用户名: 密码: 验证码:
机载光电稳定平台的分数阶控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载光电稳定平台是机载光电侦察任务设备的重要组成部分,在敌情侦察、目标定位、精确打击等方面得到了广泛的应用。其主要作用是敏感并克服载机的姿态变化、发动机的振动、气流的变化以及稳定平台本身的摩擦力矩、线扰力矩、质量不平衡力矩和传感器噪声等扰动,保证光轴的稳定指向。除了光学设计和机械结构的影响,机载光电稳定平台的控制技术是提高光电侦察任务设备定位精度和打击能力的关键技术之一。
     从提高光电稳定平台的控制性能和控制精度出发,本文以数学建模为基础,理论分析为依据,实验验证为目的,对光电稳定平台的控制技术进行较为深入地研究。全文的主要研究内容及成果如下:
     ①详细分析了机载光电稳定平台的线性和非线性特性,并建立了稳定平台的分数阶数学模型。从稳定平台的电流环设计和建模、传感器和机械谐振建模以及非线性特性建模三个方面讨论了传统数学建模的过程。详细介绍了电流环的设计和建模过程,提出了两种比较实用的建模方法。着重考虑了惯性传感器陀螺的Allan方差建模,从量化误差、角度随机游走、角速率随机游走和零偏稳定性等几个方面建立陀螺的随机误差模型。然后,建立系统的摩擦力、不平衡力矩和导线扰动力矩的非线性模型。最后,通过上述建模和分析得出结论,建立稳定平台的传统数学模型不仅建模过程复杂而且不能精确描述实际系统。采用频域辨识的方法建立系统的分数阶模型,能够在考虑非线性特性的情况下以更简洁的方式描述实际系统。
     ②提出了一种具有普适性的基于稳定裕度和剪切频率的分数阶PIλ控制器的设计方法,解决了以往靠提高开环增益或增加积分环节来提高控制精度而带来的稳定性变差的问题。并采用所设计的分数阶PIλ控制器和整数阶PI控制器分别进行了仿真和实验研究。阶跃响应对比实验、速度扰动隔离对比实验、力矩扰动隔离对比实验和稳定精度对比实验的结果表明,采用分数阶PIλ控制器的系统具有阶跃响应超调量小、抗扰能力强的优点,在幅值为3.14o/s,频率为0.5Hz的速度扰动下,速度扰动隔离度提高了约38%,稳定精度提高了约40%。
     ③提出了简化的伪微分反馈控制策略及其分数阶形式的控制策略,并应用于机载光电稳定平台中。采用两种控制器和PI控制器在抗力矩扰动、隔离载机角速率扰动和控制对象模型摄动等方面进行了仿真对比实验。实验结果表明,在相同的闭环带宽情况下,采用两种控制器的机载光电稳定平台的阶跃响应具有更小的超调,更短的上升和调节时间;在陀螺噪声存在的情况下,能够有效地抑制力矩和载机的姿态扰动对系统性能的影响;与整数阶伪微分反馈控制相比,分数阶伪微分反馈对被控制对象的模型摄动具有更强的鲁棒性。
     本文的研究工作为分数阶控制系统建模、分数阶PI λ Dμ控制和分数阶伪微分反馈控制在机载光电稳定平台中的应用提供了理论支撑和技术参考,相关领域的研究和应用有一定的借鉴和参考意义。
Airborne photoelectric stabilized platform, as an important part of the airbornephotoelectric reconnaissance mission equipment, has a wide range of applications inthe enemy situation reconnaissance, target location, precision attack and so on. Itschief responsibility is to ensure the stability of optical axis by measuring andovercoming the attitude changes of carrier aircraft, the vibration of the engine, theairflow changes as well as itself frictional torque, wire disturbance torque, massimbalance torque, sensor noise disturbance and so on. In addition to the optical designand mechanical structure of the airborne photoelectric stabilized platform, the controltechnology is one of the key technologies of the photoelectric reconnaissancemissions to improve the location accuracy and capability of precision attack.
     This thesis took a more in-depth study of the photoelectric gyro stabilizedplatform control technology in order to improve the control performance andprecision, base on the mathematical modeling, theoretical analysis and experimentalvalidation. The full text of the main content and the results are as follows:①The thesis established the fractional order mathematical model of airbornephotoelectric stabilized platform after analyzing the linear and nonlinearcharacteristics. The modeling process includes three aspects: the current loop designand modeling, sensors and mechanical resonance modeling and nonlinearcharacteristics modeling. The thesis introduced the design and modeling of currentloop in detail. Two practical modeling method of current loop was proposed. Itfocused on the Allan variance modeling of inertia sensor gyro, considering thequantization error, random walk angle, angular rate random walk and bias stability. Then, the thesis established the friction nonlinear model, the mass imbalance modeland the wire disturbance torque model of the system. It pointed out the traditionalmathematic model that is composed with linear and nonlinear characteristics is verycomplex and can not describe the actual system. The fractional order model ofairborne photoelectric stabilized platform was established by using frequencyidentification method. The model can describe the actual system in compact form.②A universal fractional order PIλcontroller design method wad proposed basedon stability margin and cutting frequency. It can solve the problem of stableperformance variation cause of increasing the open-loop gain integral part to improvecontrol accuracy in the past. Simulation and experimental study had been taken byusing fractional order PIλcontroller an integer order PI controller on a certainairborne photoelectric stabilized platform. The comparative experiments of stepresponse, velocity perturbation isolation, torque disturbance isolation and stableprecision showed that: the control system with fractional order PIλcontroller had asmall overshoot, the isolation of velocity perturbation increased approximately38%and stable accuracy is improved by about40%on the condition of sinusoidal velocityperturbation with amplitude of3.14o/s and frequency of0.5Hz.③A simplified pseudo-differential feedback control (PDF) strategy and fractionalorder pseudo-differential feedback control (FOPDF) algorithm were proposed andapplied to the airborne photoelectric stabilized platform. A series of simulationcomparison experiments were carried out between PDF controller, FOPDF controllerand PI controller in the anti-torque disturbance, isolation of the angular ratedisturbance of the vehicle and the plant variation on the airborne photoelectricstabilized platform. The results showed that the servo system of airborne photoelectricstabilized platform with PDF controller and FOPDF controller was superior to thesystem with PI controller in the same closed-loop bandwidth. It has smaller overshootand shorter rise time and regulating time. It is better than PI on the suppression oftorque and the airborne attitude disturbances within gyro noise. The system withFOPDF controller is more robust than that with PDF controller on the condition ofmodel variation.
     The work of this thesis for fractional order control system, fractional order PIDcontrol, pseudo-differential feedback control and fractional order pseudo-differentialfeedback control on the application of airborne photoelectric gyro stabilized platformprovides theoretical support and technical reference, also can be some reference to related areas.
引文
[1]郑烨,张伯虎,李孔震.光电侦察设备的现状与发展前景探析[J].科技资讯,2012,1:4-6
    [2]王建宏,王道波.机载稳定跟踪平台速率回路的内模H∞控制[J].电光与控制,2011,18(1):20-23
    [3]赵志诚,刘志远,张井岗.时滞光电跟踪系统鲁棒内模PID控制器设计[J].光电工程,2010,37(1):30-36
    [4]张洪亮,王志胜.基于PID神经元网络的稳定平台伺服控制系统设计[J].电工电气,2011,1:17-19
    [5]朱海荣,李奇,顾菊平,李俊红.扰动补偿的陀螺稳定平台单神经元自适应PI控制[J].电机与控制学报,2012,16(3):65-70
    [6]毕永利,王中鲜.模糊控制在光电稳定平台跟踪控制中的应用[J].黑龙江水专学报,2010,37(2):94-96
    [7]李鹏,孟卫锋,陈利超,李朕.模糊控制在平台稳定回路系统中的研究[J].科学技术与工程,2010,10(5):1310-1313
    [8]李向旭,张曾科,姜敏.两轴稳定平台的模糊-PID复合控制器设计与仿真[J].电光与控制,2010,17(1):69-72
    [9]徐晓霞.机载光电跟踪系统的模糊PID控制[J].电子设计工程,2012,20(2):108-111
    [10]李海霞,高钟毓,张嵘,韩丰田.四轴陀螺稳定平台的变结构分区控制[J].清华大学学报(自然科学版),2010,50(7):1023-1028
    [11]周阳,王磊,周涛.高精度光电伺服稳定平台积分滑模变结构控制[J].光电工程,2010,37(7):12-15
    [12]贾琳,孟卫锋.滑模变结构控制在惯性平台稳定回路中的应用[J].科学技术与工程,2009,9(2):433-436
    [13]李嘉全,丁策,沈宏海,刘仲宇,戴明.机载光电侦察平台的自抗扰控制技术研究[J].测控技术,2010,29(7):41-45
    [14]李红光,韩伟,宋亚民,谭名栋,郭新胜,雷海丽.车载光电稳定跟踪平台自抗扰伺服系统设计[J].应用光学,2012,33(6):1024-1029
    [15]王帅,王建立,李洪文,阴玉梅.光电跟踪系统力矩波动的自抗扰控制[J].光电工程,2012,39(4):7-13
    [16]邱宝梅,万吉权,王建文.机载摄影稳定平台的自抗扰控制[J].光电工程,2012,39(4):21-26
    [17]李锦英,付承毓,唐涛,李志俊,于伟.运动平台上光电跟踪系统的自抗扰控制器设计[J].控制理论与应用,2012,29(7):955-958
    [18]朱呈祥,邹云.分数阶控制研究综述[J].控制与决策,2009,24(2):161-169
    [19]Torvik P J, Bagley R L. On the appearance of the fractional derivative in thebehavior of real material [J]. J of Applied Mechanics, Transaction of the ASMF,51(2):294-298,1984
    [20]K. B. Oldham, J. Spanier. The Fractional Calculus [C]. Academic Press, NewYork and London,1974
    [21]I. Podlubny. Fractional Differential Equations [C]. Mathematics in Science andEngineering, Academic Press, New York and Tokyo,1999
    [22]B. M. Vinagre, V. Feliu, J. J. Feliu. Frequency Domain Identification of aFlexible Structure with Piezoelectric Actuators Using Irrational Transfer Function [C].Proc. The37thIEEE Conference on Decision&Control, Tampa Florida USA,1278-1280,1998
    [23]J. De Espindola, C. Bavastri and E. De Oliveira Lopes. Design of optimumsystem of viscoelastic vibration absorbers for a given material based on fractionalcalculus model [J]. Journal of Vibration and Control,2008,14:1607-1630
    [24]F. B. M. Duarte and J. A. T. Machado. Fractonal dynamic in the describingfunction analysis of nonlinear friction [C]. Proceedings of the2ndIFAC Workshop onFractional Differentiation and Its Applications,2006
    [25]P. J. Torvik and R. L. Bagley. On the appearance of the fractional derivative inthe behavior of real materials [J]. Journal of Vibration and Control,2008,14:1607-1630
    [26]Oustaloup A. La dérivation non entière: théorie, synthèse et applications [M].Paris, France: HERMES,1995
    [27]LELAY L. Identification fréquentielle, et al.. temporelle par modèle non entire
    [D]. Boedeaux, France: thèse de l’université Bordeaux I,1998
    [28]Oustaloup A. and Bansard M. First generation CRONE control [C]. Proc.International Conference on Systems, Man and Cybernetics,1993:130-135
    [29]Oustaloup A., Lanusse P. and Bansard M. Second generation CRONE control [C].Proc. International Conference on Systems, Man and Cybernetics,1993:136-142
    [30]Oustaloup A., Lanusse P. and Bansard M. Third generation CRONE control [C].Proc. International Conference on Systems, Man and Cybernetics,1993:149-155
    [31]Concepción Alicia Monje, YangQuan Chen, Blas Manuel Vinagre, Dingyv Xueand Vicente Feliu. Fractional-order Systems and Controls: Fundamentals andApplicatons [M].Springer-Verlag London Limited.2010,151
    [32]Oustaloup A., Jocelyn Sabatier, et al.. An overview of the CRONE approach insystem analysis, modeling and identification, observation and control [C]. Proc. of the17thWorld Congress, The International Federation of Automatic Control, Seoul,Korea, July6-11,2008:14254-14265
    [33]Oustaloup A., Bluteau B. and Nouillant M. First generation scalar CRONEcontrol: application to a two DOF manipulator and comparison with non lineardecoupling control[C]. Proc. International Conference on Systems, Man andCybernetics,1993.‘Systems Engineering in the service of Humans’,1993:453-458
    [34]Pommier V. Sabatier J. Lanusse P. and Oustaloup A. Crone control of a nonlinearhydraulic actuator [J]. Control Engineering,2002,10(4):391-402
    [35]Farhad Farokhi and Henrik Sandberg. A Robust Control-Design Method UsingBode’s Ideal Transfer Function[C]. Proc.19thMediterranean Conference on Controland Automaton, Aquis Corfu Holiday Palace, Corfu, Greece, June20-232011:712-717
    [36]Ziegler J G, Nichols N B. Optimal settings for automatic controllers[J].Transactions of the A.S.M.E.,1942,64:759-768
    [37]Youngjin Choi.PID State Observer for Robotic Systems[C].Proceedings of the2006American Control Conference, Minneapolis, Minnesota, USA,2006,14-16
    [38]高嵩,朱峰,肖秦琨,何宁.机载光电跟踪系统的模糊自整定PID控制[J].西安工业大学学报,2007,27(4):312-316
    [39]路通达,谌海云,冯庆华.一些先进PID控制方法比较[J].仪器仪表用户,2007,14(5):99-100
    [40]Podlubny I. Fractional-order systems and PIλDμ-controllers[J] IEEE Trans onAutomatic Control,1999,44(1):208-214
    [41]薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776
    [42]张邦楚,王少锋,韩子鹏,李臣明.飞航导弹分数阶PID控制及其数字实现[J].宇航学报,2005,26(5):653-656
    [43]秦昌茂.高超声速飞行器分数阶PID及自抗扰控制研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2011
    [44]Chengbin Ma and Yoichi Hori. Fractional-Order Control: Theory andApplications in Motion Control [J]. IEEE Industrial Electronics Magazine: Past andPresent,2007:6-16
    [45]Ivo Petrá. Fractional-Order Feedback Control of a DC Motor [J]. Journal ofElectrical Engineering,2009,60(3):117-128
    [46]Ramiro S. Barbosa, J.A. Tenreiro Machado and Isabel S. Jesus. Effect offractional orders in the velocity control of a servo system [J]. Computers andMathematics with Applications,2010,59:1679-1686
    [47]Ying Luo and YangQuan Chen. Fractional order [proportional derivative]controller for a class of fractional order systems [J]. Automatica,2009,45:2446-2450
    [48]Mihailo Lazarevic. Fractional Order Control of a Robot System Driven by DCMotors [J]. Scientific Technical Review,2012,62(2):20-29
    [49]Hyo-Sung Ahn, Varsha Bhambhani and YangQuan Chen. Fractional-orderintegral and derivative controller design for temperature profile control [C]. ChineseControl and Decision Conference,2008:4766-4771
    [50]Concepcion A. Monje, Blas M. Vinagre, Vicente Fliu, et. al. Tuning andauto-tuning of fractional order controllers for industry applications [J]. ControlEngineering Practice,2008,16:798-812
    [51]BJ Lurie. Three-parameter tunable tilt-integral-derivative (TID) controller [P]. USPatent no.5371670,1994
    [52]Dingyv Xue and YangQuan Chen. AComparative Introduction of Four FractionalOrder Controllers [C]. Proceedings of the4thWorld Congress on Intelligent Controland Automation, Shanghai, P.R. China, June10-14,2002:3228-3235
    [53]H F Raynaudand and A ZergaInoh. State-space representation for fractional ordercontrollers [J]. Automatica,2000,36:1017-1021
    [54]汪纪锋,李元凯.分数阶P(ID)μ控制器和分数阶超前滞后校正器的设计[J].电路与系统学报,2006,11(5):21-25
    [55]张碧陶,皮佑国.基于分数阶滑模控制技术的永磁同步电机控制[J].控制理论与应用,2012,29(9):1193-1197
    [56]张碧陶,皮佑国.基于模糊分数阶滑模控制技术的永磁同步电机控制[J].华南理工大学学报,2012,40(3):126-130
    [57]李旺.分数阶系统辨识与控制器设计研究[D]:[博士学位论文].合肥:中国科学技术大学,2010
    [58]梁涛年.分数阶PID控制器及参数不确定分数阶系统稳定域分析[D]:[博士学位论文].西安:西安电子科技大学,2011
    [59]王瑞萍.基于分数阶控制器的永磁同步电动机速度控制研究[D]:[博士学位论文].广州:华南理工大学,2012
    [60]ZA Vander. Unified presentation of1/f noise in electronic devices: fundamental1/f noise source [J]. Proc. IEEE,1988,76(1):233-258
    [61]TT Hartley and FC Lorenzo. Fractional-order system identification based oncontinuous order distributions [J]. Signal Processing,2003,83(11):2287-2300
    [62]N Engheta. On fractional calculus and fractional multipoles in electromagnetism[J]. IEEE Transactions on Antennas and Propagation,1996,44(4):554-566
    [63]B Mandelbort. The fractal geometry of nature [M]. San Francisco: Freeman,1982
    [64]HH Lee and CS Tsai. Analytical model of viscoelastic dampers for seismicmitigation of structures [J]. Computers and Structures,1994,50(1):111-121
    [65]RA Calico. Fractional order state equations for the control of viscoelasticallydamped structures [J]. J. Guidance,1991,14(2):304-311
    [66]CG Koh and JM Kelly. Application of fractional derivative to seismic analysis ofbased-isolated model [J]. Earthq. Eng. Struct. Dyn.,1990,19(1):229-241
    [67]FBM Duarte and MJA Tenreiro. Pesudoinverse trajectory control of redundantmanipulators: a fractional calculus perspective [C]. Proceedings. ICRA’02. IEEEInternational Conference on Robotics and Automation,2002:2406-2411
    [68]QA Naqvi. Fractional dual solutions to the Maxwell equations in chiral nihilitymedium [J]. Optics Communications,2009,282(10):2016-2018
    [69]F Mainardi. Fractional calculus: some basic problems in continuum and statisticalmechanics [M]. Fractals and Fractional Calculus in Continuum Mechanics,Springer-Verlag, Wien,1997:291-348
    [70]M Axtell and ME Bise. Fractional calculus applications in control systems [C]. InProc. IEEE Nat. Aerospace and Electronic Conference, New York,1990:563-566
    [71]D Matignon. Stability results for fractional differential equations withapplications to control processing [C]. Computational Engineering in Systems andApplication Muticonference,1996:963-968
    [72]D Matignon and B d’Andréa-Novel. Observer-Based Controllers for FractionalDifferential Systems [C]. The36thIEEE Conference on Decision and Control, SanDiego, California,1997:4967-4972
    [73]I Podlubny. Fractional differential equations [M]. Academic Press, San Diego,1999
    [74]F Ikeda and S Kawata. An Optimal Design of Fractional Differential Active MassDampers for Structures equipped with Viscoelastic Dampers [J]. MOVIC2000,Sydney, Australia,2000:223-228
    [75]M Thomassin and R Malti. Subspace method for continuous-time fractionalsystem identification [C]. The15thIFAC Symposium on System Identification,SYSID, Sanit Malo, France,2009
    [76]AL Mehaute and G Grepy. Introduction to transfer and motion in fractal media:the geometry of kinetics [J]. Solid State Iomics,1983,9(10):17-30
    [77]D Heleschewitz and D Matignon. Diffusive realizations of fractionalintegrodifferntial operators: structural analysis under approximation [J]. IFACConference on System, Structure and Control. France,1998,2(1):243-248
    [78]R Malti, S Victor and A Oustaloup. Advances in System Identification UsingFractional Models [J]. Journal of Computational and Nonlinear Dynamics, ASME.2008,3(2):21-41
    [79]R Malti, S Victor, A Oustaloup, et al.. An Optimal Instrumental Variable Methodfor Continuous-time fractional model indentification [C]. Proceedings of the17thWorld Congress The International Federation of Automatic Control, Seoul, Korea,July6-11,2008:14379-14384
    [80]O Enacheanu, D Riu, N Retiere, et al.. Identification of fractional order modelsfor electrical networks [C]. IEEE Industrial Electronics, IECON2006the32ndAnnualConference on Nov.2006:5392-5396
    [81]KB Oldham. Interrelation of current and concentration at electrodes [J]. J.Appl.Electrochem.,1991,21(1):1068-1072
    [82]I Podlubny. Geometrical and physical interpretation of fractional integration andfractional differentiation [J]. Fractional Calculus&Applied Analysis,2002,5(4):357-366
    [83]刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁-分数阶导数[J].气象科技,2007,35(1):21-25
    [84]Riccardo Caponetto, Giovanni Dongola, Liugi Fortuna, et al.. FRACTIONALORDER SYSTEMS-Modeling and Control Application [M]. World Scientific,2010:3-4
    [85]Mittag-Leffler M. G.. Sur la nouvelle function Eα(x). Comptes Rendus, Acad. Sci.Paris,1903,137:554-558
    [86]P.Humbert and R.P. Agarwal. Sur la fonction de Mittag-Leffler et quelques-unesde ses généralisations. Bull. Sci. math.1953,77(2):180-185
    [87]Keith B. Oldham and Jerome Spanier. THE FRACTIONAL CALCULUS:Theory and Applications of Differentiation and Integration to Arbitrary Order [M].ACADEMIC PRESS, INC.2006:38-60
    [88]Ivo Petrá. Fractional-Order Nonlinear Systems-Modeling, Analysis andSimulation [M]. Springer Heidelberg Dordrecht London New York,2011:43-44
    [89]Vinagre B.M.. Modelado y control de sistemas dinámicos caracterizados porecuaciones integro-diferenciales de orden fraccional (in Spanish)[D]. PhD thesis,Spanish Open University.2001
    [90]F.J. Castillo-Garcia, V. Feliu-Batlle, R. Rivas-Perez, et al.. Comparative Analysisof Stability and Robustness between Integer and Fractional-Order PI Controller forFirst Order plus Time Delay Plants [C]. Preprints of the18thIFAC World CongressMilano (Italy) August28-September2,2011:15019-15024
    [91]Tadeusz Michalowski. Applications of MATLAB in Science and Engineering[M]. InTech, Published: September09,2011:287-288
    [92]Padula, F., Visioli A.. Tuning rules for optimal PID and fractional-order PIDcontrollers [J]. Journal of Process Control,2011,21(1):69-81
    [93]Astrom K.J. and Hagglund T.. PID controllers: Theory, Design and Tuning. ISAPress, Research Triangle Park,1995
    [94]B.M. Vinagre, I. Podlubny, A. Hernández, et al.. Some approximations offractional order operators used in control theory and applications. Fractional Calculusand Applied Analysis,2000,3(3):231-248
    [95]Ahmad W.M. and Sprott J.C.. Chaos in fractional-order autonomous nonlinearsystems [J]. Chaos, Solitons&Fractals,2003,16:339-351
    [96]G.E. Carlson and C.A. Halijak. Approximayion of fractional capacitors(1/s)1/nby a regular Newton process [J]. IRE Transactions on Circiut Theory, CT-11, No.2(1964):210-213
    [97]A. Chareff, H. H. Sun, Y. Y. Tsao, et al.. Fractal system as represented bysingularity function. IEEE Transactions on Automatic Control,1992,9(37):1465-1470
    [98]Douglas DE CARLO, Dimitris METAXAS. The integration of optical flow anddeformable models: application to human face shape and motion estimation [C]. IEEEComputer Vision and Pattern Recognition,1996:231-238
    [99]黄永梅,张桐,马佳光,等.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19
    [100]杨业飞,申文涛.惯性稳定平台中陀螺技术的发展现状和应用研究[J].控制与制导,2011,2:72-79
    [101]丛爽,邓科,尚伟伟,等.陀螺稳定平台建模分析[J].科技导报,2011,29(09):42-47
    [102]毛奔,林玉荣.惯性器件测试与建模[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [103] Allan D W. Statistics of atomic frequency standard [J]. Proceedings of the IEEE,1966,54(2):221-230
    [104]吴一,杨孟兴,韦明,等.光纤陀螺仪随机误差的Allan方差分析[J].弹箭与制导学报,2006,26(01):717-720
    [105]陈娟.光电经纬仪数字化伺服控制技术.中国科学院长春光学精密机械与物理研究所内部讲义,2006:88-89
    [106] George Ellis, R.D. Lorenz. Resonant Load Control Methods for IndustrialServo Drives [C]. IEEE Industry Applications Society Annual Meeting. Rome, Italy:IEEE,2000:1438-1455
    [107] George Ellis, Gao Zhiqiang. Cures for Low-Frequency Mechanical Resonancein Industrial Servo System [C]. Industry Applications Conference,2001. Thirty-SixthIAS Annual Meeting. Conference Record of the2001IEEE. Chicago, IL, USA: IEEE,2001,1:252-258
    [108] George W. Younkin. Compensating Structural Dynamics for Servo DrivenIndustrial Machines with Acceleration Feedback [C]. Industry ApplicationsConference,2004.39thIAS Annual Meeting. IEEE,2004,3:1881-1890
    [109]刘强,尔联洁,刘金琨.摩擦力非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52
    [110] B Armstrong-Helouvry, P Dupont, Camidas de Wit. A survey of models,analysis tools and compensation methods for the control of machines with friction [J].Automatica,1994,30(7):1083-1138
    [111] Dowdon D. History of Tribology [M]. London: Longman Ltd,1966
    [112]张雪菲.板球系统摩擦特性分析与补偿控制算法的研究[D]:[硕士学位论文].长春:吉林大学通信工程学院,2007
    [113]黄进.含摩擦环节伺服系统的分析及补偿控制研究[D]:[博士学位论文].西安:西安电子科技大学机电工程学院,1998
    [114] B Armstrong-Helouvry. Control of Machines with nonlinear, low-velocityfriction: a dimensional analysis [J]. Proc1st International Symp ExperimentalRobotics Motreal,1989:180-195
    [115] B Armstrong-Helouvry. Stick Slip and Control in Low-Speed Motion [J]. IEEETransactions on Automatic Control,1993,38(10):1483-1496
    [116] Karnopp D. Computer Simulation of Stick Slip Friction in MechanicalDynamic Systems [J]. ASME Journal of Dynamic Systems, Measurement, andControl,1985:100~103.
    [117] P.Dahl. A solid friction model [R]. Technical Report TOR-0158H3107-18I-1,The Aerospace Corporation, EI Segundo, CA,1968
    [118] Canudas De Wit C. A New Model for control of Systems with Friction [J].IEEE Trans. On Automatic Control,1995,40(3):419~425
    [119] Canudas De Wit C. Comment on A New Model for control of Sysstems withFriction [J]. IEEE Trans. On Automatic Control,1998,43(8):1189~1190
    [120]朱华征,范大鹏,张文博等.质量不平衡力矩对导引头伺服机构性能影响分析[J].红外与激光工程,2009,38(5):767-772
    [121]于兵,渠继峰.干扰力矩对光电平台稳定精度的影响[J].科学技术与工程,2011,11(20):4888-4892
    [122]左哲,李东海,戴亚平,等.陀螺稳定平台的状态补偿控制[J].航空学报,2008,29(1):141-148
    [123]宋彦,高慧斌,张淑梅,等.直流力矩电机力矩波动的自适应补偿[J].光学精密工程,2010,18(10):2212-2220
    [124]张钊,周勇,王钤.扩展状态观测器在陀螺稳定平台中的应用仿真[J].兵工自动化,2011,30(11):83-85
    [125]韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31
    [126] Silva, Manuel F, Machado, et al.. Fractional order control of a hexapod robot[J]. Nonlinear Dynamics,2004(4):417-433
    [127] LUO Y, CHEN Y Q. Stabilizing and robust fractional order PI controllersynthesis for first order plus time delay systems [J]. Automatica(2012), doi:10.1016/j.automatic.2012.05.072
    [128]张秉华,张守辉.光电成像跟踪系统[M].成都:电子科技大学出版社,2003:49-50
    [129]孔德杰,戴明,程志峰,等.动基座光电稳定平台伺服系统中加速度反馈的实现[J].光学精密工程,2012,8(20):1782-1788
    [130] Richard M Phelan. Automatic Control System [M]. Ithaca, NewYork: CornellUniversity Press,1977.
    [131] CHEN Liu. Robust Bahavior of Subvariable Control of Pseudo DerivativeFeedback Algorrithm [C]. Presented at the1989ASME Design TechnicalConferences, Montreal, Quebec, Canada, September17-21,1989: No.89-WA/DSC-16
    [132] Richard M Phelan, LIU Chen. Subvariable Control Report [R]. No.MSD-84-02,Sibley School, Cornell University,1984
    [133] Arvanitis K G. Tuning Three-Term Controller for Power Station Processes [C].Proceedings of the10thWSEAS International Conference on SYSTEMS,Vouliagmeni, Athens, Greece, July10-15,2006:384-393
    [134]胡寿松.自动控制原理:第四版[M].北京:科学出版社,2004:205-206
    [135]董纵昊.自调节PDF控制算法的研究[D]:[硕士学位论文].成都:西南交通大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700