用户名: 密码: 验证码:
微光ICCD数字图像去噪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微光图像是多次光电转换和电子倍增之后的输出图像,与普通的可见光图像相比,具有较低的信噪比,带有明显的随机闪烁噪声,不利于人眼观察和识别。因此,噪声是微光成像系统中的重要因素,它决定了整个系统的性能。可见,对其噪声特性进行深入研究,改善成像质量,提高信噪比,对推动和拓展它的应用领域,具有重大的现实意义。
     本文以微光ICCD的图像噪声为研究对象,深入的分析和研究其噪声特点,并利用现有的数字图像处理方法进行去噪实验研究,以期改善图像质量。在噪声研究的过程中,既关注它的理论性和创新性、又注意其在实际操作中的可用性。因此,从噪声理论的发展和图像质量的改善,本文的研究都具有重要意义。
     本论文开展的主要研究工作有如下几个方面:
     (1)讨论了微光ICCD的结构和工作机理,分析了噪声产生的来源、因素和特点,从时间域随机过程和空间域随机过程统一的角度建立了微光ICCD成像系统的噪声模型。分析表明,对于像增强CCD成像系统,它的噪声主要来自像增强器部分和CCD本身。而对于噪声的最终表现形式来说,一般上可分为两类:一类为电子噪声,比如入射光子的涨落噪声、光电转换引起的量子涨落噪声,还有光电阴极暗发射产生的噪声、MCP的探测效率以及它的增益涨落噪声等。这一类的噪声是由光子和电子随时空变化的固有性质所决定的,它是一种起伏性的、随机的涨落噪声。特征是在荧光屏上呈现为微弱性的、细小的颗粒状闪烁亮点。从根本上来说,这种噪声是不能被消除的,只有通过图像处理技术加以抑制。另一类为离子噪声,它是由器件内部游离的离子所引起的,比如说器件内部空间或者是吸附在电极上的、具有吸附或解析的动态过程。从荧屏上的表现来看也是随时空变化的闪烁亮点,但比来自电子噪声亮点要明亮一些,体积也要大一些。不过,这种离子噪声不是固有的,可以通过光电阴极的改善、提高MCP以及器件电极的制造工艺以及保证真空度来达到降低的目的。
     (2)在研究均值滤波方法的基础上,对参考阈值去噪方法进行了实验研究。它先求取滤波窗口中心像素点之外的像素点的灰度均值,然后与中心像素点的灰度值作差并取它们的绝对值,最后同阈值进行比较,根据比较结果决定最终的像素点灰度值。
     (3)实验研究了用多次一维中值滤波来代替二维中值滤波的一种快速算法,并采用改进性的极值中值自适应去噪方法。它首先是根据判定标准将像素点分为噪声和信号两大类,根据空间相关性原则将噪声点由其邻域的中值来代替,同时根据一些条件变化,自动地改变滤波窗口的大小,因此更好地保护了图像细节。
     (4)众值滤波技术的主导思想是用数学统计上出现几率最大的灰度值作为处理结果,帧积分方法是利用图像噪声空域随机不相关的特性,将不同的时刻的两幅或两幅图像以上的对应像素点的灰度值相加。本文将此方法与帧积分进行结合实验研究,取得了良好的效果。
     (5)本文采用基于差分图像的多尺寸广义形态-差值滤波器。即在多尺寸形态滤波的基础上,经由差分算法处理后得到一组不同分辨率的图像,再将每一幅图像应用差值滤波去噪后,与最后一级的图像结果相加。这样所得的目标图像,既保留了图像细节又很好的去除了噪声。
     (6)探讨了小波分析在图像去噪上的应用,采用了将“硬阈值化”和“软阈值化”结合起来构造的一类新的阈值函数来处理微光图像的去噪问题。即首先对预处理后的图像进行一层Haar小波分解,根据新的结合软硬阈值化的阈值函数对水平、对角和垂直方向的高频小波系数进行阈值处理,最后根据处理后的小波系数进行重构,就得到了图像的去噪结果。
     本论文的创新点有:
     (1)提出了众值帧积分方法。实验结果表明,众值帧积分能有效地抑制微光图像中的亮点噪声和暗点噪声,对图像边缘的保护特性比帧积分好,具有重要实用价值。峰值信噪比结果为:帧积分处理的PSNR仅为29.32,而众值帧积分处理的PSNR可达35.57。
     (2)首次采用了一种改进性的广义形态-差值微光图像去噪方法,它既去除了噪声又保留了细节的目标图像。峰值信噪比表明,广义形态-差值滤波处理过的图像要高于多帧平均滤波处理过的图像。多帧平均滤波的PSNR为34.57,而广义形态-差值滤波的PSNR为41.52。
     (3)首次使用了将“硬阈值化”和“软阈值化”结合起来构造的一类新的阈值函数应用于微光图像去噪处理。结合软硬阈值化方法而形成的阈值函数有良好的连续性且方便调节,最终图像的信噪比有了进一步提高,具有较高的应用价值。峰值信噪比结果分别为:帧积分的PSNR为37.49,硬阈值法的PSNR为44.76,软阈值法的PSNR为44.81,本文算法的PSNR为45.87。
The low light level images are different from general visible light images. It is formed by the process of photoelectric conversion and electron multiplier. Due to the low illuminance and poor background, there are obvious random flicker noises superimposed on the output images. The lower the illuminance is, the more serious the noises are. At the same time the brightness and contrast also decreased. Thus the obtained information is of very low signal to noise ratio. So the output images are without enough resolution and contrast to be observed and identified. Obviously, the noise is the key factor that influences the performance of the low light level imaging system. Therefore it is of great practical significance to investigate the noise characteristics to improve the image quality, enhance the signal to noise ratio, promote and expand the application fields.
     In this paper, based on the image noise of the low light level ICCD, the characteristic of the noise was studied. The experimental research on denoising using the existing ditital image processing method were also be done in order to improve the quality of the image. During the research, much attention was paid not only to the theory and innovation, but also to the actual operation availability. All of these work has great important theoretical and practical significance on the development of noise theory and image quality of the low light level imaging system.
     The main research is as follows:
     (1)The structure, working mechanism, together with the sources and characteristics of the noise were discussed. And model of the noise was established from a unified perspective between the time domain stochastic process and the space domain of stochastic process. It was indicated that the noise sources come from imaging system and CCD itself. The noise can be divided into two kinds as far as the final forms of the noise concerned. One kins is the electronic noise, such as the incident photon noise, the quantum fluctuation noise in the photoelectric conversion process, the dark noise from the photoelectric cathode, the noise from MCP detection efficient and gain fluctuation. This kind of noise is randomly fluctuate and determined by the inherent statistical nature of the changes of the photons and electrons with time and space.This noise shows on the screen as small and faint granular twinkles and cannot be eliminated. Only though the image processing method, this kind of noise can be inhibited. Another kind of noise is the ion noise and come from the free ions in the device, such as the absorbed ions in the internal of the device and the electrode, these ions has a dynamic process between the adsorption and desorption. This kind of noise shows on the screen as a large, bright random twinkles. This noise is not inherent an can be eliminated by improving the quality of photoelectric cathode, MCP, electrode formation process and the vacuum.
     (2) Based on the mean filtering method, the reference denoising method was used to improve the image quality of the low light level. In this method, firstly, the absolute value of the difference between the pixel gray of the filter window and the mean value of all pixels gray, then compared with the threshold value and the final pixel gray value can be ultimately determined.
     (3) In the experiment, a kind of faster algorithm by using the multiple one-dimensional median filter to replace the2D median filtering was introduced, and a improved extremum median adaptive denosing method was adopted to improve the image quality in this paper. In this method, firstly, the pixels was divided into noise and signal according to the judging standard, then the noise point was replace by the mean value of neighborhood according to the spatial correlation principle. At the same time, the filter window size can be automatically changed according to the change of conditions. So the detail of the image can be well protected.
     (4) The value filtering technology is the dominant ideology in mathematics and statistics on the occurrence probability of the maximum gray value can be used as the result. By using spatial random of the noise,the frame integral method is to sum up the corresponding pixel gray value from two images with different time. In this paper, this method and the method of frame integral were combined in the experimental study and achieved good results.
     (5) Based on the difference image of multi dimensional generalized morphological-difference filter. E.g. based on multi dimensional morphological filter, a group difference image containing different sizes of noise and image information was obtained. By denoising using difference and sum up with the final morphological fileter, the targer image not only trtain the image details but also remove much noise.
     (6) The application of the wavelet analysis on image denoising was studied. By forming a new class of threshold function combining the " hard threshold " with " soft thresholding ", the image noise can be removed. Firstly, decomposing the image using a layer of Haar wavelet, then processing the new combination of soft and hard threshold threshold function on horizontal, diagonal and vertical direction of the high frequency wavelet coefficient threshold. Finally reconstructing the wavelet coefficient, the image denoising results can be shown..
     The innovation in this paper is as follows:
     (1)On the basis of the value idea and frame integral method, the frame integral method is put forward. It is indicated that this method can be inhibit the bright noise and dark noise of the low light level image. At the same time, the protection performance on the image edge is better than the frame integral method and of great application value. The PSNR is29.32and35.57for these two methods, respectively.
     (2) According to the principle of generalized morphological,differential filter and difference image, an improved generalized morphological-difference image denoising method was proposed. It not only eliminates the noise but also keep details of the target image. The generalized morphological-differential filtering for the processed image is higher than average frames of image filter processing. The PSNR of the laster is34.57, while the former is41.52.
     (3) In order to the shortcoming of the soft and hard thresholding methods, a new thresholding function was constructed by combining the sofe and had thresholding methods and used to denoising on the low light level image. This method has good continuity and convenient adjustment, the final image SNR has been further improved, and has higher application value. The PSNR is37.49,44.76and44.81for the frame integral method, hard threshold method and soft threshold methed, respectively. While the PSNR is45.87for the algorithm adopted in this paper.
引文
[1]艾克聪.微光夜视技术的进展与展望.应用光学,2006(7):303-307
    [2]张伟伟,雷隽,郑云飞.微光夜视仪技术及其应用.科技资讯,2006,(29):14-15
    [3]陈钱,顾国华,柏连发等.微光图像实时对比度增强处理.南京理工大学学报,1997,21(4):293-296
    [4]李才平,邹永星,杨松龄.基于微光与红外的夜视技术.国外电子元器件,2006,(2):72-75
    [5]张振中,李其详.微光夜视技术的发展及评价.山西科技,2007,(3):110-124
    [6]金伟其,刘广荣,王霞等.微光像增强器的进展及分代方法.光学技术,2004,30(4):460-466
    [7]周立伟.光电子成像:走向新的世纪.北京理工大学学报,2002,22(1):1-12
    [8]向世明.三代微光和超二代微光夜视技术的研究和开发.应用光学,1994,15(2):1-16
    [9]徐江涛,张兴社.微光像增强器的最新发展动向.应用光学,2005,26(2):21-23
    [10]RICHARDSON D. Technology for tomorrow'S night vision. Armada International,1997, (4):32-37
    [11]周立伟.关于微光像增强器的品质因数.红外与激光工程,2004,33(4):331-337
    [12]陈庆佑.微光夜视技术进展简介.真空电子技术,2001,(1):32-35
    [13]谢剑锋,王英瑞.微光CCD成像器件性能比较研究.红外与激光工程,2006,35(增刊):64-67
    [14]刘广荣,周立伟,王仲春等.背照明CCD微光成像技术.红外技术,2000,22(1):8-12
    [15]Jaroslav Hynecek. Impactron-A New Solid State Image Intensif ier. IEEE TRANSACTIONS ON ELECTRON DEVICES.2001(10):2238-2241
    [16]DENVIR D J, CONROY E. Electron Multiplying CCD Technology:The new ICCD, Proe. SPIE,2003,4796:164-174
    [17]E2V公司.Dark Signal and Clock-Induced Charge in L3VisionTM CCD Sensors.2003
    [18]段帷,赵昭旺.基于EMCCD的成像系统的构建.天文研究与技术(国家天文台台刊),2006,3(4):387-393
    [19]冯志伟,程灏波,宋谦等.电子倍增电荷耦合器件的调制传递函数测量.光学学报,2008,28(9):1171-6171
    [20]唐红民,魏宏刚,廖胜.电子倍增CCD(EMCCD)的噪声特性分析.应用光学,2009,30(3):386-390
    [21]陈晨,许武军,翁东山等.电子倍增CCD噪声来源和信噪比分析.红外技术,2007,29(11):634-637
    [22]张闻文,陈钱.基于电子倍增CCD噪声特性的最佳工作模式.光学精密工程.2008(10):1977-1981
    [23]张闻文,陈钱.电子倍增CCD噪音特性研究.光子学报,2009,38(4):756-760
    [24]张闻文.基于噪声特性的电子倍增CCD最佳工作模式研究[博士学位论文],南京理工大学,2010
    [25]章梳晋.图象处理与分析.北京:清华大学出版社,1999
    [26]沅秋琦.数字图像处理学.北京:电子工业出版社,2001
    [27]刘恒殊,黄廉卿.基于模糊理论的医学CR图像增强.光学精密工程,2002,10(1):94-97
    [28]朱秀昌,刘峰,胡栋.数字图像处理与图像通信.北京:北京邮电大学出版社,2002
    [29]H M Liu, A N Will son. Median Filter with Adaptive Length. IEEE CAS1,1988, 35(6):675-690
    [30]Florencio D A F, Schaf er R W. Decision-based median filter using local signal statiscs. In:Proc SPIE, Symp Visual Comm Image Processing, Chicago,1994,2308:268-275
    [31]高锋.二维数字图象处理中的非线性滤波技术.光子学报,1995,24(1):48-56
    [32]柏连发,张保民.微光图像中值滤波与众值滤波理论与实验研究.南京理工大学学报,1995,19(2):117-120
    [33]Minkowski H. Volumen and oberflache. Mathematics,1903,56(1):446-459
    [34]Serra J. Introduction to mathematical morphology. Computer Vision, Grphics, and image Processingm,1986,35(1):283-305
    [35]S G Mallat, S Zhong. Characterization of signals from multisscale edges. IEEE Trans. Pattern Anal. Machine Intell.,1992,14:710-732
    [36]S G Mallat. A theory for multiresolution signal decomposition:The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell.,1989,11:674-693
    [37]Hasing T R. New Directions in Video Coding and Transmission. SPIE,1988,974:74
    [38]Li Y. Real time video Band width compression using pseudorandom sampling pattern and image digitization. SPIE,1989,68-76
    [39]Plompen R H J M, Groenveld J G P, Booman F, Boekee DE. An Image Knowledge Based Video code For Low Bitrates. SPIE,1987,804
    [40]Murray G G, Statey P A. Motion-adaptive TV data compression. SPIE,1980,241
    [41]Goodal W M. Television by Pulse Code Modulution. Bell Syste Tech,1951, January
    [42]Harper J H.PEC pricture Transmission. IEEE Specturm,1966, June,46
    [43]Cabrey R I.Video Transmission over Telephone Cable Pairs by Pulse Code Modulation. Proc. JRE,1960, Spetember,48
    [44]Good G D and Phillps M L. Voice controllde atereopaphic Video camern system. SPIE,1989,1803
    [45]Heuser M and Liedtke C E. an Efficient Method for the Detection of the Position and Orientation of 3D Industrial Objects. SPIE,1987,860
    [46]von Neumann J. The General Logical Theory of Automation, In Cerebral Mechanism in Behavior-The hixox symposium.New York:Wiley,1951
    [47]von Neumann J.Theory of Self-Reproducing Automation.A W Burks, Ed Urbana, IL Uni III Press,1966
    [48]Moore E E. Machine Models of Self-Reproduction in Eassays on Cellular Automata. A W Burks, Ed Urbann, IL Univ ILL Press,1970
    [49]Presion K Jr, Duff M J B, Levialdis, et al..Basics of cellular LOgleal with some Application in Medical Image Processing. Proc. IEEE,1979,May,67
    [50]Duff M B J, et al.. Computing Structures for Image Processing. Academic Press,1983
    [51]Kilinger A. Image processing computer using there-dimenaional cellular logical architecture.SPIE,1982,341
    [52]Doty K W, MeEntire P L, et al.. Software allocaion for distributed signal processors. SPIE,1982,341:339
    [53]Eggert J A. Distributde data flow aignal processotrs. SPIE,1982,341:310
    [54]Rcevcs A P. paralle computer Architrcture for Image Processing. CompVision Graphics and Image Processing,1984,25:68-88
    [55]Grinberg J,et al.. A Cellular VLSI Architecture. IEEE comp,1984, Jan
    [56]宋述燕,陈波.新型图像传感器ICCD的原理及应用.机械与电子,2007(29):436-437
    [57]黄均良.微通道板技术进展.红外技术,1995,17(5):37-41
    [58]田景全,姜德龙,吴奎.测量MCP特性参数的UV光电法.电子学报,1990,18(5):121-123
    [59]田景全,朱宝仁,郭洪昌,陈彬.微通道板的电子鉴别率及其测量.真空电子技术,1986,3:66-69
    [60]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999
    [61]邹异松.电真空成像器件及理论分析.北京:国防工业出版社,1989
    [62]田景全,张柏福,富丽晨,姜德龙,吴奎.微通道板光量子响应特性的研究.第三届全国特种光纤学术讨论会文集,1991:36-38
    [63]李野,吴奎,姜德龙等.低强度X射线影象诊断系统展望.中国激光,2003,30(7):205-207
    [64]新梅,王国政,但唐仁等.新型Lixiscope及其在无损检测中的应用.长春理工大学学报,2004,27(1):46-48
    [65]张保民.成像系统分析导论.北京:国防工业出版社,1992
    [66]曾庆勇.弱信号检测(第二版).杭州浙江大学出版社,1994:7-17
    [67]罗转翼,程桂芬.随机信号处理与控制基础.北京:化学工业出版社,2002:21-22
    [68]G W Frader, J F Pearson, J E Lees. Dark noise in microchannel plate x-ray detectors. Nucl.Instr. Meth.,1987, A254:447-503
    [69]但唐仁,田景全,李野等.X-射线光电阴极响应特性分析.吉大自然科学报,2002,32(增):439-441
    [70]但唐仁,李野等.低强度X-射线影像系统噪声分析.长春理工大学学报,2002,25(3):26-28
    [71]R J Hertel. Signal and noise properties of proximity focused image tubes. SPIE,1989, 1155:332-342
    [72]陈延标,夏良正.数字图像处理.北京:人民邮电出版社,1990
    [73]Rafael C Gonzalez, Richard E Woods. Digital image processing (second edition). Beijing: Publishing house of electronics industry,1992:221-231
    [74]但唐仁,田景全,李野等.X-射线光电阴极响应特性分析.吉大自然科学报,2002,32(增):439-441
    [75]但唐仁,李野等.低强度X-射线影像系统噪声分析.长春理工大学学报,2002,25(3):26-28
    [76]刘榴娣,刘明奇,党长民.实用数字图像处理.北京:北京理工大学出版社,1998:95-100
    [77]朱秀昌,刘峰,胡栋.数字图像处理与图像通信.北京:北京邮电大学出版社,2002:77-81
    [78][美]黄熙涛.图片处理和数字滤波.北京:科学出版社,1980:123-131
    [79]柏连发,陈钱,张保民.微光图像麻点噪声滤波理论与实验研究.南京理工大学学报,1995,19(4):328-332
    [80]H Wang, Haddad D A. Adaptive median filters:new algonithms and results. IEEE Trans. Image Processing,1995,4(4):449-502
    [81]Wang X. Adaptive multistage median filter. IEEZ Trans, singal processing,1992, 40(4):1015-1017
    [82]柏连发,张保民.微光图像中值滤波与众值滤波理论与实验研究.南京理工大学学报,1995,19(3):117-121
    [83]Lin H M, Willson A N. Median filters with adaptive length. IEEE CAS,1998,35 (6):675-670
    [84]Hardie R E, Barner K E. Conditioned rand selection filters for signal restoration. IEEE IP,1994,3(2):192-206
    [85]但唐仁,田景全等.低强度X-射线影像系统噪声分析与图像去噪处理.发光学报,2002,23(6):39-42
    [86]Tangren Dan, Jingquan tian, et al. The imaging filter and noise analyse based on low intense x-ray image system. ISTM/2003-5th International Symposium on Test and Measurement, 2003,3:1851-1854
    [87]刑藏菊,王守觉等.一种基于极值中值的新型滤波算法.中国图像图形学报,2000,6(6):533-536
    [88]毛幼菊,廖均历.模糊图像的自适应滤波及恢复.半导体光电,1997,18(3):190-195
    [89]章梳晋.图象处理与分析.北京:清华大学出版社,1999:101-115
    [90]王明泉,韩焱等.工业X射线图像的退化与恢复方法.应用基础与工程科学学报,2001,9(4):366-372
    [91]但唐仁,田景全,李野,姜德龙,卢耀华.低强度X射线影像仪图像的退化和复原.仪器仪表学报,2002,5:58-61
    [92]沅秋琦.数字图像处理学.北京:电子工业出版社,2001:305-319
    [93]杨巧宁,桂志国.数字射线图像的滤噪方法.华北工学院测试技术学报,2000,14(1):29-34
    [94]刘杰平,余美林.一种简易的图像去噪方法.华南理工大学学报(自然科学版),2000,28(2):60-62
    [95]高峰.二维数字图像处理中的非线性滤波技术.光子学报,1995,24(2):48-56
    [96]E D Savoye. High sensitivity charge-coupled-device (CCD) imagers for television. SPIE, 1984,501:32-39
    [97]陈立;李野;秦旭磊;田景全.基于众值理论的微光图像帧积分算法.电子学报.39(10)2217-2220
    [98]Rafael C. Gonzalez.Richard E. Woods. Digital Image Processing,2nd ed. Beijing Publishing House of electronics Industry,2002
    [99]张永林,狄红卫.X射线荧光弱图像的去噪与增强.光子学报,1995,24(4):340-345.
    [100][加]赫金著,郑宝玉等译.自适应滤波器原理(第四版).北京:电子工业出版社,2010:303-366
    [101]Minko wski H. Volumen and oberflache, Mathematics,1903,56(1):446-459
    [102]Matheron G. Random Sets and integral Geometry. New York:Wileym,1965
    [103]Serra J. Introduction to Mathematical Morphology. New York:Academic Press,1982
    [104]Serra J. Introduction to mathematical morphology. Computer Vision, Graphics, and image Processing,1986,35(1):283-305
    [105]Maragos P. Tutorial on adbances in morphological image processing and analysis. Optical Engineering,1986,26(6):623-305
    [106]Haralick R, Zhuang X. Image analysis using mathematical morphology. IEEE Trans. On pattern Analysis and Machine Intelligence,1986,9(4):532-550
    [107]Sternberg S R. Grayscale morphology. Computer Vision, Graphics, and Image Processing, 1986,35(1):333-355
    [108]Cui Yi. Image Analysis Applications and Methods of Mathematical Morphology. Beijing: Science Press,2000(in Chinese)
    [109]Koskinen L, Astola J, Neuvo Y. Soft morphological filters. Proc. SPIE Int. Socity of Optical Engineering,1991,1568:262-260
    [110]Shinha D and Dougherty E R. Fuzzy mathematical morphology. J. Vision, Communication and Imagine and Representation,1992,3 (3):286-302
    [111]Gasteratos A, Tsalkles S. Fuzzy soft mathematical morphology. Image Signal Processing,1998,145(1):41-49
    [112]章梳晋.图象处理与分析.北京:清华大学出版社,1999:101-11
    [113]Castleman K R. Digitai Image Processing. Engle Wood Cliffs, NJ:Prentice Hall,1998
    [114]Zhao Xiaodong. Mathematical morphological binary image real-time parallel processing using optical frequency filtering of compress value kerner. Chinese Lasers, 1998,A25(11):1031-1034 (in Chinese)
    [115]戴青云,于美林.数学形态学在图像处理中的应用进展.控理理论与应用,2001,18(4):468-482
    [116]唐华松,姚耀文等.灰度形态滤波的研究与实现.计算机应用,2001,21(10):44-46
    [117]Zhou Xutong, Shi Pengfei. Fuzzy mathematical morphology theory and applications. Shanghai:Shanghai Jiao tong University,1998 (in Chinese)
    [118]Maragos P, Sun F K. Measuring the fractal dimensions of signals:morphological covers and iterative optimization. IEEE Trans. On Signal Processing,1993,41(1):108-121
    [119]J Serra. Introduction to Mathematical Morphology. Computer Vision, Graphics, Image Processing.1986,35(3):282-305
    [120]S R Sternberg. Gray scale morphology. Computer Vision, Graphics, Image Processing, 1986,35(1):333-355
    [121]J Song, E J Delp. The anlysis of morphological Filter with Multiple Structuring Elements. Computer Vision, Graphics, Image Processing,1990,50 (7):308-328
    [122]刘先锋,郑明洁等.广义形态滤波实现星载SAR图像斑点噪声抑制.现代雷达,2001,6(3):45-47
    [123]刘真,李绿江.用数学形态法清除图像噪声的新算法.北京广播学院学报(自然科学版),1996,15(2):28-36
    [124]但唐仁,田景全等.基于差分图像的多尺寸形态滤波在X射线影像系统的应用.长春理工大学学报,2004,27(2):10-13
    [125]王思贤,曾发龙.平滑图像噪声的差值滤波法.电子科学学刊.2000,22(3):411-415
    [126]Lang Hang. Multiresolutional filtering using Wavelet transform. IEEE transactions on Aerospace and Electronic System,1993,244(4):1244-1251
    [127]徐佩霞,孙功宪.小波分析与应用实例(第二版).北京:中国科学技术大学出版社,2001
    [128]陈武凡.小波分析及其在图像处理中的应用.北京:科学出版社,2002
    [129]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998
    [130]Michael E Zervakis, Taek Mu Kwon et al. Operator decomposition using the wavelet transform:fundamental properties and image restoration applica-tions. IEEE international Conference in Image processing,1994,1:56-59
    [131]刘贵忠,邸双亮.小波分析及其应用.西安:西安电子科技术大学出版社,1992
    [132]秦前清,杨宗故.实用小波分析.西安:西安电子科技大学出版社,1994
    [133]S G Mallat. Multifrequence channel decomposition of images and wavelets. IEEE trans. On acoustics, speech and signal processing,1989,37(12):2091-2110
    [134]S G Mallat. A theory for Multiresolution sighal decomposition:the wavelet representation. IEEE trans. Pattern anal. Machine intel.1989,11(7)674-693
    [135]赵治真,沈阳萍.小波变换及其Matlab工具的应用.北京:地震出版社,2001,58-112
    [136]PNA Quan, ZHANGLei.Two Denoising Methods by Wavelet Transform. IEEE Trans.on SP.1999,47(9):3401-3406
    [137]张莲,秦华峰,余成波.基于小波阈值去噪算法的研究.计算机工程与应用.2008,44(9):172-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700