用户名: 密码: 验证码:
非挥发性阻变存储器阻变机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体技术节点的不断向前推进,目前主流的基于电荷存储机制的浮栅Flash存储器正面临着严重的技术挑战,如浮栅耦合、电荷泄漏、相邻单元之间的串扰问题等,因此亟需寻找下一代非挥发性存储器。目前,国际上研究较多的新型非挥发性存储器主要有:相变存储器(PRAM),磁阻存储器(MRAM),铁电存储器(FRAM)和可逆的电致阻变随机存储器(RRAM),其中对RRAM的研究如火如荼,RRAM因其结构简单、功耗低、器件密度高、编程/擦写速度快、且与CMOS工艺兼容等一系列突出优点而成为替代多晶硅浮栅存储器的有力竞争者之一,其作为一种采用非电荷存储机制的存储器在32nm工艺节点以下将有很大的发展空间。
     目前,制约RRAM技术发展和应用的主要瓶颈之一是发生电阻转变效应的物理机制、电荷存储机理尚不明确,同时,RRAM器件在稳定性、均匀性、可重复性、擦写速度以及数据保持性等方面都还存在问题,而目前对器件的研究主要是通过实验研制、显微表征及实时监测基础上进行观察和分析,存在实验平台要求高、表征和测试仪器高端、实验周期长等问题。针对上述问题,本论文结合并行计算与第一性原理开展多层次、多维度的模拟手段,从物理角度解释载流子的输运过程和存储机理,通过掺杂、制造缺陷和控制化合价等手段对阻变材料进行改性,给出材料的微观参数和存储器的宏观电学量的定量关系,为RRAM的优化设计及可靠集成提供理论指导和设计工具。
     针对RRAM的研究现状进行统计,了解其阻变的宏观特性等方面的不足,研究了纳米尺度下RRAM二元金属氧化物阻变材料HfO2的氧空位(Vo)陷阱效应、掺杂效应(Ag)等对器件特性的影响以及阻变存储器的微观阻变机理。研究表明单独Vo缺陷和单独Ag杂质均可以在禁带中引入杂质能级,且都分别可以形成导电细丝;针对Vo和Ag都能形成导电细丝的情况,研究了Ag和Vo共掺杂的复合缺陷体系,结果表明共掺杂体系的导电性能增强、稳定性更好;而在相同浓度下,Ag杂质能级能够通过Ag离子的作用加以Hf离子的辅助下形成导电细丝,而Vo缺陷能级没有导电细丝的形成。且在Vo存在的前提下,Ag离子的迁移将变得更加容易,即Vo可以辅助Ag离子迁移,增强了体系电化学性能。
     电极以及阻变材料的选择将直接影响着复合材料的性能,其界面结合的状态对整个阻变存储器的性能起着至关重要的作用,对比研究了Cu/HfO2不同切面组合的复合材料界面模型。结果表明,复合材料的界面不同,对RRAM器件的性能会产生很大影响。在研究的所有界面体系中,Cu(111)/HfO2(010)失配率最小,界面束缚能最大,界面体系相对最稳定;且只有Cu(111)/HfO2(010)复合材料体系出现了垂直Cu电极方向完整连通的电子通道,界面处有电子的相互转移、成键的存在,表明电子在此方向上具有局域性、连通性,与阻变存储器(RRAM)器件导通方向一致。针对Cu(111)/HfO2(010)复合材料界面体系,探讨了其整体性能,并研究了电极对界面处及阻变材料的影响。研究表明越靠近界面处,Cu和Vo缺陷越容易形成和存在,Cu原子越容易进入HfO2体内,也即Cu将呈阶梯状往HfO2内部扩散以形成缺陷体系,在外加电压下易发生电化学反应,从而导致Cu导电细丝的形成与断裂,更有利于RRAM器件电阻开关特性的产生。
     对二元金属氧化物阻变材料进行掺杂可以改变其存储特性、电学特性,而对于掺杂元素进入材料体内后所具有的价电子数或化合价态的研究较少,鉴于此,研究了掺杂金属元素进入阻变材料后是否具有化合价态以及不同化合价态对阻变存储器材料性能的影响,首先通过电子亲和能以及缺陷形成能确定掺杂元素得失电子情况;其次通过差分电荷密度和修正的Bader分析确定了得失电子的具体位置;最后系统研究了掺杂元素具有不同化合价态对RRAM阻变材料及其性能的影响。
     结果将为RRAM存储器的制备及性能提高提供理论指导和设计工具,必将在更深层次上理解和发展RRAM起到关键作用。
With the development of semiconductor technology node, the Flash memory confronts many problems, such as the coupling between floating gates, charge leakage, cross-coupling between cells and so on. Therefore, it is essential to explore the next generation of non-volatile memory. At present, the explorations mainly concentrate on the followings:phase random access memory (PRAM), magnetic random access memory (MRAM), ferroelectric random access memory (FRAM) and resistive random access memory (RRAM). Moreover, due to the advantages including simple structure, low power consumption, high density, fast program/erase speed and compatibility with CMOS technology, RRAM is regard as the most promising candidate for the next generation non-volatile memory to replace Flash memory.
     Now, the uncertainty about the resistive physical mechanism becomes the bottleneck impediment to the development of RRAM. For the device, there are still some aspects that could be enhanced, such as stability, speed and so on. The study on RRAM is mainly based on the experimental research, microstructure characterization and real-time monitoring. It is obvious that the analytical tools above are time and money consuming. In this paper, we adopt first-principle method to have an intense simulation about RRAM device. First, we study the physical mechanism of carrier transportation and storage in the resistive material. Then we discuss the performance improvement by doping, making defect and controlling valence state. Finally, we quantify the correlation between material micro-parameter and RRAM device macroscopic property, thus guiding the design and optimization of RRAM device.
     With a comprehensive review of the developments in RRAM research, we have got an overview about RRAM. In this paper, we explore the role of oxygen vacancy (Vo) and doped Ag when conductive filaments form in HfO2. The results show that Vo and Ag can form conductive filaments alone by inducing impurity levels in the gap. Then we study the composite system, i.e. Vo and Ag co-exist in HfO2, it is found that both conductivity and stability are enhanced. At the same concentration, Ag can form filament with the of Hf; however, Vo fails. For the composite system, the performance enhancement benefit from the existence of Vo. One step further, Vo assist Ag to migrate in HfO2, thus improving the conductivity and stability.
     Electrode and resistive materials will directly affect the performance of the composite material and the interface is especially crucial to the performance of RRAM device. So we set up different Cu/HfO2interface models and compare their properties. The results show that different interface will have a great impact on the performance of RRAM devices. For all potential interface models, the mismatch ratio and the interface adhesion energy implying that Cu (111)/HfO2(010) is the most stable. Furthermore, Cu(111)/HfO2(010) is the only case that can form connective electronic channel along the vertical direction of the Cu electrode. And the electrons transfer mutually and bond at Cu(111)/HfO2(010) interface indicate that electrons possess the localizability and connectivity along the direction, which corresponds to the switching-on direction of the RRAM device. For Cu(111)/HfO2(010), we research the impact of electrode material on the interface and resistive material. The results show that the closer Cu or Vo defect is to the interface, the easier it is to form. And Cu atoms can migrate into HfO2more easily. This indicates that the electrochemical reaction takes place more easily under the biased voltage, resulting in the formation and rupture of Cu conductive filaments.
     The fact that doping can improve the electrical characteristics of metal oxide resistive materials is widely understood. But the effects of the defect valence state are still unknown. Therefore, we pay a close attention to the defect valence state in HfO2. Firstly, based on the analysis of electron affinity and formation energy, we grasp the gain and loss of electrons in the doped element; secondly, we focus on the electrons location by charge density difference and modified Bader charge. Finally, we draw an instructional conclusion about the influence of different valence state on the performance of resistive material.
     The results will provide theoretical guidance to design and improve the performances of RRAM devices. It definitely will help to understand and develop RRAM toward a higher stage.
引文
[1].S. Tiwari, F. Rana, H. Hanafi, et al. A silicon nanocrystals based memory [J]. Applied Physics Letters,1996,68:1377-1379.
    [2].C. Hu. Lucky-electron model of hot-electron emission[C]. IEDM Tech. Dig.,1979: 22.
    [3].马良.铁电存储器工作原理和器件结构[J].电子与封装,2008,8(8):35-38.
    [4].Cristina efania Olariu, Laurentiu Stoleriu, Alexandru Stancu. Simulation of toggle mode switching in MRAM'S [J]. Journal of Optoelectronics and Advanced Materials,2007,9(4):1140-1142.
    [5].B. K. F. Kao, C. M. Lee, M. J. Chen, et al. GaZTe3Sbs-A candidate for fast and ultralong retention Phase-change memory [J]. Advance Materials,2009, 21:1695-1699.
    [6].H. Y. Lee, P. S. Chen, T. Y. Wu, et al. Tsai. Low Power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM[C]. IEDM Tech. Dig.,2008:297-300.
    [7].G. W. Burr, B. N. Kurdi, J. C. Seott, et al. Overview of candidate device technologies for storate-class memory[J]. IBM Journal of Research and Development,2008,52(4,5):449-464.
    [8].C. Y. Lu, K. Y. Hsieh and R. Liu. Future challenges of flash memory technologies [J]. Microelectron. Eng.,2009,86:283-286.
    [9].D. Kahng and S. M. Sze. A floating gate and its application to memory devices [J]. Bell System Technical Journal,1967,46(4):1288-1295.
    [10].G. Molas, M. Bocquet, E. Vianello, et al., Reliability of charge trapping memories with high-k control dielectrics [J]. Microelectron. Eng.,2009,86: 1796-1803.
    [11].K. Han, I. Kim, and H. shin. Characteristics of P-Channel Si Nano-Crystal Memory [J]. IEEE Trans. Electron Devices,2001,48:874
    [12].M. H. White, D. A. Adams and J. Bu, On the go with SONOS [J]. IEEE Circuits and Devices,2000,16:22-31.
    [13].J. De Blauwe et al. A Novel Aerosol-Nanocrystal Floating-Gate Device for Non-Volatile Memory Applications[C]. IEDM Tech. Dig.,2000:683.
    [14].K. W. Guarini, C. T. Black, Y. Zhang, et al. Low voltage, scalable nanocrystal FLASH memory fabricated by templated self-assembly[C]. IEDM Tech. Dig., 2003:541-544.
    [15].J.A.Yater, T.Kirichenko, E.J.Prinz, et al.90nm Split-Gate Nanocrystal NonVolatile Memory with Reduced Threshold Voltage[C]. IEEE NVSMW., 2006:60-61
    [16].R. Muralidhar, R. F. Steimle, M. Sadd, et al. A 6V embedded 90nm silicon nanocrystal nonvolatile memory[C]. IEDM Tech. Dig.2003:601-604.
    [17].吴晓薇,郭子政.磁阻随机存取存储器(MRAM)的原理与研究进展[J].Information Recording Materials,2009,10(2):52-57.
    [18].M. N. Baibich, J. M. Broto, A. Pert, et al. Giant magnetoresistance of (001) Fe/ (001) Cr magnetic superlattices [J]. Phys. Rev. Lett.,1988,61:2472-2475.
    [19].R. Bez. Chalcogenide PCM:a memory technology for next decade[C], IEDM Tech. Dig.2009:89-92.
    [20].Myoung-Jae Lee, Seungwu Han, Sang Ho Jeon, et al. Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory [J]. Nano Letters,2009,9(4):1476-1481.
    [21].Jian-Wei Zhao, Jian Sun, Hai-Qin Huang, et al. Effects of ZnO buffer layer on GZO RRAM devices [J]. Applied Surface Science,2012,258:4588-4591.
    [22].T. W. Hickmott. Low-frequency negative resistance in thin anodic oxide films [J]. J. Appl. Phys.,1962,33 (9):2669.
    [23]J SIMMONS, R VERDERBER. New conduct ion and reversible memory phenomena in thin insulat ing films [J]. P Roy Soc Lond A Mat,1967,301 (1464):77-102.
    [24].S. Q. Liu, N. J. WU, A. IGNATIEV. Electric-pulse-induced reversible resistance change effect in magneto resistive films [J]. Appl Phys Lett,2000,76 (19):2749-2751.
    [25].左青云,刘明,龙世兵,等.阻变存储器及其集成技术研究进展[J].微电子学,2009,39(4):546-551.
    [26].XiaoJian Zhu, Jie Shang, and RunWei Li. Resistive switching effects in oxide sandwiched structures [J]. Frontiers of Materials Science,2012,6(3):183-206.
    [27].YuChao Yang, Feng Pan, Qi Liu, et al. Fully Room temperature fabricated nonvolatile resistive memory for ultrafast and hign density memory application[J], Nano Lett,2009,9(4):1636-1643.
    [28].Xiao Sun, Bing Sun, Lifeng Liu, et al. Resistive Switching in CeOx Films for Nonvolatile Memory Application [J]. IEEE ELECTRON DEVICE LETTERS, 2009,30(4):334-336.
    [29].M.Wang, W.J.Luo, Y.L.Wang, et.al. A novel CuxSiyO resistive memory in logic technology with excellent data retention and resistance distribution for embedded applications[C], Symposium-VLSIT,2010,89-90.
    [30].Ming Liu, Qi Liu, Shibing Long, et al. Formation and Annihilation of Cu Conductive Filament in the Nonpolar Resistive Switching Cu/ZrO2:Cu/Pt ReRAM[C], ISCAS,2010:1-4.
    [31].K. Tsunoda, K. Kinoshita, H. Noshiro, et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3V [C]. IEDM Tech, Dig.,2007:767-770.
    [32].Haowei Zhang et al, Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach [J], Appl. Phys. Lett., 2011,98,042105.
    [33].B. Gao, H. W. Zhang, S. Yu, et al. Oxide-Based RRAM:Uniformity Improvement Using A New Material-Oriented methodology [J], symp.on VLSI Technol,2009:30-31.
    [34].Qi Liu, Shibing Long, Wei Wang, et al. Improvement of Resistive Switching Properties in ZrO2-Based ReRAM With Implanted Ti Ions[J], IEEE Electron Device Lett,2009,30(12):1335-1337.
    [35].Ming Liu, Qi Liu, Shibing Long, Weihua Guan, Formation and Annihilation of Cu Conductive.Filament in the Nonpolar Resistive Switching Cu/ZrO2:Cu/Pt ReRAM, ISCAS,2010:1-4.
    [36j.Qi Liu, Ming Liu, Shibing Long, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted metal ions [J]. ESSDERC, 2009:221-224.
    [37].Marek Skowronski. Role of defects in resistive switching TiO2 and SrTiO3-based devices[C]. Bulletin of the American Physical Society,2013:19.
    [38].Jung Ho Yoon, Jeong Hwan Han, Ji Sim Jung, et al. Highly Improved Uniformity in the Resistive Switching Parameters of TiO2 Thin Films by Inserting Ru Nanodots[J]. Advanced Materials,2013,25(14)1987-1992.
    [39].Hangbing Lv, Haijun Wan, Tingao Tang, improvement of resistive switching uniformity by introducing a thin GST Interface Layer [J],IEEE Electron Device Lett,2010,31:978-980.
    [40].Wentai Lian, Hangbing Lv, Qi Liu,et al. Improved resistive switching uniformity in Cu/HfO2/Pt device by using current sweeping mode[J]. IEEE, Electron Device Lett.,2011,32 (8):1053-1055.
    [41]Jubong Park, Minseok Jo, Joonmyoung Lee, et al. Improved Switching Uniformity and Speed in Filament Type RRAM Using Lighting rod Effect[J], IEEE Electron Device Lett,2011,32:63-65.
    [42].Qi Liu, Shibing Long, Hangbing Lv, et al. Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode[J]. American Chemical Society,2010, 4(10):6162-6168.
    [43].Z. Fang, H. Y. Yu, X. Li, et al. HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices with Excellent Uniformity [J]. IEEE Electron Device Lett,2011,32:566-568.
    [44].M. Lee, C. B. Lee, S. Kim, et al. Stack friendly all-oxide 3D RRAM using GaInZnO peripheral TFT realized over glass substrates [C],IEDM Tech. Dig., 2008:85-88.
    [45].M. Wang. W. J. Luo, Y. L. Wang, et al. A Novel CuxSiyO Resistive Memory in Logic Technology with Excellent Data Retention and Resistance Distribution for Embedded Applications[C]. Symp. On VLSI Tech. Dig.,2010:89-90.
    [46].Bin Gao, Bing Sun, Haowei Zhang, et al. unified physical model of bipolar oxide based resistive switching memory [J], IEEE Electron Device Lett.,2009, 30:1326-1328
    [47].Huang Da, Wu Jun Jie, and Tang Yu Hua, Analysis and modeling of resistive switching mechanisms oriented to resistive random access memory [J]. Chin. Phys.B,2013,22,3,038401
    [48].Yu-Ting Chen, Ting-Chang Chang, et.al. Thermal Impact on the Activation of Resistive Switch in Silicon Oxide Based RRAM [J]. ECS Solid State Letters, 2012, 1(4):57-59
    [49].Tingkun Gu, Tomofumi Tada, and Satoshi Watanabe. Conductive Path Formation in the Ta2O5 Atomic Switch:First-Principles Analyses [J]. American Chemical Society,2010,4(11):6477-6482.
    [50]. B. Magyari-Kope. S.-G. Park, H.D. Lee and Y. Nishi. Understanding the Switching Mechanism in RRAM Devices and the Dielectric Breakdown of Ultrathin High-k Gate Stacks from First Principles Calculations [J]. ECS Transactions.2011,37(1):167-178.
    [51].S.G. Park, B. Magyari-Kope, and Y. Nishi. Theoretical Study of the Resistance Switching Mechanism in Rutile TiO2-x for ReRAM:the role of oxygen vacancies and hydrogen impurities[C]. Symposium on VLSI Technology Digest of Technical.2011:46-47.
    [52].Deok-Hwang Kwon, Kyung Min Kim, Jae Hyuck Jang, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J].Nature Nanotechnology,2010,5:148-153.
    [53].H. Kasai, S. M. Aspera, et al. First principles study on the switching mechanism in resistance random access memory devices[C]. SISPAD,2011:211-214.
    [1].H. Schroeder, R. Pandian, J. Miao. Resistive switching and changes in microstructure [J]. Phys. Status Solidi.2011,208(2):300-316.
    [1].Xiao-Jian Zhu, Jie Shang, and Run-Wei Li. Resistive switching effects in oxide sandwiched structures [J]. Frontiers of Materials Science.2012,6(3):183-206.
    [2].R. Waser, A. Aono. Nanoionics-based resistive switching memories [J]. Nature Materials,2007,6:833-840.
    [3].Frederick T Chen, HengYuan Lee, YuSheng Chen, et al. Resistance switching for RRAM applications [J]. SCIENCE CHINA Information Sciences.2011, 54(5):1073-1086.
    [4].Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Advanced Materials.2009,21:2632-2663.
    [5].K. Tsunoda, K. Kinoshita, H.Noshiro,et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3V[C]. IEDM Tech. Dig.2007:767-770.
    [6]. M.Y. Chan, T. Zhang, V. Hob, P.S. Lee. Resistive switching effects of HfO2 high-k dielectric [J]. Microelectronic Engineering.2008,85:2420-2424.
    [7].Huan-Lin Chang, Hsuan-Chih Li, C. W. Liu, F. Chen, and M.-J. Tsai. Physical Mechanism of Hf02-based Bipolar Resistive Random Access Memory[C]. VLSI Technology, Systems and Applications (VLSI-TSA).2011:1-2.
    [8].Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo, et al. Effect of Oxygen Concentration on Characteristics of NiOx-Based Resistance Random Access Memory [J]. IEEE TRANSACTIONS ON MAGNETICS.2007,43(2):939-942.
    [9].李颖弢.基于二元金属氧化物阻变存储器的研究[D].兰州:兰州大学.2011:16-17.
    [10].W.H·Guan, S.B·Long, Q.Liu, et al. NonPolar nonvolatile resistive switching in Cu doped ZrO2 [J]. IEEEEleetronDevieeLett.2008(29):434-437.
    [11].左青云,刘明,龙世兵,王琴,胡媛,刘琦,张森,王艳,李颖弢.阻变存储器及其集成技术研究进展[J].微电子学.2009,39(4):546-551.
    [12].卫会云,张笑妍,巩毛毛,刑杰.磁控溅射技术制备Ti02薄膜的研究进展[J].光谱实验室.2012,29(2):766-769.
    [13].M. Aptigal, V. M. Castao. Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor [J].2006,496(2):576-579.
    [1].刘维峰,ZnO:Al透明导电薄膜和ZnO发光器件的制备及特性研究[D]. 大连:大连理工大学,2006.
    [2].U. Russo, D. Kamalanathan, D. Ielmini,et al. Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory, IEEE Trans. Electron Deviees. 2009,56(5):1040-1047.
    [3].R. Symanczyk, R. Bruohhaus, R. Dittrich, and M. Kund. Investigation of the reliability behavior of conductive-bridging memory cells[J]. IEEE Electron Device Lett.2009 (30):876-878.
    [4]. Lifeng Liu, Bin Gao, Bing Chen,et al. On the Bipolar and Unipolar Resistive Switching Characteristics in Ag/SiO2/Pt Memory Cells[C]. Solid-State and Integrated Circuit Technology (ICSICT).2010:1157-1159.
    [5].Shimeng Yu, Wong, H.-S.P. Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) [J]. IEEE Electron Devices.2011,58(5): 1352-1360
    [1].M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk et al. Conductive bridging RAM (CBRAM):An emerging non-volatile memory technology scalable to sub 20 nm[C]. IEDM Technol Dig.2005:
    [2].R. Symanczyk, R. Dittrich, J. Keller, M. Kund, G. Muller, B. Ruf et al. Conductive bridging RAM development from single cells to 2 Mb arrays IEEE Non-Volatile Memory Technol Symp Technol Dig.2007:70-72.
    [1].C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan, P. Blanchard, S. Hollmer. Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process[J]. Solid-State Electronics.2011, 58:54-61.
    |2].M. N. Kozieki, C. GoPalan, M. Balakrishnan, and M. Mitkova. Alow-Power nonvolatile switehing element based on copper-tungsten oxide solid electrolyte[J], IEEETrans. Nanoteehnology.2006(5):535-544.
    (3].C. Schindler,5. C. P. Thermadam, R. Waser, and M. N. Kozieki. BiPolar and unipolar resistive switching in Cu-doped SiO2.IEEE Trans.Eleetron Deviee,2007 (54):2762-2768.
    [4], T. Sakamoto, K. Lister, N. Banno, et al. Electronic transport in Ta2O5 resistive switch [J]. Applied Physics Letters,2007,91(9):092110(3).
    [5].Yu Chao Yang, Feng Pan, Qi Liu, et al. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application [J]. NANO letters.2009,9(4):1636-1643.
    [6].S. Kaeriyama, T. Sakamoto, H. Sunamura, et al, A nonvolatile programmable solid-electrolyte nanometer switches [J]. IEEE Solid-State Circuits.2005, 40(1):168-176.
    [7]. S. Q.Liu, N. J.Wu, A. Ignatiev. Electric-pulse-induced reversible resistance change effect in magnetoresistive films [J]. Applied Physics Letters.2000, 76(19):2749-2751.
    [8].Z. W. Xing, N. J. Wu, and A. Ignatiev. Electric-pulse-induced resistive switching effect enhanced by a ferroelectric buffer on the PrO.7Ca0.3MnO3 thin film [J]. Applied Physics Letters.2007,91(5):052106.
    [9].D. S. Shang, Q. Wang, L. D. Chen, et al. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La 0.7 Ca 0.3 MnO 3/Pt heterostructures [J]. Physical Review B.2006,73:245427.
    [10].A. Sawa, A. Yamamoto, H. Yamada, et al. Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces [J]. Applied Physics Letters.2006, 88:223507.
    [11].D. Hsu, J. G. Lin, W. F. Wu, C. T. Wu, and C. H. Chen. Voltage-current hysteretic characteristics in Me/Nd0.7/Cao.3MnO3 thin films with ME=Au, Pt, Ag, Cu [J]. IEEE Trans. Magnetics.2007,43:3067-3069.
    [12].C. C. Lin, C. Y. Lin, M. H. Lin, C. H. Lin, and T. Y Tseng. Voltage- Polarity-independent and high-speed resistive switching Properties of V-doped SrZrO3 thin films [J]. IEEE Trans. Electron Devices.2007,54:3146-3151.
    [13].Y. Wang, C. Ganpule, B.T. Liu, et al. Epitaxial ferroelectric Pb (Zr, Ti) 03 thin films on Si using SrTiO3 template layers [J]. Applied Physics Letters.2002, 80(1):97-99.
    [14].K. Maki, B. T. Liu, Y. So, et al. Low-temperature fabrication of epitaxial and random-oriented Pb (Zr, Ti)O3 capacitors with SrRuO3 electrodes on Si wafers[J]. Integrated Ferroelectrics.2003,52(1):19-31.
    [15].史自鸿.阻变式存储器性质的研究[D].河南:河南大学.2012:19,25,40.
    [16]. W.-G. Kim, S.-W. Rhee. Effect of the top electrode material on the resistive switching of TiO2 thin film [J]. Microelectronic Engineering.2010,87:98-103.
    [17].F. De Stefano, M. Houssa, J. A. Kittl, et al. Semiconducting like filament formation in TiN/HfO2/TiN resistive switching random access memories[J]. Applied Physics Letters.2012,10:142102.
    [18].Sakamoto T, Lister K, Banno N, et al. Electronic transport in Ta2O5 resistive switch [J]. Applied Physics Letters,2007,91(9):092110(3).
    [19].Liu Q, Long S B, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti Ions [J]. IEEE Electron Device Lett, 2009,30(12):1335-1337.
    [20].Lifeng Liu, Bin Gao, Bing Chen, et al. On the Bipolar and Unipolar Resistive Switching Characteristics in Ag/SiO2/Pt Memory Cells[C]. Solid-State and Integrated Circuit Technology (ICSICT).2010:1157-1159.
    [21].Haowei Zhang, Bin Gao, Shimeng Yu,et al. Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2:A First Principles Study[C]. Simulation of Semiconductor Processes and Devices. SISPAD.2009:1-4.
    [22].Haowei Zhang, Bin Gao, Bing Sun, et al Ionic doping effect in ZrO2 resistive switching memory [J]. Applied Physics Letters.2010,96:123502.
    [23].Yan Wang, Qi Liu, HangBing LU, et al. Improving the electrical performance of resistive switching memory using doping technology [J]. Chinese Science Bulletin. 2012:57(11):1235-1240.
    [24].Qi Liu, Shibing Long, Hangbing Lv, et al. Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode[J]. American Chemical Society,2010, 4(10):6162-6168.
    [25].Y. C. Yang, F. pan, Q. Liu, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application [J]. NANO letters.2009,9:1636-1643.
    [26].Y. Yang, J. Ouyang, L.Ma, R. J H. Tseng, C. W. Chu. Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices [J]. Advanced Functional Materials.2006,16(8):1001-1014.
    [27].V. S. Reddy, S. Karak, and A. Dhar. Multilevel conductance switching in organic memory devices based on AIq3 and Al/Al2O3 core-shell nanoparticles [J]. Applied Physics Letters.2009,94:173304.
    [28].Oyamada Takahito, Tanaka Haruo, Matsushige Kazumi, et al. Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition[J]. Applied Physics Letters.2003,83(6):1252-1254.
    [1].B. Hu, X. Zhu, X. Chen, et al. A Multilevel Memory Based on Proton-Doped Polyazomethine with an Excellent Uniformity in Resistive Switching [J]. The American Chemical Society.2012,134:17408-17411.
    [2].Benlin Hu, Ruge Quhe, Cao Chen, et al. Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine [J]. Journal of Materials Chemistry.2012,22:16422-16430.
    [3].Benlin Hu, Fei Zhuge, Xiaojian Zhu, et al. Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant [J]. Journal of Materials Chemistry.2012,22:520-526.
    [4].A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura. Hysteretic current voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface [J]. Applied Physics Letters.2004,85(18):4073.
    [5].T. Fujii, M. Kawasaki, A. Sawa. Hysteretic current voltage characteristics and resistance switching at an epitaxial oxide schottky junction SrRuO3/SrTi0.99Nb0.01O3 [J]. Applied Physics Letters.2005,86(1):012107(3).
    [6].R.R.Verderber, J.G.Simmons. New conduction and reversible memory phenomena in thin insulating films[J], Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,1967,301(1464):77-102.
    [7].Y. Xia, W. He, L. Chen, et al. Field-induced resistive switching based on space-charge-limited current [J]. Applied Physics Letters.2007,90:022907.
    [8].Q. Liu, W. Guan, S. Long, et al. Resistive switching memorye effect of ZrO2 films with Zr+ implanted [J]. Applied Physics Letters.2008,92:012117.
    [9].李颖弢,刘明,龙世兵,等.基于I-V特性的阻变存储器的阻变机制研究[J].纳米器件与技术.2009,46(3):134-139.
    [10].W. W. Zhang, W. Pan, B. D. Ulrich, J J. Lee. Novel Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM). Electron Devices Meeting. San Francisco,2002:193-196.
    [11].Kim Kyung Min, Choi Byung Joon, Hwang, Cheol Seong. Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films [J]. Applied Physics Letters.2007,90(24):242906(3).
    [1].S. P. Thermadam, S. K. Bhagat, T. L. Alford, et al. Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices [J]. Thin Solid Films.2010,5183293-3298.
    [2].Deok-Hwang Kwon, Kyung Min Kim, Jae Hyuck Jang, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J].Nature Nanotechnology.2010,5:148-153.
    [3].K. K. Min, J. D. Seok, H. C.l Seong. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook [J]. Nanotechnology.2011,22(25):254002.
    [4]. B. M. Kope, S. G. Park, H-D Lee, et al. First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binarytransition metal oxides [J]. J. Mater. Sci.2012,47:7498-7514.
    [5].F. De Stefano, M. Houssa, J. A. Kittl, M. Jurczak, V. V. Afanasev. Semiconducting like filament formation in TiN/HfO2/TiN resistive switching random access memories[J]. Applied Physics Letters.2012,10:142102.
    [6]. J-B. Yun, S. Kim, S. Seo, et al. Random and localized resistive switching observation in Pt/NiO/Pt [J]. Physica Status Solidi.2007,6(1):280-282.
    [7]. U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. SPiga, C. Wiemer, M. Perego and M. Fanciulli. Conductive-filament switching analysis and self-accelerated thermal dissolution model forreset in NiO-based RRAM[C], IEDM Technical Digest.2007:775-778.
    [8]. Ugo Russo, Daniele lelmini, Carlo Cagli, et al. Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES.2009,56(2):186-192.
    [9].Y. S.Chen, H. Y Lee, P. S Chen, et al. Challenges and opportunities for HfOx based resistive random access memory[C]. Electron Devices Meeting (IEDM), 2011:31-34.
    [1].Y. C. Chen, C. F. Chen, C. T. Chen, et al. An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device[C]. IEDM Technical Digest.2003: 37.4.1-37.4.4
    [1].Ilia Valov and Michael N Kozicki. Cation-based resistance change memory [J]. Phys. D:Appl. Phys.2013,46:074005(1-14).
    [2].P.-S. Chen, H.-Y. Lee, Y.-S. Chen, F. Chen, M-J. Tsai. Improved Bipolar Resistive Switching of HfOx/TiN Stack with a Reactive Metal Layer and Post Metal Annealing. Japanese Journal of Applied Physics.2010,49(4):04DD18.
    [3].王艳,刘琦,吕杭炳等.掺杂技术对阻变存储器电学性能的改进[J].科学通报,2012,57(5): 314-319.
    [4].J. Robertson, R. Gillen. Defect densities inside the conductive filament of RRAMs [J]. Microelectronic Engineering.2013,109:208-210.
    [5].王永,管伟华,龙世兵等.阻变式存储器存储机理[J].物理学与高新技术,2008,37(12):870.
    [6].Liu Q, Long S B, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti Ions [J]. IEEE Electron Device Lett,2009, 30:1335.
    [7].Wong M F, Herng T S, Zhang Z, et al. Stable bipolar surface potential behavior of copper-doped zinc oxide films studied by Kelvin probe force microscopy [J]. Appl Phys Lett,2010,97:232103.
    [8].F. Longnos, E. Vianello, C. Cagli, et al. On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories [C]. Solid-State Device Research Conference,2012:278-281
    [9].Yan WANG, Qi LIU, HangBing LU, et al. Improving the electrical performance of resistive switching memory using doping technology [J]. Chinese Science Bulletin. 2012:57(11):1235-1240.
    [10].By Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Advanced Materials.2009,21:2632-2663.
    [11].Shanshan Peng, Fei Zhuge, Xinxin Chen, et al. Mechanism for resistive switching in an oxide-based electrochemical metallization memory [J]. APPLIED PHYSICS LETTERS.2012,100:072101(4)
    [12].G. Bersuker, D. C. Gilmer, D. Veksler, et al. Metal Oxide RRAM Switching Mechanism Based on Conductive Filament Microscopic Properties[].International Electron Devices Meeting (IEDM). San Francisco, CA.2010:456-459.
    [13].坚增运,刘翠霞,吕志刚.计算材料学[M].北京:化学工业出版社.2012:1-3.
    [14].M. Janousch, G.I. Meijer, U.Staub, et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory [J]. Adv. Mater,2007(19):2232-2235.
    [15].Min-Chen Chen, Ting-Chang Chang, Yi-Chieh Chiu, et al. The resistive switching characteristics in TaON films for nonvolatile memory applications [J]. Thin Solid Films,2013,528:224-228.
    [16].S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, et al. Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films [J]. Appl Phy. Lett,2009(95):112904.
    [17].Deok-Hwang Kwon, Kyung Min Kim, Jae Hyuck Jang,et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J].Nature Nanotechnology.2010,5:148-153.
    [18].Haowei Zhang, Lifeng Liu, Bin Gao, et al. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach [J]. Appl.Phys.Lett,2011,98,042105.
    [19].Bin Gao, Haowei Zhang, S Yu, et al. Oxide-Based RRAM:Uniformity Improvement Using A New Material-Oriented methodology [J]. Symposium on VLSI Technology Digest of Technical.2009:30-31.
    [20].Qi Liu, Shibing Long, Wei Wang, et al. Improvement of Resistive Switching Properties in ZrO2-Based ReRAM With Implanted Ti Ions [J]. IEEE ELECTRON DEVICE LETTERS,2009,30(12):1335-1337.
    [21].Haowei Zhang, Bin Gao, Bing Sun, et al. Ionic doping effect in ZrO2 resistive switching memory [J]. Applied Physics Letters,2010,96:123502.
    [22].K. Tsunoda, K. Kinoshita, H. Noshiro, et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3V [C]. IEDM Tech, Dig.2007:767-770.
    [23].Bin Gao, Bing Sun, Haowei Zhang, et al. Unified physical model of bipolar oxide based resistive switching memory [J], IEEE Electron Device Lett,2009, 30:1326-1328.
    [24].G. Kresse and J. Joubert. From ultrasoft pseudopotentials to the pro-jector augmented-wave method [J]. Phys Rev B,1999,59:1758-1760.
    [25].Stewart J. Clark, Matthew D. Segall, Chris J. Pickard, et al. First principles methods using CASTEP [J]. Zeitschrift fur Kristallographie 2005,220(5):567-570.
    [26].张瑞玲,王莹.退火温度对高介电HfO2薄膜的微结构和形貌的影响[J].现代商贸工业.2007,19(8):205-206.
    [27].赵强.基于HfO2/ZrO2阻变材料的RRAM器件研究[D].安徽:安徽大学.2013,23-24.
    [28].Van de Walle C G, Neugebauer J. First principles calculations for defects and impurities:applications to Ⅲ-nitrides.[J].Appl Phys,2004,95:3851.
    [29].Qiang Zhao, Maoxiu Zhou, Wei Zhang, et al. Effect of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study [J]. Journal of Semiconductors,2013,34(3):1-3.
    [30].M. Haemori, T. Nagata, T. Chikyow. Impact of Cu electrode on switching behavior in a Cu/HfO2/Pt structure and resultant Cu ion diffusion [J]. Appl Phys Express,2009,2(6):061401
    [31].Lin Yang. Resistive switching in TiO2 thin films [M]. Forschungszentrum JU lich,2011.57-66.
    [32].Tingkun Gu, Tomofumi Tada, and Satoshi Watanabe. Conductive Path Formation in the Ta2O5 Atomic Switch:First-Principles Analyses [J]. American Chemical Society,2010,4(11):6477-6482.
    [33].Qi Liu, Shibing Long, Hangbing Lv, et al. Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode [J]. American Chemical Society,2010, 4(10):6162-6168.
    [34].Zhou maoxiu, Zhao Qiang, Zhang Wei, et al. The conductive path in HfO2:first principles study [J]. Journal of Semiconductors,2012,33(7):072002.
    [35].XiaoJian Zhu, Jie Shang, and RunWei Li. Resistive switching effects in oxide sandwiched structures [J]. Frontiers of Materials Science.2012,6(3):183-206.
    [36].B. Gao, S. Yu, N. Xu,et al. Oxide-Based RRAM Switching Mechanism:A New Ion-Transport-Recombination Model[C]. Electron Devices Meeting. IEDM.2008: 1-4.
    [37].刘琦.高速、高密度、低功耗的阻变非挥发性存储器研究[D].安徽:安徽大学,2010.86-88.
    [38].K. Jung, J. Choi, Y. Kim, H. Im, et al. Resistance switching characteristics in Li-doped NiO [J]. J. Appl. Phys,2008(103):034504.
    [39].Qi Liu, WeiHua Guan, Shibin Long, et al. Resistive switching of Au-impanted-ZrO2 film for nonvolatile memory application [J]. J Appl Phys, 2008,104:114514.
    [40].S.G. Park, B. Magyari-Kope, and Y. Nishi. Theoretical Study of the Resistance Switching Mechanism in Rutile TiO2-x for ReRAM:the role of oxygen vacancies and hydrogen impurities[C]. Symposium on VLSI Technology Digest of Technical. 2011:46-47.
    [41].王艳.基于二元金属氧化物的阻变存储器研究[D].甘肃:兰州大学,2012,a.
    [42].Masanobu Nakayama and Manfred Martin. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys. Chem. Chem. Phys.2009,11:3241-3249.
    [43].B. Silvi and A. Savin. Classification of chemical bonds based on topological analysis of electron localization functions. Nature.1994,371 683-686.
    [44].张培新,陈建华,魏群等.掺杂材料分子模拟与计算[M].北京:科学出版社.2012:31-34.
    [1].Umberto Celano, Yang Yin Chen, Dirk J.Wouters, et al. Filament observation in metal-oxide resistive switching devices [J]. Applied Physics Letters,2013,102: 121602.
    [2].WenTai Lian, ShiBing Long, HangBing Lu, et al. Approaches for improving the performance of filament-type resistive switching memory [J]. Chinese Science Bulletin,2011,56(4):461-464.
    [3].E. Yalon, S Cohen, A. Gavrilov, D. Ritter. Evaluation of the local temperature of conductive filaments in resistive switching materials [J]. Nanotechnology,2012, 23:465201.
    [4].J. Robertson, R. Gillen. Defect densities inside the conductive filament of RRAMs [J]. Microelectronic Engineering.2013,109:208-210.
    [5].Xiao-Jian Zhu, Jie Shang, Run-Wei Li. Resistive switching effects in oxide sandwiched structures [J]. Frontiers of Materials Science,2012,6(3):183-206
    [6].By Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Adv. Mater.2009,21:2632-2663.
    [7].Ata Roudgar and Axel Groβ. Hydrogen adsorption energies on bimetallic overlayer systems at the solid-vacuum and the solid-liquid interface [J]. Surface Science.2005,597(1-3):42-50.
    [8].H Sawada, S Taniguchi, K Kawakami and T Ozaki. First-principles study of interface structure and energy of Fe/NbC[J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING.2013,21:045012(1-12).
    [9].李健,杨延清,罗贤,金娜,李茂华,黄斌,韩明.分子动力学模拟在复合材料界面研究中的进a展[J].稀有金属材料与工程.2013,42(3):644-648.
    [10].Gianfranco Pacchioni and Notker Rosch. Supported nickel and copper clusters on MgO(100):A firstprinciples calculation on the metal/oxide interface. The Journal of Chemical Physics [J].1996,104(18):7328-7337.
    [11].Jae-Wan Park, Kyooho Jung, Min Kyu Yang, et al. Resistive switching characteristics and set-voltage dependence of low-resistance state in sputter-deposited SrZrO3:Cr memory films [J]. Journal of Applied Physics. 2006,99(12):124102.
    [12].李红霞,陈雪平,陈琪,毛启楠,席俊华,季振国.下电极对ZnO薄膜电阻开关特性的影响[J].物理学报,2013,62(7):077202.
    [13].Wan-Gee Kim, Shi-Woo Rhee. Effect of the top electrode material on the resistive switching of TiO2 thin film [J]. Microelectronic Engineering.2010, 87:98-103.
    [14].周晓龙,冯晶,曹建春,陈敬超,孙加林Ag/CuO复合材料界面稳定性的第一性原理计算[J].中国有色金属学报,2008,18(12):2253-2258.
    [15].M. C. Munoz, S. Gallego, J. I. Beltran, J. Cerda. Adhesion at metal-ZrO2 interfaces [J]. Surface Science Reports,2006,61:304-344.
    [16].D. E. Jiang, E. A. Carter. Prediction of strong adhesion at the MoSi2/Fe interface [J]. Acta Materialia,2005,53:4498-4496.
    [17].T. Sasaki, K. Matsunaga, H. Ohta, et al. Atomic and electronic structures of Cu/α-Al2O3 interfaces prepared by pulsed-laser deposition [J]. Science and Technology of Advanced Materials,2003,4:575-584.
    [18].S.V. Dmitriev, N. Yoshikawa, Y. Tanaka, et al. Plasticity at a Cu/α-Al2O3 interface with nanovoids [J]. Materials Science and Engineering A,2006,418: 36-44.
    [19].S. V. Dmitriev, N. Yoshikawa, M. Kohyama, et al. Atomistic structure of the Cu(111)/α-Al2O3(0001) interface in terms of interatomic potentials fitted to ab initio results[J]. Acta Materialia,2004,52:1959-1970.
    [20].A. Hashibon, C. Elsasser, M Ruhle. Ab initio study of electronic densities of states at copper-alumina interfaces [J]. Acta Materialia,2007,55:1657-1665.
    [21].W. K. Liu, E. G. Karpov, H. S. Park. Nano Mechanics andMaterials:Theory, Multiscale Methods and Applications [M]. Chichester:John Wiley & Sons, Ltd., 2006:123.
    [22].Mikael Christensen, Sergey Dudiy, and Goran Wahnstrom. First-principles simulations of metal-ceramic interface adhesion:CoOWC versus CoOTiC [J]. PHYSICAL REVIEW B.2002,65:045408.
    [23].王艳.基于二元金属氧化物的阻变存储器研究[D].甘肃:兰州大学,2012.
    [24].Y Yang, P Gao, S Gaba, et al. Observation of conducting filament growth in nanoscale resistive memories[J]. Nature Communications,2012,3:732.
    [25].T. Sakamoto, K. Lister, N. Banno, et al. Electronic transport in Ta2O5 resistive switch [J]. Applied Physics Letters,2007,91(9):092110(3).
    [26].S J Choi, G S Park, K H Kim, et al. In situ observation of voltage induced multilevel resistive switching in solid electrolyte memory [J]. Advanced Materials,2011,23(29):3272-3277.
    [27].S Peng, G F Zhu, X Chen, et al. Mechanism for resistive switching in an oxide-based electrochemical metallization memory [J]. Applied Physics Letters, 2012,100(7):072101 (4pp).
    [28].K.Tousimil, R. Valiev and A.R.Yavari. Copeeer-Matrix Cu-HfO2 Nanocomposite com pacts of full density [J]. Mater. Phys. Mech.2000,2:63-69.
    [29].王建敏,周珏,刘继东,熊志华.Cu(111)表面能及功函数的第一性原理计算[J].江西科学,2006,24(1):1-3.
    [30].路战胜,李沙沙,陈晨,杨宗献Cu/CeO2(110)界面特性的第一性原理研究[J].物理学报,2013,62(11):117301.
    [31].G. Kresse, J. Joubert. From ultrasoft pseudopotentials to the pro-jector augmented-wave method [J]. Phys Rev B,1999,59:1758.
    [32].潘勇,管伟明,陈松,张昆华Pt(100)/ZrO2(100)界面性质的第一性原理[J].稀有金属材料与工程,2011,40(1):80-84.
    [33].David Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B.1990,41(11):7892-7894.
    [34].胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008:3-4.
    [35].D. E. Jiang and Emily A. Carter. First-principles study of the interfacial adhesion between SiO2 and MoSi2 [J]. PHYSICAL REVIEW B.2005,72:165410.
    [36].Mikael Christensen, Sergey Dudiy, Goran Wahnstrom. First-principles simulations of metal-ceramic interface adhesion:Co/WC versus Co/TiC [J]. Physical Review B,2002,65:045408.
    [37].Stefano Prada, Massimo Rosa, Livia Giordano, et al. Density functional theory study of TiO2/Ag interfaces and their role in memristor devices [J]. Physical Review B,2011,83:245314.
    [38].Fumiyasu Oba, Yoshihiro Sugawara, Katsuya Hasegawa, et al. Effectiveness of BaZrO3 buffer layer in SmBa2Cu3Oy epitaxial growth on MgO substrate:A first-principles study[J]. Journal of applied physics.2004,95(5):2308-2318.
    [39].Koon-Yiu Tse, John Robertson. Control of Schottky Barrier Heights on High-K Gate Dielectrics for Future Complementary Metal-Oxide Semiconductor Devices [J]. Physical Review Letters,2007,99:086805.
    [40].Andreas Savin, Ove Jepsen, Jurgen Flad, et al. Electron Localization in Solid-State Structures of the Elements:the Diamond Structure [J]. Angew. Chem. Int.Ed.Engl,1992,31(2):187-188.
    [1]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].北京:国防工业出版社.2009: 34.
    [2]施敏,伍国珏.半导体器件物理[M].陕西:西安交通大学出版社.2010:6.
    [3]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社.2003:333
    [4]Lifeng Liu, Bin Gao, Bing Chen, et al. On the Bipolar and Unipolar Resistive Switching Characteristics in Ag/SiO2/Pt Memory Cells[C]. Solid-State and Integrated Circuit Technology (ICSICT).2010:1157-1159.
    [5]Qi Liu, Shibing Long, Hangbing Lv, et al. Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode[J]. American Chemical Society,2010, 4(10):6162-6168.
    [6]Y. Y. Chen, G. Pourtois, X. P. Wang. Switching by Ni filaments in a HfO2 matrix: a new pathway to improved unipolar switching RRAM [J]. IEEE Memory Workshop (IMW).2011:1-4.
    [7]B. Gao, H.W. Zhang, S. Yu, et al. Oxide-Based RRAM:Uniformity Improvement Using A New Material-Oriented Methodology [J]. VLSI Technology,2009:30-31.
    [8]V. A. Gritsenko, S. S. Nekrashevich, V. V. Vasilev, et al. Electronic structure of memory traps in silicon nitride [J]. Microelectronic Engineering.2009,86:1866-1869.
    [9]G. Chris. Van de Walle, Jorg Neugebauer. First principles calculations for defects and impurities:applications to Ⅲ-nitrides [J]. J. Appl. Phys.,2004,95:3851-3879.
    [10]W. Tang, E. Sanville, G. Henkelman. A grid-based Bader analysis algorithm without lattice bias [J]. Journal of Physics:Condensed Matter,2009,21:084204.
    [11]Xiao-Jian Zhu, Jie Shang, and Run-Wei Li. Resistive switching effects in oxide sandwiched structures [J]. Front. Mater. Sci.,2012,6(3):183-206.
    [12]Z.Fang, H.Y.Yu, X.Li, et al. HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices with Excellent Uniformity [J]. IEEE Electron Device Lett,2011,32:566-568.
    [13]S. Park, H.S. Ahn, C.K.Lee, et al. Interaction and ordering of vacancy defects in NiO[J]. Phys. Rev. B.2008,77:134103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700