用户名: 密码: 验证码:
基于多尺度滤波和稀疏表示的图像融合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像融合是图像处理和计算机视觉领域多传感器图像信息综合利用的重要手段,它将同类或异类成像传感器获得的同一场景或目标的多幅图像进行综合处理,得到一幅包含源图像重要信息的合成图像,通过综合利用不同源图像之间的互补信息和冗余信息来获得对同一场景或目标更为准确、全面、可靠的描述。目前,图像融合技术已经在军事、医学疾病诊断、遥感等领域得到广泛应用。本文以经典的多尺度理论,以及最新的稀疏表示和低秩表示理论为基础,结合图像融合的特点,提出了多模图像融合方法和遥感图像融合方法。取得的主要研究成果如下:
     首先,提出了一种基于多尺度联合滤波的遥感图像融合方法。多尺度方法由于具有良好的多尺度特性已经被广泛应用于遥感图像融合,它提取全色图像的细节,然后注入到低分辨率多光谱中去,从而提高图像的分辨率。然而由于不同波段的光谱响应特性不一样,导致全色图像与多光谱图像的细节不一样,传统多尺度方法在提取全色图像细节时忽略了这一点。针对这个问题,本文利用双重双边滤波对全色图像与多光谱图像进行联合滤波,从而在提取全色图像细节时考虑多光谱图像的特点,使得提取的细节更符合多光谱图像。为了从不同尺度全面提取全色图像的细节,将原来的双重双边滤波扩展到多尺度域,提出了多尺度联合滤波方法。此外,考虑到平移不变性对图像融合的重要性,采用à trous策略进行多尺度扩展来进一步提高遥感图像融合性能。
     其次,提出了多尺度方向双边滤波方法及相应的多模图像融合方法。多尺度方法也被广泛用于多模图像融合,考虑到边缘和方向特征广泛存在于各种图像中,将边缘保持特性和方向捕获特性同时结合在多尺度方法中,提出了多尺度方向双边滤波方法。首先利用具有边缘保持特性的多尺度双边滤波对源图像进行多尺度分解获得多个高频子带和一个低频子带,再在高频子带上运用方向滤波来捕获方向特征,从而实现边缘保持和方向捕获。在此基础上,将提出的多尺度方向双边滤波方法应用于多模图像融合,首先对源图像进行多尺度方向双边滤波来获得各尺度子带,再根据一定的融合规则将不同源图像的子带进行融合,最后在融合子带上进行多尺度方向双边滤波的逆变换获得融合图像。在红外与可见光多模图像、医学多模图像上的融合实验验证了提出方法的有效性。
     然后,提出了一种基于稀疏表示的遥感图像融合方法。稀疏表示是近年来图像处理领域的研究热点,是一种新型图像信息表示理论,它在过完备字典上以一种简洁的方式对图像进行表示获得稀疏系数,这些稀疏系数和对应的原子能够揭示图像的内在结构,初级视皮层神经元对来自视网膜的图像响应采用的就是稀疏表示的方式。本文结合稀疏表示和广义IHS变换,提出了一种新的遥感图像融合方法。人眼视觉系统不易感知红绿蓝等波段信息,而对亮度,色度,饱和度等信息敏感,考虑到这一特点,利用广义IHS变换获得多光谱图像的亮度分量。同时结合稀疏表示能够揭示图像内在结构的特点,利用稀疏表示对亮度分量和全色图像进行融合获得新的亮度分量。因不同光谱波段的细节是不一样的,若直接进行广义IHS逆变换会使得各波段添加的细节一样,为此,本文根据各波段的灰度强度来自适应地调整细节的添加量以更好地在提高空间分辨率时保持光谱特性。
     最后,提出了结合非局部处理和低秩表示的多模图像融合方法。图像融合的目的是综合集成源图像的显著信息,图像像素或区域的显著性不仅与局部信息有关,还与非局部信息有关,而且非局部信息可以帮助判断像素或区域的显著性。而传统的图像融合方法只利用了图像的局部信息,忽略了非局部这一重要信息,使得显著信息判断失误,从而导致融合图像部分细节丢失,有时甚至在融合图像中出现扭曲。为了克服该问题,本文提出了一种结合非局部算子和低秩表示的多模图像融合方法。首先,对于源图像中一个给定的图像块,在非局部范围内寻找它的相似图像块,再对这些图像块以低秩的方式进行表示,低秩能够约束相似图像块的一致性,从而能够更加有效准确地综合集成源图像的显著信息。
Image fusion is an important way of integrating multisensor image informationin the field of image processing and computer vision. It is the process of combininginformation from two or multiple images of the same scene or object into a singlecomposite image, which is more informative and is more suitable for visualperception and computer processing. At present, image fusion has been widely used inthe field of military, medical diagnosis, remote sensing, etc. Based on the classicalmultiscale theory, the recent sparse representation and low rank representation theory,multimodal image fusion methods and remote sensing image fusion methods areproposed in this paper. The main contributions of this thesis are as follows.
     Firstly, a remote sensing image fusion method based on multiscale joint filter isproposed. Multiscale methods have been widely used in remote sensing image fusion.Multiscale methods are used to extract details of panchromatic images, which areinjected into low resolution multispectral images to increase its resolution. Thespectral response of different bands is different, which results in that the details ofpanchromatic images are different from that of multispectral images. Traditionalmultiscale methods to extract details ignore this problem. This thesis uses dualbilateral filter to simultaneously consider the characteristics of panchromatic imagesand multispectral images. To extract multiscale details, multiscale dual bilateral filteris proposed. Considering that translation invariance is important for image fusion, theà trous scheme is used in the multiscale dual bilateral filter to ensure translationinvariance.
     Secondly, the multiscale directional bilateral filter is developed and is applied tomultimodal image fusion. We know that edge and directional features are verycommon in various images, which means that edge and directional features are veryimportant for image processing. The multiscale directional bilateral filter is developedto combine edge preserving and direction capturing. The multiscale bilateral filterwith the ability of edge preserving is firstly applied to source images to obtain a lowfrequency subband and several high frequency subbands. Then, directional filter isapplied to high frequency subband to capture directional feature. The multiscaledirectional bilateral filter is used for multimodal image fusion to verify itseffectiveness. Source images are decomposed to a low frequency subband and several directional subbands by the multiscale directional bilateral fitler. According to a givenfusion rule, these subbands of different source images are fused. The inversemultiscale directional bilateral filter is applied to fused subbands to obtain the fusedimage. The experiments over infrared-visible multimodal images and medicalmultimodal images indicate the effectiveness of the proposed method.
     Thirdly, a remote sensing image fusion method based on sparse representation isproposed. Sparse representation is a novel image representation theory, which cansparsely represent an image on overcomplete dictionary to obtain sparse coefficients.These coefficients and their corresponding atoms reveal the intrinsic properties ofimages effectively. Primary visual cortex neurons process the images from retina inthe same way of sparse coding. Combining sparse representation and generalized IHStransform, a novel remote sensing image fusion method is proposed in this thesis.Human visual system is insensitive to red, green and blue band information, and issensitive to intensity, hue, saturation information. Considering this characteristic, thegeneralized IHS transform is used to obtain intensity component of multispectralimages. The intensity component and panchromatic images are merged by sparserepresentation to obtain the fused intensity component. The details of differentspectral bands are different, and the direct inverse generalized IHS transform willresult in that the details added to each band are the same. To better improve spatialresolution and preserve spectral fidelity, the amount of details added to each band isadjusted according to their pixel value.
     Finally, a multimodal image fusion method is proposed through combiningnonlocal operator and low rank representation. The aim of image fusion is to integratethe salient information of source images. The salience depends on not only localinformation but also nonlocal information. Traditional image fusion methods only uselocal information and neglect nonlocal information, which result in that some detailsin the fused image are lost. Thus, a new multimodal image fusion method combiningnonlocal operator and low rank representation is proposed in this thesis. For an imagepatch in the source image, its similar patches are searched in the nonlocal domain.These similar patches are represented in the way of low rank, and low rank canimpose the consistency among similar patches. Therefore, the proposed method caneffectively integrate the salient information of source images.
引文
[1] Gonzalez R C, Woods R E. Digital image processing third edition. USA:Prentice Hall,2008
    [2] Goshtasby A A, Nikolov S. Image fusion: advances in the state of the art.Information Fusion,2007,8(2):114-118
    [3] Stathaki T. Image fusion algorithms and applications. London, UK: AcademicPress,2008
    [4]丁锋,杨健,余志锋.美军C4KISR系统的体系结构及发展展望.电光与控制,2005,12(1):1-4,8
    [5] Nemec S F, Peloschek P, Schmook M T, et al. CT-MR image data fusion forcomputer-assisted navigated surgery of orbital tumors. European Journal ofRadiology,2010,73(2):224-229
    [6] Zhang Y. Understanding image fusion. Photogrammetric Engineering&RemoteSensing,2004,70(6):657-661
    [7] Yin H, Li S. Multimodal image fusion with joint sparsity model. OpticalEngineering,2011,50(6):067007-1-067007-10
    [8] Xue Z, Blum R S, Li Y. Fusion of visual and IR images for concealed weapondetection. In: Proceedings of the Fifth International Conference on InformationFusion, Maryland, USA,2002,1198-1205
    [9] ISI web of knowledge. http://www.webofknowledge.com/.
    [10] Tu T, Su S, Shyu H, et al. A new look at IHS-like image fusion methods.Information Fusion,2001,2(3):177-186
    [11] Shah V P, Younan N H, King R L. An efficient pan-sharpening method via acombined adaptive PCA approach and contourlets. IEEE Transactions onGeoscience and Remote Sensing,2008,46(5):1323-1335
    [12] Pajares G, Cruz J M D L. A wavelet-based image fusion tutorial. PatternRecognition,2004,37(9):1855-1872
    [13] Zhang Z, Blum R S. A categorization of multiscale-decomposition-based imagefusion schemes with a performance study for a digital camera application.Proceedings of the IEEE,1999,87(8):1315-1326
    [14]王宏,敬忠良,李建勋.多分辨率图像融合的研究与发展.控制理论与应用,2004,21(1):145-151
    [15] Burt P J, Adelson E H. The laplacian pyramid as a compact image code. IEEETransactions on Communications,1983,31(4):532-540
    [16] Toet A. Image fusion by a ratio of low pass pyramid. Pattern RecognitionLetters,1989,9(4):245-253
    [17] Toet A. A morphological pyramidal image decomposition. Pattern RecognitionLetters,9(4):255-261
    [18] Burt P J. A gradient pyramid basis for pattern selective image fusion. In:Proceedings of the Societyfor Information DisplayConference, San Jose,1992,467-470
    [19] Toet A, Ruyven L J, Valeton J M. Merging thermal and visual images by acontrast pyramid. Optical Engineering,1989,28(7):789-792
    [20] Petrovic V S, Xydeas C S. Gradient-based multiresolution image fusion. IEEETransactions on Image Processing,2004,13(2):228-237
    [21] Liu Z, Tsukada K, Hanasaki K, et al. Image fusion by using steerable pyramid.Pattern Recognition Letters,2001,22(9):929-939
    [22] Mallat S. A wavelet tour of signal processing, third edition: the sparse way.USA: Academic Press,2008
    [23] Chipman L J, Orr T M, Graham L N. Wavelets and image fusion. In:International Conference on Image Processing,1995,248-251
    [24] Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelettransform. Graphical Models and Image Processing,1995,57(3):235-245
    [25] Wang H. A new multiwavelet-based approach to image fusion. Journal ofMathematical Imaging and Vision,2004,21(2):177-192
    [26]张登荣,张霄宇,俞乐,等.基于小波包移频算法的遥感图像融合技术.浙江大学学报(工学版),2007,41(7):1097-1100
    [27] Li S, Kwok J T Y, Tsang I W, et al. Fusing images with different focuses usingsupport vector machines. IEEE Transactions on Neural Networks,2004,15(6):1555-1561
    [28] Li S, Kwok J T, Wang Y. Using the discrete wavelet frame transform to mergelandsat tm and spot panchromatic images. Information Fusion,2002,3(1):17-23
    [29] Lewis J J, O Callaghan R J, Nikolov S G, et al. Pixel-and region-based imagefusion with complex wavelets. Information Fusion,2007,8(2):119-130
    [30] Ioannidou S, Karathanassi V. Investigation of the dual-tree complex andshift-invariant discrete wavelet transforms on quickbird image fusion. IEEEGeoscience and Remote Sensing Letters,2007,4(1):166-170
    [31] Zheng S, Shi W, Liu J, et al. Multisource image fusion method using supportvalue transform. IEEE Transactions on Image Processing,2007,16(7):1831-1839
    [32] Zheng S, Wen-zhon S, Jian L, et al. Remote sensing image fusion usingmultiscale mapped LS-SVM. IEEE Transactions on Geoscience and RemoteSensing,2008,46(5):1313-1322
    [33] Candès E J, Donoho D L. Ridgelets: a key to higher-dimensional intermittency?Philosophical Transactions of the Royal Society of London SeriesA-Mathematical Physical and Engineering Sciences,1999,357(1760):2495-2506
    [34] Candès E J. Ridgelets: theory and applications:[PhD Thesis]. StandfordUniversity Department of Statistics,1998
    [35] Chen T, Zhang J, Zhang Y. Remote sensing image fusion based on ridgelettransform. In: IEEE International Geoscience and Remote Sensing Symposium,Seoul, Korea,2005,1150-1153
    [36] Candès E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms. SIAMMultiscale Modeling and Simulation,2006,5(3):861-899
    [37] Candès E, Donoho D. Curvelets a surprisingly effective nonadaptiverepresentation for objects with edges. In: A. COHEN C R A L. Curve and surfacefitting. Vanderbilt University Press,2000:
    [38] Ma J, Plonka G. The curvelet transform. IEEE Signal Processing Magazine,2010,27(2):118-133
    [39] Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using thecurvelet transform. Information Fusion,2007,8(2):143-156
    [40] Myungjin C, Rae Y K, Myeong-Ryong N, et al. Fusion of multispectral andpanchromatic satellite images using the curvelet transform. IEEE Geoscienceand Remote Sensing Letters,2005,2(2):136-140
    [41] Shao Z, Liu J, Cheng Q. Fusion of infrared and visible images based on focusmeasure operators in the curvelet domain. Applied Optics,2012,51(12):1810-1921
    [42] Li S, Yang B. Multifocus image fusion by combining curvelet and wavelettransform. Pattern Recognition Letters,2008,29(9):1295-1301
    [43] Do M N, Vetterli M. The contourlet transform: an efficient directionalmultiresolution image representation. IEEE Transactions on Image Processing,2005,14(12):2091-2106
    [44] Cunha A L D, Zhou J, Do M N. The nonsubsampled contourlet transform: theory,design, and applications. IEEE Transactions on Image Processing,2006,15(10):3089-3101
    [45] Yang B, Li S, Sun F. Image fusion using nonsubsampled contourlet transform.In: The Fourth International Conference on Image and Graphics, Chengdu,China,2007,719-724
    [46] Li T, Wang Y. Biological image fusion using a NSCT based variable-weightmethod. Information Fusion,2010,12(2):85-92
    [47] Zhang Q, Guo B. Multifocus image fusion using the nonsubsampled contourlettransform. Signal Processing,2009,89(7):1334-1346
    [48] Lim W. The discrete shearlet transform: a new directional transform andcompactly supported shearlet frames. IEEE Transactions on Image Processing,2010,19(5):1166-1180
    [49] Miao Q, Shi C, Xu P, et al. A novel algorithm of image fusion using shearlets.Optics Communications,2011,284(6):1540-1547
    [50] Miao Q, Shi C, Xu P, et al. Multi-focus image fusion algorithm based onshearlets. Chinese Optics Letters,2011,9(4):041001-1-041001-5
    [51] Wang L, Li B, Tian L. Multi-modal medical image fusion using the inter-scaleand intra-scale dependencies between image shift-invariant shearlet coefficients.Information Fusion,2013:
    [52] Xu M, Chen H, Varshney P K. An image fusion approach based on markovrandom fields. IEEE Transactions on Geoscience and Remote Sensing,2011,49(12):5116-5127
    [53] Wright W A. Fast image fusion with a markov random field. In: The SeventhInternational Conference on Image Processing and Its Applications, Manchester,1999,557-561
    [54] Blum R S. Robust image fusion using a statistical signal processing approach.Information Fusion,2005,6(2):119-128
    [55] Joshi M, Jalobeanu A. Map estimation for multiresolution fusion in remotelysensed images using an igmrf prior model. IEEE Transactions on Geoscienceand Remote Sensing,2010,48(3):1245-1255
    [56] Fasbender D, Radoux J, Bogaert P. Bayesian data fusion for adaptable imagepansharpening. IEEE Transactions on Geoscience and Remote Sensing,2008,46(6):1847-1857
    [57] Wan T, Canagarajah N, Achim A. Segmentation-driven image fusion based onalpha-stable modeling of wavelet coefficients. IEEE Transactions onMultimedia,2009,11(4):624-633
    [58] Tian J, Chen L. Adaptive multi-focus image fusion using a wavelet-basedstatistical sharpness measure. Signal Processing,2012,92(9):2137-2146
    [59] Yang B, Li S. Multifocus image fusion and restoration with sparserepresentation. IEEE Transactions on Instrumentation and Measurement,2010,59(4):884-892
    [60] Yang B, Li S. Pixel-level image fusion with simultaneous orthogonal matchingpursuit. Information Fusion,2012,13(1):10-19
    [61] Ding M, Wei L, Wang B. Research on fusion method for infrared and visibleimages via compressive sensing. Infrared Physics&Technology,2013,57(0):56-67
    [62] Li S, Yang B. A new pan-sharpening method using a compressed sensingtechnique. IEEE Transactions on Geoscience and Remote Sensing,2011,49(2):738-746
    [63] Li X, Qin S Y. Efficient fusion for infrared and visible images based oncompressive sensing principle. IET Image Processing,2011,5(2):141-147
    [64] Li S, Kwork J T, Wang Y. Multifocus image fusion using artificial neuralnetworks. Pattern Recognition Letters,2002,23(8):985-997
    [65] Wang Z, Ma Y. Medical image fusion using m-pcnn. Information Fusion,2008,9(2):176-185
    [66] Kumar M, Dass S. A total variation-based algorithm for pixel-level image fusion.IEEE Transactions on Image Processing,2009,18(9):2137-2143
    [67] Ballester C, Caselles V, Igual L, et al. A variational model for P+XS imagefusion. International Journal of Computer Vision,2006,69(1):43-58
    [68] Piella G. Image fusion for enhanced visualization: a variational approach.International Journal of Computer Vision,2009,83(1):1-11
    [69] Bertalmio M, Levine S. A variational approach for the fusion of exposurebracketed pairs. IEEE Transactions on Image Processing,2013
    [70] Zhou Z, Li Y, Shi H, et al. Pan-sharpening: a fast variational fusion approach.Science China Information Sciences,2012,55(3):615
    [71] M ller M, Wittman T, Bertozzi A L, et al. A variational approach for sharpeninghigh dimensional images. SIAM J. Imaging Sciences,2012,5(1):150-178
    [72] Wang C, Ye Z. First-order fusion of volumetric medical imagery. IEEProceedings-Vision, Image and Signal Processing,2006,153(2):191-198
    [73] Raskar R, Ilie A, Yu J. Image fusion for context enhancement and videosurrealism. In: The Third International Symposium on Non-PhotorealisticAnimation and Rendering, NPAR Symposium on Non-Photorealistic Animationand Rendering. Annecy, France, Association for Computing Machinery,2004,85-93
    [74] Fattal R, Lischinski D, Werman M. Gradient domain high dynamic rangecompression. ACM Transactions on Graphics,2002,21(3):249-256
    [75] Mitianoudis N, Stathaki T. Pixel-based and region-based image fusion schemesusing ICA bases. Information Fusion,2007,8(2):131-142
    [76] Mitanoudis N, Stathaki T. Optimal contrast correction for ICA-based fusion ofmultimodal images. IEEE Sensors Journal,2008,8(12):2016-2026
    [77] Cvejic N, Bull D, Canagarajah N. Region-based multimodal image fusion usingICA bases. IEEE Sensors Journal,2007,7(5):743-751
    [78] Oudre L, Stathaki T, Mitianoudis N. Image fusion schemes using ICA bases. In:Image Fusion Alogrithms and Applications. Academic Press,2008:85-117
    [79] Cvejic N, Lewi J, Bull D, et al. Adaptive region-based multimodal image fusionusing ICA bases. In: The9th International Conference on Information Fusion,Florence, Italy,2006,1-6
    [80] Yin H, Li S, Fang L. Simultaneous image fusion and super-resolution usingsparse representation. Information Fusion,2013,14(3):229-240
    [81] Jae H J, Yoonsung B, Jong B R. Contrast-enhanced fusion of multisensorimages using subband-decomposed multiscale retinex. IEEE Transactions onImage Processing,2012,21(8):3479-3490
    [82]陈世平.航天遥感科学技术的发展.航天器工程,2009,18(2):1-7
    [83] Pohl C, Van Genderen J L. Multisensor image fusion in remote sensing:concepts, methods and applications. International Journal of Remote Sensing,1998,19(5):823-854
    [84] Wang Z, Ziou D, Armenakis C, et al. A comparative analysis of image fusionmethods. IEEE Transactions on Geoscience and Remote Sensing,2005,43(6):1391-1402
    [85]徐青,张艳,耿则勋,等.遥感影像融合与分辩率增强技术.北京市:科学出版社,2006
    [86] Alparone L, Wald L, Chanussot J, et al. Comparison of pansharpeningalgorithms: outcome of the2006GRS-S data-fusion contest. IEEE Transactionson Geoscience and Remote Sensing,2007,45(10):3012-3021
    [87] Thomas C, Ranchin T, Wald L, et al. Synthesis of multispectral images to highspatial resolution: a critical review of fusion methods based on remote sensingphysics. IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1301-1312
    [88] Gillespie A R, Kahle A B, Walker R E. Color enhancement of highly correlatedimages. Ii. Channel ratio and “chromaticity” transformation techniques.Remote Sensing of Environment,1987,22(3):343-365
    [89] Aiazzi B, Alparone L, Baronti S, et al. Context-driven fusion of high spatial andspectral resolution data based on oversampled multiresolution analysis. IEEETransactions on Geoscience and Remote Sensing,2002,40(10):2300-2312
    [90] Tu T, Huang P S, Hung C, et al. A fast intensity–hue–saturation fusiontechnique with spectral adjustment for ikonos imagery. IEEE Geoscience andRemote Sensing Letters,2004,1(4):309-312
    [91] Rahmani S, Strait M, Merkurjev D, et al. An adaptive IHS pan-sharpeningmethod. IEEE Geoscience and Remote Sensing Letters,2010,7(4):746-750
    [92] Gonzalez-Audicana M, Saleta J L, Catalan R G, et al. Fusion of multispectraland panchromatic images using improved ihs and pca mergers based on waveletdecomposition. IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1291-1299
    [93]李振华,敬忠良,孙韶媛,等.基于方向金字塔框架变换的遥感图像融合算法.光学学报,2005,25(5):598-602
    [94] Nunez J, Otazu X, Fors O, et al. Multiresolution-based image fusion withadditive wavelet decomposition. IEEE Transactions on Geoscience and RemoteSensing,1999,37(3):1204-1211
    [95] Yang S, Wang M, Jiao L. Fusion of multispectral and panchromatic imagesbased on support value transform and adaptive principal component analysis.Information Fusion,2012,13(3):177-184
    [96] Kim Y, Lee C, Han D, et al. Improved additive-wavelet image fusion. IEEEGeoscience and Remote Sensing Letters,2011,8(2):263-267
    [97] Mahyari A G, Yazdi M. Panchromatic and multispectral image fusion based onmaximization of both spectral and spatial similarities. IEEE Transactions onGeoscience and Remote Sensing,2011,49(6):1976-1985
    [98] Chang X, Jiao L, Liu F, et al. Multicontourlet-based adaptive fusion of infraredand visible remote sensing images. IEEE Geoscience and Remote SensingLetters,2010,7(3):549-553
    [99] Lin Z, Chen M, Wu L, et al. The augmented lagrange multiplier method forexact recovery of corrupted low-rank matrices, UIUC Technical ReportUILU-ENG-09-2215, arXiv:1009.5055v2, October26,2009.
    [100] Cvejic N, Loza A, Bull D, et al. A similarity metric for assessment of imagefusion algorithms. International Journal of Information and CommuncationEngineering,2006,2(3):178-182
    [101] Yang C, Zhang J, Wang X, et al. A novel similarity based quality metric forimage fusion. Information Fusion,2008,9(2):156-160
    [102] Aurich V, Weule J. Non-linear gaussian filters performing edge preservingdiffusion. In: DAGM Symposium for Pattern Recognition, Bielefeld, Germany,1995,538-545
    [103] Smith S M, Brady J M. SUSAN-a new approach to low level image processing.International Journal of Computer Vision,1997,23(1):45-78
    [104] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: The6thInternational Conference on Computer Vision, Bombay, India,1998,839-846
    [105] Paris S, Kornprobst P, Tumblin J, et al. Bilateral filtering: theory andapplications. Foundations and Trends in Computer Graphics and Vision,2008,4(1):1-73
    [106] Barash D. Fundamental relationship between bilateral filtering, adaptivesmoothing, and the nonlinear diffusion equation. IEEE Transactions on PatternAnalysis and Machine Intelligence,2002,24(6):844-847
    [107] Elad M. On the origin of the bilateral filter and ways to improve it. IEEETransactions on Image Processing,2002,11(10):1141-1151
    [108] Paris S, Kornprobst P, Tumblin J, et al. A gentle introduction to bilateralfiltering and its applications. In: ACM SIGGRAPH International Conference onComputer Graphics and Interactive Techniques, Los Angeles, CA, United States,2008,1-50
    [109] Bennett E P, McMillan L. Video enhancement using per-pixel virtual exposures.ACM Transactions on Graphics,2005,24(3):845-852
    [110] Fattal R, Agrawala M, Rusinkiewicz S. Multiscale shape and detail enhancementfrom multi-light image collections. ACM Transactions on Graphics,2007,26(3):Arctile51
    [111] Kopf J, Cohen M, Lischinski D, et al. Joint bilateral upsampling. ACMTransactions on Graphics,2007,26(3): Article96
    [112] Durand F, Dorsey J. Fast bilateral filtering for the display ofhigh-dynamic-range images. ACM Transactions on Graphics,2002,21(3):257-266
    [113] Winnemoller H, Olsen S C, Gooch B. Real-time video abstraction. ACMTransactions on Graphics,2006,25(3):1221-1226
    [114] Ramanath R, Snyder W E. Adaptive demosaicking. Journal of ElectronicImaging,2003,12(4):633-642
    [115] Bennett E P, Mason J L, McMillan L. Multispectral bilateral video fusion. IEEETransactions on Image Processing,2007,16(5):1185-1194
    [116] Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatialresolutions: assessing the quality of resulting images. PhotogrammetricEngineering&Remote Sensing,1997,63(6):691-199
    [117] Otazu X, Gonzalez-Audicana M, Fors O, et al. Introduction of sensor spectralresponse into image fusion methods. Application to wavelet-based methods.IEEE Transactions on Geoscience and Remote Sensing,2005,43(10):2376-2385
    [118] Wald L. Quality of high resolution synthesized images: is there a simplecriterion? In: International Conference Fusion of Earth Data, Nice, France,2000,99-105
    [119] Alparone L, Baronti S, Garzelli A, et al. A global quality measurement ofpan-sharpened multispectral imagery. IEEE Geoscience and Remote SensingLetters,2004,1(4):313-317
    [120] Wang Z, Bovik A C, Sheikh H R, et al. Ssim; Image quality assessment: fromerror visibility to structural similarity. IEEE Transactions on Image Processing,2004,13(4):600-612
    [121] Wang Z, Bovik A C. A universal image quality index. IEEE Signal processingLetters,2002,9(3):81-84
    [122] Laben C A, Brower B V, EASTMAN KODAK COMPANY. Process for enhancing thespatial resolution of multispectral imagery using pan-sharpening.6011875.January4,2000.
    [123] Blum R S, Liu Z. Multisensor image fusion and its application. Florida, USA:CRC Press,2006
    [124] Liu Z, Blasch E, Xue Z, et al. Objective assessment of multiresolution imagefusion algorithms for context enhancement in night vision: a comparative study.IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(1):94-109
    [125] Piella G. A general framework for multiresolution image fusion: from pixels toregions. Information Fusion,2003,4(4):259-280
    [126] Unser M. Texture classification and segmentation using wavelet frames. IEEETransactions on Image Processing,1995,4(11):1549-1560
    [127] Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelettransform. IEEE Signal Processing Magazine,2005,22(6):123-151
    [128]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12A):1975-1981
    [129] Do M N, Vetterli M. The finite ridgelet transform for image representation.IEEE Transactions on Image Processing,2003,12(1):16-28
    [130] Le Pennec E, Mallat S. Sparse geometric image representations with bandelets.IEEE Transactions on Image Processing,2005,14(4):423-438
    [131] Grzywacz N M, Merwine D K. Directional selectivity. In: ARBIB M A. Thehandbook of brain theory and neural networks, The2nd edition. Cambridge,Massachusetts, USA: MIT Press,2002:353-358
    [132] Bamberger R H, Smith M J T. A filter bank for the directional decomposition ofimages: theory and design. IEEE Transactions on Signal Processing,1992,40(4):882-893
    [133] Hong P S, Smith M J T. An octave-band family of non-redundant directionalfilter banks. In: the27th IEEE International Conference on Acoustics, Speech,and Signal Processing, Orlando, Florida, USA,2002, II-1165-II-1168
    [134] Lu Y, Do M N. Crisp contourlets: a critically sampled directionalmultiresolution image representation. In: Proceedings of SPIE conference onWavelet Applications in Signal and Image Processing X, San Diego, USA,2003,655-665
    [135] Nguyen T T, Oraintara S. A class of multiresolution directional filter banks.IEEE Transactions on Signal Processing,2007,55(3):949-961
    [136] Qu G, Zhang D, Yan P. Information measure for performance of image fusion.Electronics Letters,2002,38(7):313-315
    [137] Piella G, Heijmans H. A new quality metric for image fusion. In: The10th IEEEInternational Conference on Image Processing, Barcelona, Spain,2003,173-176
    [138] Xydeas C S, Petrovic V. Objective image fusion performance measure.Electronics Letters,2000,36(4):308-309
    [139] Sheikh H R, Bovik A C. Image information and visual quality. IEEETransactions on Image Processing,2006,15(2):430-444
    [140] Toet A, IJspeert J K, Waxman A M, et al. Fusion of visible and thermal imageryimproves situational awareness. Displays,1997,18(2):85-95
    [141] The internet resource for research in image fusion. http://www.imagefusion.org.
    [142] Lewis J J, Nikolov S G, Loza A, et al. The EDEN project multi-sensor data set,TR-UoB-WS-Eden-Project-Data-Set. Bristol, UK: University of Bristol andWaterfall Solutions Ltd,2006.
    [143] Brainweb simulated brain database. http://brainweb.bic.mni.mcgill.ca/brainweb.
    [144] Weiss B. Fast median and bilateral filtering. ACM Transactions on Graphics,2006,25(3):519-526
    [145] Paris S, Durand F. A fast approximation of the bilateral filter using a signalprocessing approach. International Journal of Computer Vision,2009,81(1):24-52
    [146]赵松年,姚力,金真,等.视像整体特征在人类初级视皮层上的稀疏表象:脑功能成像的证据.科学通报,2008,53(11):1296-1304
    [147] Olshausen B A, Field D J. Emergence of simple-cell receptive field propertiesby learning a sparse code for natural images. Nature,1996,381(6583):607-609
    [148] Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparserepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227
    [149] Elad M, Aharon M. Image denoising via sparse and redundant representationsover learned dictionaries. IEEE Transactions on Image Processing,2006,15(12):3736-3745
    [150] Yang J, Wright J, Huang T, et al. Image super-resolution via sparserepresentation. IEEE Transactions on Image Processing,2010,19(11):2861-2873
    [151] Elad M. Sparse and redundant representations: from theory to applications insignal and image processing. New York, USA: Springer,2010
    [152] Rubinstein R, Bruckstein A M, Elad M. Dictionaries for sparse representationmodeling. Proceedings of the IEEE-Special Issue on Applications ofCompressive Sensing&Sparse Representation,2010,98(6):1045-1057
    [153] Mallat S P G, Zhang Z. Matching pursuits with time-frequency dictionaries.IEEE Transactions on Signal Processing,1993,41(12):3397-3415
    [154]孙玉宝,肖亮,韦志辉,等.基于gabor感知多成份字典的图像稀疏表示算法研究.自动化学报,2008,34(11):1379-1387
    [155]孙蒙,王正明.两类混合特征信号的超完备稀疏表示方法.电子学报,2007,35(7):1327-1332
    [156] Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEETransactions on Information Theory,2003,49(12):3320-3325
    [157] Lesage S, Gribonval R, Bimbot F, et al. Learning unions of orthonormal baseswith thresholded singular value decomposition. In: IEEE InternationalConference on Acoustics, Speech, and Signal Processing, IRISA, Rennes,France,2005,293-296
    [158] Engan K, Aase S O, y J H H. Multi-frame compression: theory and design.Signal Processing,2000,80(10):2121-2140
    [159] Engan K, Aase S O, Hakon Husoy J. Method of optimal directions for framedesign. In: IEEE International Conference on Acoustics, Speech, and SignalProcessing, Arizona, USA,1999,2443-2446
    [160] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designingovercomplete dictionaries for sparse representation. IEEE Transactions onSignal Processing,2006,54(11):4311-4322
    [161] Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Transactionson Pattern Analysis and Machine Intelligence,2012,34(4):791-804
    [162] Ophir B, Lustig M, Elad M. Multi-scale dictionary learning using wavelets.IEEE Journal of Selected Topics in Signal Processing,2011,5(5):1014-1024
    [163] Zelnik-Manor L, Rosenblum K, Eldar Y C. Dictionary optimization forblock-sparse representations. IEEE Transactions on Signal Processing,2012,60(5):2386-2395
    [164] Mairal J, Bach F, Ponce J, et al. Discriminative learned dictionaries for localimage analysis. In: IEEE Conference on Computer Vision and PatternRecognition, Alaska, USA,2008,1-8
    [165] Mairal J, Sapiro G, Elad M. Multiscale sparse image representation with learneddictionaries. In: IEEE International Conference on Image Processing, SanAntonio, USA,2007, III-105-III-108
    [166] Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations forimage and video restoration. Multiscale Modeling and Simulation,2008,7(1):214-241
    [167] Natarajan B K. Sparse approximate solutions to linear systems. SIAM Journalon Computing,1995,24(2):227-234
    [168] Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems ofequations to sparse modelling of signals and images. SIAM Review,2009,51(1):34-81
    [169] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition. In:Conference Record of The Twenty-Seventh Asilomar Conference on Signals,Systems and Computers, Pacific Grove, California, USA,1993,40-44
    [170] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systemsof linear equations by stagewise orthogonal matching pursuit. IEEETransactions on Information Theory,2012,58(2):1094-1121
    [171] Needell D, Tropp J A. Cosamp: iterative signal recovery from incomplete andinaccurate samples. Applied and Computational Harmonic Analysis,2009,26(3):301-321
    [172] Xu Z, Chang X, Xu F, et al. L1/2regularization: a thresholding representationtheory and a fast solver. IEEE Transactions on Neural Networks and LearningSystems,2012,23(7):1013-1027
    [173] Yin H, Li S, Fang L. Block-sparse compressed sensing: non-convex model anditerative re-weighted algorithm. Inverse Problems in Science and Engineering,2013,21(1):141-154
    [174] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data usingfocuss: a re-weighted minimum norm algorithm. IEEE Transactions on SignalProcessing,1997,45(3):600-616
    [175] Rao B D, Kreutz-Delgado K. An affine scaling methodology for best basisselection. Signal Processing, IEEE Transactions on,1999,47(1):187-200
    [176] Chen S S, Donoho D L, Saunders A M A. Atomic decomposition by basispursuit. SIAM Review,2001,43(1):129–159
    [177] Figueiredo M A T, Nowak R D, Wright S J. Gradient project for sparsereconstruction: application to compressed sensing and other. IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):586-597
    [178] Bloomfield P, Steiger W L. Least absolute deviations: theory, applications, andalgorithms. Boston, USA: Birkhauser Verlag AG,1983
    [179] Boyd S, Vandenberghe L. Convex optimization. Cambridge, United Kingdom:Cambridge University Press,2004
    [180] Li S, Yang B, Hu J. Performance comparison of different multi-resolutiontransforms for image fusion. Information Fusion,2011,12(2):74-84
    [181] Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In: TheProceedings of the Seventh IEEE International Conference on Computer Vision,Kerkyra, Corfu, Greece,1999,1033-1038
    [182] Buades A, Coll B, Morel J. A non-local algorithm for image denoising. In: IEEEConference on Computer Vision and Pattern Recognition, San Diego, California,USA,2005,60-65
    [183] Dabov K, Foi A, Vladimir Katkovnik, et al. Image denoising by sparse3-dtransform-domain collaborative filtering. IEEE Transactions on ImageProcessing,2007,16(8):2080-2095
    [184] Boulanger J, Kervrann C, Bouthemy P, et al. Patch-based nonlocal functionalfor denoising fluorescence microscopy image sequences. IEEE Transactions onMedical Imaging,2010,29(2):442-454
    [185] Zhang X, Feng X, Wang W. Two-direction nonlocal model for image denoising.IEEE Transactions on Image Processing,2013,22(1):408-412
    [186] Danielyan A, Katkovnik V, Egiazarian K. Bm3d frames and variational imagedeblurring. IEEE Transactions on Image Processing,2012,21(4):1715-1728
    [187] Zhang H, Yang J, Zhang Y, et al. Image and video restorations via nonlocalkernel regression. IEEE Transactions on Cybernetics,2013,43(3):1-12
    [188] Dong W, Zhang L, Lukac R, et al. Sparse representation based imageinterpolation with nonlocal autoregressive modeling. IEEE Transactions onImage Processing,2013,22(4):1382-1394
    [189] Manjón J V, Coupé P, Buades A, et al. Non-local MRI upsampling. MedicalImage Analysis,2010,14(6):784–792
    [190] Dong W, Shi G, Li X. Nonlocal image restoration with bilateral varianceestimation: a low-rank approach. IEEE Transactions on Image Processing,2013,22(2):700-711
    [191] Jung M, Bresson X, Chan T F, et al. Nonlocal mumford-shah regularizers forcolor image restoration. IEEE Transactions on Image Processing,2011,20(6):1583-1598
    [192] Lezoray O, Elmoataz A, Ta V T. Nonlocal PDEs on graphs for active contoursmodels with applications to image segmentation and data clustering. In: IEEEInternational Conference on Acoustics, Speech and Signal Processing, Kyoto,Japan,2012,873-876
    [193] Li H, Zhang L, Shen H. An adaptive nonlocal regularized shadow removalmethod for aerial remote sensing images. IEEE Transactions on Geoscience andRemote Sensing,2013
    [194] Candes E J, Li X, Ma Y, et al. Robust principal component analysis? Journal ofthe ACM,2011,58(3): Article11
    [195] Peng Y, Ganesh A, Wright J, et al. Rasl: robust alignment by sparse andlow-rank decomposition for linearly correlated images. In: IEEE InternationalConference on Computer Vision and Pattern Recognition, San Francisco,California, USA,2010,763-770
    [196] Peng Y, Ganesh A, Wright J, et al. Rasl: robust alignment by sparse andlow-rank decomposition for linearly correlated images. IEEE Transactions onPattern Analysis and Machine Intelligence,2012,34(11):2233-2246
    [197] Bin C, Guangcan L, Jingdong W, et al. Multi-task low-rank affinity pursuit forimage segmentation. In: The13th IEEE International Conference on ComputerVision, Barcelona, Spain,2011,2439-2446
    [198] Lang C, Liu G, Yu J, et al. Saliency detection by multitask sparsity pursuit.IEEE Transactions on Image Processing,2012,21(3):1327-1338
    [199] Zhou X, Yang C, Yu W. Moving object detection by detecting contiguousoutliers in the low-rank representation. IEEE Transactions on Pattern Analysisand Machine Intelligence,2013,35(3):597-610
    [200] Zhang T, Ghanem B, Liu S, et al. Low-rank sparse learning for robust visualtracking. In: European Conference on Computer Vision, Lecture Notes inComputer Science. Florence, Italy, Springer Berlin/Heidelberg,2012,470-484
    [201] Zhang Z, Ganesh A, Liang X, et al. Tilt: transform invariant low-rank textures.International Journal of Computer Vision,2012,99(1):1-2424
    [202] Chen D, Cheng L. Image inpainting based on low-rank and joint-sparse matrixrecovery. Electronics Letters,2013,49(1):35-36
    [203] Zhou T, Tao D. Godec: randomized low-rank sparse matrix decomposition innoisy case. In: the28th International Conference on Machine Learning,Proceedings of the28th International Conference on Machine Learning, ICML2011. Bellevue, WA, United states, Association for Computing Machinery,2011,33-40
    [204] Liu G, Lin Z, Yan S, et al. Robust recovery of subspace structures by low-rankrepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):171-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700