.
    裴卫雨.2012.排污权交易制度研究[D]:[硕士].开封:河南大学出版社.
    瞿伟,李峻峰.2005.排污许可证初始分配的若干模式分析[J].工程建设与档,19:397-399.
    王晓东.赵升.2007.企业效率测量综述[J].经济师,12:225-226.
    吴德胜.2006.数据包络分析若干理论和方法研究[D]:[博士].合肥:中国科学技术大学出版社.
    吴杰.2008.数据包络分析(DEA)的交叉效率研究-基于博弈理论的效率评估方法[D]:[博士].合肥:中国科学技术大学出版社.
    吴亚琼,赵勇等.2003.初始排污权分配的协商仲裁机制[J].系统工程,21:70-74.
    杨琛琛.2012.基于能源环境效率的相关组织决策分析研究[D]:[博士].合肥:中国科学技术大学出版社.
    赵丽,颜蕾.2009.我国排污权初始分配研究.重庆工学院学报(社会科学),23:81-83.
    张颖,王勇.2005.我国排污权初始分配的研究[J].生态经济,8:50-52.
    张东方.2009.水污染物排放权有偿分配和交易体系研究[D]:[硕士].南京:南京农业大学出版社.
    赵文会.2006.初始排污权分配的若干问题研究[D]:[博士].上海:上海理工大学出版社.
    Anderson TR, Hollingsworth KB, Inman LB.2002. The fixed weighting nature of a cross-evaluation model[J]. Journal of Productivity Analysis,17:249-255.
    Boussofiane A, Dyson RG, Thanassoulis E.1991. Applied data envelopment analysis[J]. European Journal of Operational Research,52:1-15.
    Charnes A, Clark CT, Cooper WW, Golany B.1985. A development study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces[J]. Annals of Operations Research,2:95-112.
    Despotis DK.2002. Improving the discriminating power of DEA:Focus on globally efficient units[J]. Journal of the Operational Research Society,53:314-323.
    Doyle J, Green R.1994. Efficiency and cross-efficiency in DEA:Derivations, meanings and uses[J]. Journal of the Operations Research Society,45:567-578.
    Dyson RG, Thannassoulis E.1988. Reducing weight flexibility in data envelopment analysis[J]. Journal of the Operational Research Society,39:563-576.
    Sexton TR, Silkman RH, Hogan AJ.1986. Data envelopment analysis:Critique and extensions. In: Silkman RH. (Ed.), Measuring Efficiency:An Assessment of Data Envelopment Analysis[M]. Jossey-Bass, San Francisco,32; 73-105.
    Shang J, Sueyoshi T.1995. A unified framework for the selection of a flexible manufacturing system[J]. European Journal of Operational Research,85:297-315.
    Torgersen AM, Forsund FR, Kittelsen SAC.1996. Slack-adjusted efficiency measures and ranking of efficient units[J]. Journal of Productivity Analysis,7:379-398.
    Wang YM, Chin KS.2010. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications,37:3666-3675.
    Wong, YHB, Beasley JE.1990. Restricting weight flexibility in data envelopment analysis[J]. Journal of the Operational Research Society,41:829-835
    Cheng CB.2008. Solving a sealed-bid reverse auction problem by multiple-criterion decision-making methods[J]. Computers and Mathematics with Applications,56:3261-3274.
    Despotis DK.2002. Improving the discriminating power of DEA:focus on globally efficient units[J]. Journal of the Operational Research Society,53:314-323.
    Despotis DK. Smirlis YG.2002. Data envelopment analysis with imprecise data[J]. European Journal of Operational Research,140:24-36.
    Doyle J, Green R.1994. Efficiency and cross-efficiency in DEA:derivations, meanings and uses[J]. Journal of the Operations Research Society,45:567-578.
    Gu H, Song BF.2009. Study on effectiveness evaluation of weapon systems based on grey relational analysis and TOPSIS[J]. Journal of Systems Engineering and Electronics,20: 106-111.
    Hwang CL, Yoon K.1981. Multi-objective Decision Making Methods and Application[M]. New York:Springer-Verlag.
    Jahanshahloo GR, Hosseinzadeh Lotfi F. Moradi M.2004. Sensitivity and stability analysis in DEA with interval data[J]. Applied Mathematical Modeling,156:463-477.
    Khouja M.1995. The use of data envelopment analysis for technology selection[J]. Computers & Industrial Engineering,28:123-132.
    Sexton TR, Silkman RH, Hogan AJ.1986. Data envelopment analysis:Critique and extensions. In: Silkman RH. (Ed.), Measuring Efficiency:An Assessment of Data Envelopment Analysis[M]. Jossey-Bass, San Francisco,32; 73-105.
    Shang J, Sueyoshi T.1995. A unified framework for the selection of flexible manufacturing system[J]. European Journal of Operational Research,85:297-315.
    Shannon CE.1948. The mathematical theory of communication[J]. The Bell System Technical Journal,27:379-423.
    Wang JQ, Chen XH.2008. Multi-criteria linguistic interval group decision-making approach[J]. Journal of Systems Engineering and Electronics,19:934-938.
    Wang YJ, Lee HS.2007. Generalizing TOPSIS for fuzzy multiple-criteria group decision-making[J]. Computers and Mathematics with Applications,53:1762-1772.
    Wang YM, Chin KS.2011. The use of OWA operator weights for cross-efficiency aggregation[J]. Omega,39:493-503.
    Wang YM, Greatbanks R, Yang JB.2005. Interval efficiency assessment using data envelopment analysis[J]. Fuzzy Sets and Systems,153:347-370.
    Wu DD.2009. Performance evaluation:An integrated method using data envelopment analysis and fuzzy preference relations[J]. European Journal of Operational Research,194:227-235.
    Wu J, Liang L, Zha Y.2008. Determination of the Weights of Ultimate Cross Efficiency based on the Solution of Nucleolus in Cooperative Game[J]. Systems Engineering-Theory & Practice, 28:92-97.
    Wu J, Liang L, Zha Y, Yang F.2009. Determination of cross-efficiency under the principle of rank priority in cross-evaluation[J]. Expert Systems with Applications,36:4826-4829.
    彭勇行,赵新泉.2000.管理决策分析[M].北京:科学出版社,216-217.
    吴杰.2008.数据包络分析(DEA)的交叉效率研究-基于博弈理论的效率评估方法[D]:[博士].合肥:中国科学技术大学出版社.
    杨剑波.1996.多目标决策方法与应用[M].上沙:湖南出版社,140-141.
    Chen PC.2002. A study on evaluating operation efficiencies among chain international tourist hotels in Taiwan[D]:[Master's Thesis]. Taiwan:Nanhua University.
    Chiang WE.2006. A hotel performance evaluation of Taipei international tourist hotels-Using data envelopment analysis[J]. Asia Pacific Journal of Tourism Research,11:29-42.
    Chiang WE, Tsai MH, Wang LSM.2004. A DEA evaluation of Taipei hotels[J]. Annals of Tourism Research,31:712-715.
    Doyle J, Green R.1994. Efficiency and cross-efficiency in DEA:derivations, meanings and uses[J]. Journal of the Operations Research Society,45:567-578.
    Hwang SN, Chang TY.2003. Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan[J]. Tourism Management,24:357-369.
    Liang L, Wu J, Cook WD, Zhu J.2008. The DEA game cross efficiency model and its Nash equilibrium[J]. Operations Research,56:1278-1288.
    Taiwan Tourism Bureau.2008. The Operating Report of International Tourist Hotels in Taiwan[M]. Taipei:“Ministry of Transportation and Communications”.
    Tofallis C.1997. Input efficiency profiling:An application to airlines[J]. Computers & Operations Research,24:253-258.
    Tsaur HS.2001. The operating efficiency of international tourist hotels in Taiwan[J]. Asia Pacific Journal of Tourism Research,6:73-81.
    Wang FC, Huang WT, Shang JK.2006. Measuring the cost efficiency of international tourist hotels in Taiwan[J]. Tourism Economics,12:65-85.
    Wang YM, Chin KS.2010. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications,37:3666-3675.
    苏航.2013.DEA交叉效率评价模型研究[D]:[博士].长春:吉林大学出版社.
    吴华清,梁樑,吴杰,杨锋.2010.DEA博弈模型的分析与发展[J].中国管理科学,18:184-192.
    杨峰,夏琼,梁樑.2011.同时考虑决策单元竞争与合作关系的DEA交叉效率评价方法[J].系统工程理论与实践,31:92-98.
    Ahman M, Burtraw D, Kruger J, Zetterberg L.2007. A Ten-year Rule to Guide the Allocation of EU Emission Allowances[J]. Energy Policy,35:1718-1730.
    Beasley JE.2003. Allocating fixed costs and resources via data envelopment analysis[J]. European Journal of Operational Research,147:198-216.
    Berg SA, Forsund FR, Jansen ES.1992. Malmquist indices of productivity growth during the deregulation of Norwegian banking 1980-1989[J]. Scandinavian Journal of Economics,94: 211-228.
    Cook WD, Kress M.1999. Characterizing an equitable allocation of shared costs:a DEA approach[J]. European Journal of Operational Research,119:652-661.
    Cook WD, Zhu J.2005. Allocation of shared costs among decision making units:a DEA approach [J]. Computers and Operations Research,32:2171-2178.
    Dales H.1968. Pollution, Property and Prices [M]. Toronto:University of Toronto Press.
    Goulder LH, Parry I, Burtaw D.1997. Revenue-raising versus other approaches to environmental protection:the critical significance of preexisting tax distortions[J]. The RAND Journal of Economics,28:708-731.
    Fischer C, Fox A.2004. Output-based Allocations of Emissions Permits:Efficiency and Distributional Effects in a General Equilibrium Setting with Taxes and Trade[J]. Washington, DC:Resources for the Future, RFF Discussion Paper:04-37.
    Fischer C, Fox AK.2007. Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions[J]. Land Economics,83:575-599.
    Hailu A, Veeman TS.2001. Non-Parametric productivity analysis with undesirable outputs:An application to the canadian pulp and paper industry[J]. American Journal of Agricultural Economics,83:805-816.
    Jegou I, Rubini L.2011. The Allocation of Emission Allowances Free of Charge:Legal and Economic Considerations[M], ICTSD Global Platform on Climate Change, Trade Policies and Sustainable Energy.
    Lins MPE, Gomes EG, Soares De Mello JCCB.2003. Olympic ranking based on a zero sum gains DEA model[J]. European Journal of Operational Research,148:312-322.
    Lozano S, Villa G.2004. Centralized resource allocation using data envelopment analysis[J]. Journal of Productivity Analysis,22:143-161.
    Neuhoff K, Keats Martinez K, Sato M.2006. Allocation, incentives and distortions:The impact of EU ETS emissions allowance allocations to the electricity sector[J]. Climate Policy,6:73-91.
    Ono T.2011. The effects of emission permits on growth and the environment[J]. Environmental and Resource Economics,21:75-87.
    Palmisano.1996. Air Permit Trading Paradigms for Green house Gases:Why Allowances won't work and credits will, Discussion Draft[M]. London:Enron Europe Ltd.
    Wu HQ, Du SF, Liang L, Zhou YF.2013. A DEA-based approach for fair reduction and reallocation of emission permits[J]. Mathematical and Computer Modelling,58:1095-1101.
    卞亦文.2006.基于DEA理论的环境效率评价方法研究[D]:[博士].合肥:中国科学技术大学出版社.
    韩勇,周世祥.2008.浅论我国排污权的初始置[J].能源与环境,5:1-3.
    林坦,宁俊飞.2011.基于零和DEA模型的欧盟国家碳排放权分配效率研究[J].数量经济技术经济研究,3:36-50.
    刘鹏崇.2010.排污权初始配置国内研究综述[J].中南林业科技大学学报(社会科学版),4:14-17.
    王斌.2013.环境污染治理与规制博弈研究[D]:[博士].北京:首都经济贸易大学出版社.
    谢来辉,陈迎.2007.碳泄漏问题评析[J].气候变化研究进展,3:214-219.
    赵文会.2006.初始排污权分配的若干问题研究[D]:[博士].上海:海理工大学出版社.
    张颖,王勇.2005.我国排污权初始分配的研究[J].生态经济,8:50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700