用户名: 密码: 验证码:
高性能氧化锌基发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种具有60meV激子结合能的直接宽禁带半导体材料,其带边发射为3.37eV,因为其室温下激子可以稳定存在,并且激子相关的发光效率在理论上比普通的电子空穴等离子效率高,多年来一直作为一种新型高效率发光材料而被广泛关注,而氧化锌的纳米结构:纳米线、量子点、纳米管等易于合成,其相关的发光器件也被大量研究,尤其是纳米线基发光器件取得了大量的新进展。但是ZnO纳米线发光器件距离应用还面临着诸多问题,本论文基于这些问题展开了研究,取得的主要结果如下:
     (1) p-n结器件是实现高效氧化锌发光器件的最优选择,但是长久以来,困扰p-n结器件的最大问题就是同时具备高空穴浓度,高迁移率的p型氧化锌一直没有研制成功。基于此问题,通过采用MIS结构,实现了高结晶质量的纳米线阵列的高强度(3.7w)发光二极管,研究结果证明了c轴取向性一致的氧化锌纳米线可以替代薄膜实现高效的发光器件。
     (2)高结晶质量的氧化锌材料是实现高效氧化锌发光器件的基础,但是难于获得。对于氧化锌薄膜材料来说,由于与传统衬底(蓝宝石,硅)的晶格失配较大,很难形成单晶薄膜,而氧化锌单晶衬底的造价过于昂贵,无法在应用中广泛使用。这些都为高结晶质量的氧化锌材料的制备造成了困难。基于此问题,通过优化MOCVD的生长工艺,制备了高结晶质量的氧化锌单晶纳米线阵列,其c轴取向性一致,可以取代薄膜作为高效发光材料,在高质量的氧化锌纳米线的基础上制备了Au/MgO/ZnO的异质结,实现氧化锌纳米线的电泵浦随机激光现象。
     (3)高效的氧化锌的带边发射是实现高效自由激子相关的基础,但是缺陷相关的发光多数占主导,这导致了器件的禁带发光较弱,器件的寿命较短。基于此问题,通过利用能带工程,利用氧锌镁和氧化锌异质结对载流子输运的限制,获得了完全由氧化锌带边发射为主体的发光器件,在有效的抑制了缺陷相关的发光同时,实现了长寿命(20多小时),纯紫外发光二极管。这证明了氧锌镁与氧化锌异质结器件的载流子限制优势,为实现高效的氧化锌带边发射提供了借鉴。
ZnO is a direct wide bandgap semiconductor with60meV exciton bindingenergy, the near band gap emission of ZnO is located at3.37eV, the exciton is stableat room temperature, and the luminescence efficiency related to the excitons is highcompared with the electron-hole plasma, it attracts a lot of attention in recent years.The nanostructure of ZnO for example: nanowire,quantum dot,nanotube which areeasily prepared. The LED based on ZnO nanostructure also attracts much attentionand the area has a lot of progress, but there is still some problems to be considered,and the paper do some research:
     (1) p-n junction is an ideal structure for the LED, but the most importantproblem is that the p-type ZnO with high hole concentration and highmobility can not be got. We use MIS junction to study LED based on thenanowire and get3.7w electroluminescence and random lasing, the resultspave the way of nanowire with high quality to realize the active layer.
     (2) The high quality of ZnO is the basis of the LED, but it is hard. For the filmof ZnO, the lattice mismatch of the substrate make ZnO hard to be a singlefilm, and the single substrate is too expensive to be used widely. Thoseproblems make it hard to get high quality ZnO. To resolve the problem, weoptimize the progress of MOCVD, and get the high quality and well-allignedZnO nanowire array which can replace the film as the active layer,based on the nanowire with hith quality, Au/MgO/ZnO heterojunction has beenfabricated, and the random lasing phenomenon in the ZnO nanowire isrealized.
     (3) The near band gap emission is the basis of the exciton related luminescence,but the defect related luminescence is dominant in many LEDs, and thedevice has low quality luminescence and short life, which lost the advantageof wide bandgap. To resolve this problem, we use ZnMgO/ZnO junction toconfine the electrons and get the pure near band gap emission of ZnO, thelife is more than20hours. Those results demonstrate the advantage ofZnMgO/ZnO which can confine the carriers and realize the high efficiencyluminescence.
引文
[1] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature[J]. Appl.Phys. Lett.1997,70:2230-2232.
    [2] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembledZnO microcrystallite thin films[J]. Appl. Phys. Lett.1998,72(25):3270-3273.
    [3] D. C. Look, B.Claflin, p-type doping and devices based on ZnO[J]. phys. Stat. sol.(b),2004,241:624-630.
    [4] ü. zgür, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys.2005,98:041301.
    [5] D. C. Look, Recent advances in ZnO materials and devices[J]. Materials Science and Engineering B,2004,80:383-387.
    [6] J. Anderson, G. V. D. W. Chris, Fundamentals of zinc oxide as a Semiconductor[J].Rep. Prog. Phys.72(2009)126501
    [7] C. Song, Y. Hang, J. Xu, Research Progess of ZnO Single Crystal[J]. Journal of Synthetic Crystals.2004,33:81-87.
    [8] C. Klingshirm, The Luminescence of ZnO under One-and Two-quantum Excitation[J]. Phys. Status Solidi(b),1975,71(2):547-556.
    [9] I. V. Markevich, V. I. Kushnirenko, A. Baidullaeva, et al. The change in optical characteristics of ZnOcrystals under ruby laser irradiation[J]. Semiconductor Physics[J].Quantum Electronics&Optoelectronics.2004,7(4):350-354.
    [10] C. Klingshirn, ZnO: Material, Physics and Applications.[J].ChemPhysChem.2007,8(6):782–803
    [11] A. Tsukazaki, A. Ohtomo,M Kawasaki, high-mobility electronic transport in ZnO thin film[J] Appl. Phys.Lett,2006,88:152106
    [12] Z. K. Tang, M. Kawasaki, H Koinuma et al. self-assembled ZnO nano-crystals and exciton lasing at roomtemperature[J] journal of crystal growth,2006,287,:169-179
    [13] H. H. Michael, M. Samuel, F. Henning et al. Room-Temperature Ultraviolet Nanowire Nanolasers[J]Science2001,292:1897
    [14] M. Gang, F. D. Xiao, W. W. Dong et al, One step synthesis of vertically aligned ZnO nanowire arrays withtunable length [J].Applied surface science2010,255:6543-6549
    [15] B.Q.Cao, J. Zuniga perez. C. Czekalla et al, Tuning the lateral density of ZnO nanowire arrays and itsapplication as physical templates for radial nanowire heterostructures[J].journal of materials chemistry,2010,20:3848-3854
    [16] X. H. Wang, R. B. Li, D. H. Fan, Control growth of catalyst-free high-quality ZnO nanowire arrays ontransparent quartz galsss sbustrate by chemical vapor deposition [J].Applied Surface science,2011,257:2960-2964
    [17] G. Y. Geng, Y. Jiang, Y. Yao et al. well-Aligned ZnO nanowire Arrays fabricated on Silicon substrate[J].Adv. Funct. Mater.2004,14:589-594
    [18] J. K. hwang, S. H. Cho, E.K. Seo et al. large-area fabrication of patterned ZnO-Nanowire arrays using lightstamping lithography[J].ACS applied materials and interfaces,1:2843-2847
    [19] L. C. Zhang, Y. F. Yuan, D. L. Wang et al. synthesis and photoluminescence properties of ZnO nanowirearrays,[J].Cryst. Res. Technol.46:405-408
    [20] H. Cao, Y. G. Zhao, H. C. Ong et al Ultraviolet lasing in resonators formed by scattering in semiconductorpolycrystalline flms [J].Appl. Phys. Lett.1998,73:3656-3658.
    [21] H. Cao, Y. G. Zhao, H. C. Ong et al. Far-field characteristics of random lasers[J]. Phys. Rev. B1999,59,15107-15111
    [22] H. Cao, Y. Ling, J.Y. Xu. Photon statistics of random lasers with resonant feedback.[J]. Phys. Rev. Lett.,2001,86:4524-4527
    [23] H. Cao, J. Y. Xu, E.W. Seelig, R.P.H. Chang. Microlaser made of disordered media.[J].Applied PhysicsLett.,2000,76:2997-2999
    [24] H. Cao, J. Y. Xu. Spatial confinement of laser light in active random media.[J].Phys. Rev. Lett.,2000,84:5584-5587
    [25] H. Cao, Y. Zhao. Random laser action in semiconductor powder.[J].Phys. Rev. Lett.,1999,82:2278-2281
    [26] H. X. Dong, Y. Liu, J. Lu, Single-crystalline tower-like microrod UV lasers[J]. Journal of materialschemistry c,2013,1:202-206
    [27] G. Y. Zhu, C. X. Xu, L. S. Cai, lasing behavior modulation for ZnO whispering-Gallery microcavities,[J].ACS Applied materials and interfaces,2012,4:6195-6201
    [28] H. Zhu, C. X. Shan, J. Y. Zhang, Low-threshold electrically pumped random lasers [J]. Adv. Mater.,2010,22,1877.
    [29] H. Zhu, C. X. Shan, B. H. Li et al, Low-threshold electrically pumped ultraviolet laser diode,[J]. J. Mater.Chem.2011,21:2848-2851
    [30] H. Zhu, C. X. Shan, B. Yao et al, Ultralow-Threshold Laser Realized in Zinc Oxide,[J]. Adv.Mater.2009,21:1613
    [31] H. Zhu,C. X. Shan,B. H. Li, Ultraviolet Electroluminescence from MgZnO-Based HeterojunctionLight-Emitting Diodes[J].,J. Phys. Chem. C,2009,113:2980-2982
    [32] Z. Guo, H. Zhang, D. X. Zhao et al. the ultralow driven current ultraviolet-blue light-emitting diode basedon n-ZnO nanowires/i-polymer/p-GaN heterojunction,[J]. Appl.Phys.Lett.2010,97:173508
    [33] X. B. Tang, G. M. Li, S. M. Zhou, ultraviolet electroluminescence of light-emitting diode based on singlen-ZnO/p-AlGaN heterojunction nanowires.[J]. Nano Lett.2013,13:5046-5050
    [34] B. O. Jung, Y. H. Kwon,D. J. Seo et al. ultraviolet lighting-emitting diode based on p-NiO/n-ZnO nanowireheterojunction. p-NiO/n-ZnO,[J]. Journal of crystal growth,2013,370:314-318
    [35] S. Chu, G.P. Wang, W. H. Zhou, electrically pumped waveguide lasing from ZnO nanowires,[J].naturenanotechnology,2011,6:506-510
    [36] O. Lupan, U. Viana,T. pauporte et al. controlled mixed violet-blue-red electroluminescence fromEu:nano-phosphors/ZnO-nanowires/p-GaN light-emitting diodes,[J].the journal of physical chemistryC,2013,117:26768-26775
    [37] Q.M. Fu, W. Cao, G. W. Li, Blue/green electroluminescence from a ZnO nanorods/p-GaN heterojunctionlight-emitting diode under different reverse bias,[J].Applied surface science,2014,293:225-228
    [38] Q.Yang, Y. Liu, C. F. Pan, et al. largely enhanced effciency in ZnO nanowire/p-polymer hybridizedinorganic/organic ultraviolet light-emitting diode by piezophotronic effect,[J].Nano Lett.2013,13:607-613
    [39] C.F.Pan, L. Dong, G. Zhu, high-resolution electroluminescence imaging of pressure distribution using apiezoelectric nanowire LED array,[J].nature photonics2013,7:752-758
    [40] A. Jaehui, A. M. Michael, H. Jennifer et al.Electroluminescence from ZnO nanoflowers/GaN thin film p-nheterojunction.[J].Applied physics letters.2010,97:082111
    [41] P. D. Yang, H. Q. Yan, S. Mao et al. controlled growth of ZnO nanowires and their optical properties[J].Adv. Funct.Mater.2002,12:324-331
    [42] Jun Dai, Chun Xiang Xu, Xiao Wei Sun ZnO-Microrod/p-GaN HeterostructuredWhispering-Gallery-Mode Microlaser Diodes [J].Adv. Mater.2011,23,4115–4119
    [43] X. Y. Liu, C. X. Shan, S. P. Wang, et al,, Electrically pumped random lasers fabricated from ZnO nanowirearrays,[J].Nanoscale2012,4:2843-2846
    [44] M. Chen, L. F. Hu, J. X. XuZnO Hollow-Sphere Nanofilm-Based High-Performance and Low-CostPhotodetector[J]Small,2011,7:2449-2453
    [45] K. Ding and C. Z. Ning,., Metallic subwavelength-cavity semiconductor nanolasers [J]Light: Sci. Appl2012,1:e20
    [46] J. J. Dong, X. W. Zhang, Z. G. Yin, Ultraviolet electroluminescence from ordered ZnO nanorodarray/p-GaN light emitting diodes[J] Appl. Phys. Lett.,2012,100,171109
    [47] Q. Qiao, C. X. Shan, J. Zheng, Surface plasmon enhanced electrically pumped random lasers,[J]Nanoscale,2013,5:513-517
    [48] Y. Q. Bie, Z. M. Liao, P. W. Wang, Single ZnO Nanowire/p-type GaN Heterojunctions for PhotovoltaicDevices and UV Light-Emitting Diodes[J]Adv. Mater.,2010,22:4284-4287
    [49] X. W. Sun, J. Z. Huang, J. X. Wang, Crystallographic Etching of Few-Layer Graphene[J] Nano Lett.,2008,8:1912
    [50] O. Lupan, T. Pauporte, B. Viana, Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaNLight-Emitting Diodes,[J]Adv. Mater.,2010,22,3298
    [51] W. Z. Liu, H. Y. Xu, J. G. Ma et al, Effect of oxygen-related surface adsorption on the efficiency andstability of ZnO nanorod array ultraviolet light-emitting diodes[J]Appl. Phys. Lett.,2012,100,203101
    [52] W. I. Park and G. C. Yi,Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,[J]Adv.Mater.,2004,16:87-90
    [53] H. Y. Lee, C. T. Lee and J. T. Yan, Emission mechanisms of passivated singlen-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes,[J]Appl. Phys. Lett.,2010,97:111111
    [54] K. Nakahara, S. Akasaka, H. Yuji et al, Nitrogen doped MgxZn1xO/ZnO single heterostructure ultravioletlight-emitting diodes on ZnO substrates,[J]Appl. Phys. Lett.,2010,97:013501
    [55] H. Kato, T. Yamamuro, A. Ogawa et al, Impact of Mixture Gas Plasma of N2and O2as the N Source onZnO-Based Ultraviolet Light-Emitting Diodes Fabricated by Molecular Beam Epitaxy,[J]Appl. Phys. Express,2011,4:091105
    [56] C. X. Shan, Z. Liu S. K. Hark, Temperature dependent photoluminescence study on phosphorus doped ZnOnanowires[J]Appl. Phys. Lett.,2008,92:073103
    [57] H. B. Zeng, G. T. Duan, Y. Li et al, Blue Luminescence of ZnO Nanoparticles Based on Non-EquilibriumProcesses: Defect Origins and Emission Controls [J]Adv. Funct. Mater.,2010,20:561-572
    [58] J. A. Aranovich, D. G. Golmayo, A. L. Fahrenbruch and R. H. Bube,Photovoltaic properties of ZnO/CdTeheterojunctions prepared by spray pyrolysis,[J]J. Appl. Phys.,1980,51:4260
    [59] Yamashita,., Oxygen Band in Magnesium Oxide [J]Phys. Rev1958,111:733
    [60] M. B. Herbert,The work function of the elements and its periodicity[J]J. Appl. Phys.,1977,48:4729
    [61] S. M. Sze,Physics of Semiconductor Devices, John Wiley&Sons, New York,1981, ch.4
    [62] Y. Tian, X. M. Ma, L. Jin et al, Electrically pumped ultraviolet random lasing from ZnOfilms:Compensation between optical gain and light scattering[J]applied physics letters,2010,97:251115
    [63] H. K. Liang, S. F. Yu, H. Y. Yang, Directional and controllable edge-emitting ZnO ultraviolet random laserdiodes[J] Applied Physics Letters,2010,96:101116
    [64] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes and E. Sauvain,Laser action in strongly scatteringmedia,[J]Nature,1994,368:436-438
    [65] D. S. Wiersma, The physics and applications of random lasers,[J]Nat. Phys.,2008,4,359-367
    [66] S. Gottardo, S. Cavalieri, O. Yaroshchuk et al,Quasi-Two-Dimensional Diffusive Random Laser Action,[J]Phys. Rev. Lett.,2004,93:263901
    [67] S. Kalusniak, H. J. Wuünsche and F. Henneberger,Random Semiconductor Lasers: Scattered versusFabry-Perot Feedback,[J]Phys. Rev. Lett.,2011,106:013901
    [68] D. Vanmaekelberg, L. K. van Vugt, ZnO nanowire lasers,[J]Nanoscale,2011,3:2783-2800
    [69] C. Y. Liu, H. Y. Xu, J. G. Ma, et al, Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shellnanowires,[J]Appl. Phys. Lett.,2011,99:063115
    [70] X. Y. Ma, J. W. Pan, P. L. Chen et al. Room temperature electrically pumped ultraviolet random lasing fromZnO nanorod arrays on Si,[J] Opt. Express,2009,17:14426-14433
    [71] S. Kondo, T. Saito, Dramatic improvement of excitonic photoluminescence in metal halide films[J]J.Lumin.,2010,130:191-205
    [72] Z. Y. Fan, J.G. Lu, Zinc Oxide Nanostructures: Synthesis and Properties [J]J. Nanosci. Nanotechnol.,2005,5:1561-1573
    [73] S. H. Cho, J. W. Jang, J. S. Lee et al, Room temperature synthesis and optical properties of small diameter(5nm) ZnO nanorod arrays [J]Nanoscale,2010,2:2199-2202
    [74] B. Weintraub, Z. Z. Zhou, Y. H. Li et al, Solution synthesis of one-dimensional ZnO nanomaterials and theirapplications,[J]Nanoscale,2010,2:1573-1587
    [75] S. F. Yu, S. P. Lau, W. I. Park et al,Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,[J]Appl. Phys. Lett2004,84:3241
    [76] S. S. Kurbanov, H. D. Cho,T. W. Kang, Effect of excitation and detection angles on photoluminescencespectrum from ZnO nanorod array[J] Opt. Commun.,2011,284:240-244
    [77] J. N. Dai, H. C. Liu, W. Q. Fang et al, AtMISpheric pressure MOCVD growth of high-quality ZnO films onGaN/Al2O3templates[J],J. Cryst. Growth,2005,283:93-99
    [78] K. W. Wu, H. P. He, Y. F. Lu et al, Dominant free exciton emission in ZnO nanorods,[J]Nanoscale,2012,4:1701-1706
    [79] S. Mujumdar, M. Ricci, R. Torre et al, Amplified Extended Modes in Random Lasers,[J]Phys. Rev. Lett.,2004,93:053903
    [80] S. Mujumdar, V. Tuerck, R. Torre and D. S. Wiersma,Chaotic behavior of a random laser with staticdisorder,[J]Phys. Rev. A: At., Mol., Opt. Phys.,2007,76:033807
    [81] M. Sakai, Y. Inose, K. Ema et al, Random laser action in GaN nanocolumns [J]Appl. Phys. Lett.,2010,97:151109
    [82] A. Kumar, S. F. Yu and X. F. Li, Random laser action in dielectric-metal-dielectric surface plasmonwaveguides,[J]Appl. Phys. Lett.,2009,95:231114
    [83] M. H. Crawford,. Quantum Electron. LEDs for Solid-State Lighting: Performance Challenges and RecentAdvances[J] IEEE J. Sel. Top2009,15:1028-1040
    [84] N. Tansu, H. P. Zhao, G. Y. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee,[J]IEEE Photon. III-NitridePhotonics J.2010,2:241.
    [85] H. P. Zhao, G. Y. Liu, J. Zhang et al, Approaches for high internal quantum efficiency green InGaNlight-emitting diodes with large overlap quantum wells,[J] Opt. Express,19, A991(2011).
    [86] R. A. Arif, Y. K. Ee, N. Tansu, polarization engineering via staggered InGaN quantum wells for radiativeefficiency enhancement of light emitting diodes[J]Appl. Phys. Lett.2007,91:091110
    [87] E. Matioli, S. Brinkley, K. M. Kelchner, et al, High-brightness polarized light-emitting diodes[J],Light: Sci.Appl.2012,1:22
    [88] Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, Semiconductor nanowire lasers [J]Adv. Opt.Photon.2013,5:216
    [89] J. Huang, S. Chu, J. Y. Kong et al, ZnO p-n homojunction random laser diode based on nitrogen-doped ptype nanowires,[J]Adv. Opt. Mater.,20131:179
    [90] G. Lozano, D. J. Louwers, S. R. K. Rodr guez et al, Plasmonics for solid-state lighting: enhanced excitationand directional emission of highly efficient light sources,[J]Light: Sci. Appl.2013,2:66
    [91] X. Y. Liu, C. X. Shan, S. P. Wang et al, Intensed emission from ZnO nanocolumn schottky diodes[J]Nanoscale,2013,5:7746
    [92] X. Z. Zhang, X. J. Zhang, J. B. Xu et al, Whispering gallery modes in single triangular ZnO nanorods,[J]Opt. Lett.2009,34:2533-2535
    [93] F. Sun, C. X. Shan, B. H. Li et al, A reproducible route to p-ZnO films and their application inlight-emitting devices [J],Opt. Lett.2011,36:499-501
    [94] A. Tsukazaki, T. Onuma, M. Ohtani et al. Repeated temperature modulation epitaxy for p-type doping andlight-emitting diode based on ZnO,[J]Nat. Mater.2005,4:42
    [95] S. J. Jiao, Z. Z. Zhang, Y. M. Lu et al, ZnOp-njunction light-emitting diodes fabricated on sapphiresubstrates [J]Appl. Phys. Lett.2006,88:031911
    [96] Z. P. Wei, Y. M. Lu, D. Z. Shen et al, Room temperature p-n ZnO blue-violet light-emitting diodes,[J]Appl.Phys. Lett.2007,90:042113
    [97] J. S. Liu, C. X. Shan, H. Shen, et al, ZnO light-emitting devices with a lifetime of6.8hours [J]AppliedPhysics Letters,2012,101:011106
    [98] Y. Liu, H. X. Dong, S. L. Sun et al, Optical modulation of ZnO microwire optical resonators with aparallelogram cross-section [J]Nanoscale20135:4123-4128
    [99] H. J. Kim, K. H. Kang, D. E. Kim, Sliding and rolling frictional behavior of a single ZnO nanowire duringmanipulation with an AFM [J] Nanoscale2013,5,6081-6087
    [100] X. Huang, L. D. Shao, G. W. She, M. Wang, S. Chen and X. M. Meng, Catalyst-free synthesis of singlecrystalline ZnO nanonails with ultrathin cap [J] CrystEngComm2012,14:8330
    [101] Z. F. Shi, Y. T. Zhang, J. X. Zhang et al High-performance ultraviolet-blue light-emitting diodes based onan n-ZnO nanowall networks/p-GaN heterojunction,[J]Appl. Phys. Lett.103,021109(2013)
    [102] H. Long, X. M. Mo, H. N. Wang, H. H. Huang, Z. Chen, Y. P. Liu, and G. J. Fang, Electroluminescencefrom ZnO-nanorod-based double heterostructured light-emitting diodes.[J]Appl. Phys. Lett.2013,103:123504,
    [103] J. S. Liu, C. X. Shan, B. H. Li et al ZnMgO p-n heterostructure light-emitting devices [J] Opt. Lett.2013,38:2113-2115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700