用户名: 密码: 验证码:
CD133~+CD24~+肝癌干细胞的分离、鉴定及生物学特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:在世界范围内,原发性肝癌是最常见的恶性程度最高的肿瘤之一,为全球第5大癌症,死亡率位列第3位。据报道,每年有将近100万人被诊断为肝癌,60万人死于该病,且5年生存率低于5%,并且发病率还在逐年升高,因此肝癌严重威胁着人类的健康和生命。
     手术治疗、肝移植、肝动脉化疗栓塞术(TACE)、射频消融治疗(RFA)为目前肝癌的主要治疗手段。手术治疗仍是肝癌治疗的首选方法,但是手术后复发仍然是至今无法解决的难题,并且复发率很高。对于合并有肝硬化的肝癌患者,肝移植是最有前景的治疗手段,但由于供体肝短缺,肝移植的开展受到较大限制。由于各治疗手段的局限性,导致肝癌患者的生存率低下,迫切需要结合肝癌的发病机制研究进一步开发新疗法。肿瘤干细胞假说认为在肿瘤组织中存在一种数量较少的肿瘤干细胞,被认为是肿瘤增殖、侵袭、转移及复发的根源。目前在白血病、乳腺癌、肺癌、脑肿瘤、结直肠癌、前列腺癌等多种肿瘤中均已成功分离出肿瘤干细胞。肝癌中存在肿瘤干细胞与其难治、复发及耐药等特点密切相关,而这些特点提示肝癌很可能是一种肿瘤干细胞疾病。随着研究地不断深入,越来越多的肝癌干细胞表面标志物被确立,并应用于干细胞的鉴别与分选,主要包括CD133、CD24、CD44、CD90、上皮细胞黏附分子(EpCAM)等。目前有报道,利用细胞表面分子分离出的肝癌干细胞在复发、耐药等方面发挥着重要作用。
     方法:本研究通过CD133和CD24两个肿瘤干细胞标志物为筛选标记,从肝癌细胞系Huh-7细胞中分离出CD133+CD24+阳性细胞,在体外从自我更新能力、分化能力、克隆能力及耐药等方面进行了细胞学行为的鉴定,在体内从致瘤性、CD133和CD24蛋白的表达等方面进行了鉴定。
     1.应用流式细胞术检测CD133、CD24等表面分子在肝癌细胞系的表达情况,并分选和鉴定CD133+CD24+细胞;
     2.检测CD133+和CD24+细胞克隆形成能力及成球能力;
     3.利用RT-PCR检测CD133和CD24表达水平;
     4. Western blot法检检测分选出的细胞基因表达;
     5.利用小鼠模型检测分选细胞的成瘤能力;
     6.免疫组织及HE染色检测小鼠肿瘤组织中CD133及CD24的表达;
     7.MTT检测细胞对洛铂的敏感性。
     结果:本研究以CD133和CD24为肿瘤干细胞标志物,利用流式细胞分选法从Huh-7细胞中分选出CD133+CD24+细胞和CD133-CD24-细胞,并检测了其成球能力、克隆形成能力、CD133和CD24表达、在体内的成瘤能力及对洛铂的敏感性等,得到以下主要结果:
     1.肿瘤干细胞标记物CD133和CD24在肝癌细胞系Huh-7呈共表达;
     2.CD133+CD24+细胞具有很强的克隆形成能力及成球能力;
     3.与对照组相比,CD133+CD24+细胞明显高表达CD133和CD24基因及蛋白;
     4.分选出的CD133+CD24+细胞具有更强的致瘤性;
     5.小鼠移植瘤模型分离出肝癌组织表达CD133和CD24蛋白;
     6.CD133+CD24+细胞大多处于细胞周期静止期(G0/G1期);
     7. CD133+CD24+细胞对洛铂相对耐药,其IC50为9.9μg/mL;
     结论:1.肝癌细胞系Huh-7同时表达肿瘤干细胞标记CD133和CD24
     2. CD133+CD24+Huh-7细胞具有肿瘤干细胞的特性,包括具有自我更新及分化能力,更强克隆及成球能力,在免疫缺陷小鼠体内具有高致瘤性。
     3.与CD133-CD24-Huh-7细胞相比,CD133+CD24+Huh-7细胞对洛铂更耐药。
     总之,联合使用细胞表面分子CD133和CD24可以更好的分选、分离和鉴定肝癌干细胞,分选出的细胞具有高成球能力、高克隆形成能力、高致瘤性和高耐药性。CD133和CD24可以作为分离肝癌干细胞的表面标记物。
     创新点:CD133和CD24可以作为分选肝癌干细胞的表面标记物,CD133和CD24联合应用能更好地从肝癌细胞系中分离出肝癌干细胞。
Background and objective:Hepatocellular carcinoma (HCC) is the fifth most prevalentmalignant cancer, and the third most common cause of cancer-related deaths worldwide. Itis reported that approximately one million cases of HCC are diagnosed annually, witharound600,000of these cases resulting in patient death. The incidence of HCC is expectedto increase globally, and with a5-year survival rate of below5%.
     Various treatments can be employed for HCC management according to the clinicalliver cancer staging system. Hepatic resection is a common therapy for HCC, particularlyfor noncirrhotic patients. It is also a first-line treatment for patients with early HCC. But thetumor recurrence is still a problem after resection, and the recurrence rate remains high afteroperation, indicating the incomplete eradication of tumor cells in patients. Orthotopic livertransplantation (OLT) has become a promising therapeutic option for cirrhotic patients withunresectable HCC, but these treatments are limited by the advanced stage when the diseaseis usually diagnosed and the shortage of liver grafts available. Local ablative strategy is abetter treatment of choice for the management of early-stage HCC with small tumor. Inspite of technological advances in treatment interventions, the survival outcome of HCCpatients at present is still unsatisfactory. Chemotherapy either by TACE or systemictreatment is also available, due to the highly chemotherapy-resistant nature of the disease,however, response rates are low.
     The exact mechanism of tumor recurrence remains vague due to a limitedunderstanding of hepatocarcinogenesis. It is suspected that tumor relapse is likely to becaused by cancer stem cells (CSCs) that are resistant to current treatments. Based on theCSC theory, it is believed that CSCs only represent a minority number of the entire tumor mass (generally less than5%of the total tumor). However, the percentage of CSCs isolatedfrom hepatocellular cancer cell lines or tissue is more than50%. So it is not likely that allthe separated from HCC cell lines are CSCs by CSC markers-CD133. And CSCs in othercancer types have also been characterized by more than one marker. For this reason, tobetter characterize the CSC population in HCC, the identification of other markers,expressed along with CD133, is much required and was also our purpose for this study.Methods:
     1.Fluorescence activated cell sorting was used to assess cancer stem cell markerexpression in hepatocellular cancer cell lines, and identify and isolate CD133+CD24+cells;
     2.Detection of clonogenic ability and tumorsphere formation ability of sorted cells;
     3.CD133and CD24expression was analyzed by RT-PCR;
     4.CD133and CD24expression was analyzed by Western blot;
     5. Tumor formation ability of the sorted cell was determined in Balb/C mice in vivo;
     6.CD133and CD24expression was detection in HCC tissue specimens by HE andIHC stainning;
     7.Cell viability was analysed by MTT array.Results: We identified and isolated a small population hepatic cancer cells co-expressionCD133and CD24surface markers from human liver cell lines Huh-7. The sorted cellspossessed property as follows:
     1. CD133and CD24were co-expressed in hepatocellular cancer cell line
     2. Increased spheroid formation ability and higher clonogenic ability inCD133+CD24+cells
     3. Compared to CD133-CD24-cells, and CD24were preferentially co-expressed inCD133+CD24+cells, RT-PCR and western blot analyses revealed that the CD133and CD24gene expression of sorted cells was in line with their phenotype in RNA lever and proteinlevel.
     4. The sorted CD133+CD24+cells from Huh-7cells had a stronger tumorigenicity.
     5. Significant expression of CD133and CD24in HCC tissue specimens fromxenograft mice model and the tumor was very similar with the primary cancer.
     6. The percentage of G0and G1phrase was more higher in CD133+CD24+cells.
     7. CD133+CD24+cells from Huh-7cells were highly resistant to chemotherapeuticagent lobaplatin, and the IC50was9.9μg/mL.
     In a word, CD133+CD24+cells possessed a greater colony-forming efficiency, higherproliferative output, and greater ability to form tumor in vivo, which was identical to theoriginal tumor, and had features of hepatic cancer stem cells. CD133and CD24double-positive cells were more resistant to chemotherapeutic agents.
     Conclusions:
     1. Hepatocellular cancer cell line Huh-7expressed cancer stem cell marker CD133and CD24.
     2. CD133+CD24+Huh-7cells possessed cancer stem cell propersity, includingself-renewal, differentiation, increased spheroid formation ability, higher clonogenic ability,and a stronger tumorigenicity in SCID mice.
     3. Compared to CD133-CD24-Huh-7cells,CD133+CD24+Huh-7cells werehighly resistant to chemotherapeutic agent lobaplatin。
     Taken together, Our results suggest that hepatic cancer stem cell could be preciselydefined by co-expression of CD133and CD24cell surface markers. The identification oftumorigenic liver CSCs could provide new insight into the HCC tumorigenic process andpossibly bear great therapeutic implications.
     Innovations: We demonstrated that CD133and CD24could served as hepatic cancer
     stem markers, we can better characterize the CSC population in HCC by combination
     CD133with CD24.
引文
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin,2011,61(2):69-90.
    [2] El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecularcarcinogenesis[J]. Gastroenterology,2007,132(7):2557-2576.
    [3] Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence andtrends[J]. Gastroenterology,2004,127(5Suppl1): S5-S16.
    [4] European Association For The Study Of The L, European Organisation ForRTreatment Of C. EASL-EORTC clinical practice guidelines: management ofhepatocellular carcinoma[J]. J Hepatol,2012,56(4):908-943.
    [5] Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma[J].Clin Liver Dis,2005,9(2):191-211, v.
    [6] Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan2000[J]. Int J Cancer,2001,94(2):153-156.
    [7] Chen W, Zheng R, Zhang S, et al. Annual report on status of cancer in China,2010[J].Chin J Cancer Res,2014,26(1):48-58.
    [8] El-Serag HB. Epidemiology of hepatocellular carcinoma in USA[J]. Hepatol Res,2007,37Suppl2(S88-94).
    [9] El-Serag HB. Hepatocellular carcinoma[J]. N Engl J Med,2011,365(12):1118-1127.
    [10] Ma S, Chan KW, Guan XY. In search of liver cancer stem cells[J]. Stem Cell Rev,2008,4(3):179-192.
    [11] van den Bos IC, Hussain SM, Terkivatan T, et al. Stepwise carcinogenesis ofhepatocellular carcinoma in the cirrhotic liver: demonstration on serial MR imaging[J].J Magn Reson Imaging,2006,24(5):1071-1080.
    [12] Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma[J].Hepatology,2008,48(4):1312-1327.
    [13] Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the humangenome[J]. Oncogene,2000,19(49):5548-5557.
    [14] Huynh H, Nguyen TT, Chow KH, et al. Over-expression of the mitogen-activatedprotein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role intumor progression and apoptosis[J]. BMC Gastroenterol,2003,3(19.
    [15] Ito Y, Sasaki Y, Horimoto M, et al. Activation of mitogen-activated proteinkinases/extracellular signal-regulated kinases in human hepatocellular carcinoma[J].Hepatology,1998,27(4):951-958.
    [16] Shin JW, Chung YH. Molecular targeted therapy for hepatocellular carcinoma: currentand future[J]. World J Gastroenterol,2013,19(37):6144-6155.
    [17] Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellularcarcinoma[J]. Future Oncol,2011,7(10):1149-1167.
    [18] Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellularcarcinoma[J]. Oncogene,2006,25(27):3866-3884.
    [19] Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and newtherapeutic targets[J]. Semin Liver Dis,2005,25(2):212-225.
    [20] Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2expression through cAMP-response element-binding protein[J]. J Biol Chem,2000,275(15):10761-10766.
    [21] Smoot RL, Nagorney DM, Chandan VS, et al. Resection of hepatocellular carcinomain patients without cirrhosis[J]. Br J Surg,2011,98(5):697-703.
    [22] Lubrano J, Huet E, Tsilividis B, et al. Long-term outcome of liver resection forhepatocellular carcinoma in noncirrhotic nonfibrotic liver with no viral hepatitis oralcohol abuse[J]. World J Surg,2008,32(1):104-109.
    [23] Cauchy F, Fuks D, Belghiti J. HCC: current surgical treatment concepts[J].Langenbecks Arch Surg,2012,397(5):681-695.
    [24] Roayaie S, Obeidat K, Sposito C, et al. Resection of hepatocellular cancer     [25] Sotiropoulos GC, Lang H, Frilling A, et al. Resectability of hepatocellular carcinoma:evaluation of333consecutive cases at a single hepatobiliary specialty center andsystematic review of the literature[J]. Hepatogastroenterology,2006,53(69):322-329.
    [26] Polak WG, Soyama A, Slooff MJ. Liver transplantation in patients withhepatocellular carcinoma[J]. Ann Transplant,2008,13(4):5-15.
    [27] Yao FY. Liver transplantation for hepatocellular carcinoma: beyond the Milancriteria[J]. Am J Transplant,2008,8(10):1982-1989.
    [28] Lee SG, Hwang S, Moon DB, et al. Expanded indication criteria of living donor livertransplantation for hepatocellular carcinoma at one large-volume center[J]. LiverTranspl,2008,14(7):935-945.
    [29] Takayama T, Makuuchi M. Ablation of hepatocellular carcinoma[J]. Jpn J Clin Oncol,2001,31(7):297-298.
    [30] Jansen MC, van Hillegersberg R, Chamuleau RA, et al. Outcome of regional and localablative therapies for hepatocellular carcinoma: a collective review[J]. Eur J SurgOncol,2005,31(4):331-347.
    [31] Boyvat F. Local ablation for hepatocellular carcinoma[J]. Exp Clin Transplant,2014,12Suppl1(55-59.
    [32] Lencioni R. Loco-regional treatment of hepatocellular carcinoma[J]. Hepatology,2010,52(2):762-773.
    [33] Lencioni R, Cioni D, Della Pina C, Crocetti L. Hepatocellular carcinoma: new optionsfor image-guided ablation[J]. J Hepatobiliary Pancreat Sci,2010,17(4):399-403.
    [34] Kuvshinoff BW, Ota DM. Radiofrequency ablation of liver tumors: influence oftechnique and tumor size[J]. Surgery,2002,132(4):605-611; discussion611-602.
    [35] Huang J, Yan L, Cheng Z, et al. A randomized trial comparing radiofrequency ablationand surgical resection for HCC conforming to the Milan criteria[J]. Ann Surg,2010,252(6):903-912.
    [36] Feng K, Yan J, Li X, et al. A randomized controlled trial of radiofrequency ablationand surgical resection in the treatment of small hepatocellular carcinoma[J]. J Hepatol,2012,57(4):794-802.
    [37] Chen MS, Li JQ, Zheng Y, et al. A prospective randomized trial comparingpercutaneous local ablative therapy and partial hepatectomy for small hepatocellularcarcinoma[J]. Ann Surg,2006,243(3):321-328.
    [38] Cucchetti A, Piscaglia F, Cescon M, et al. Systematic review of surgical resection vsradiofrequency ablation for hepatocellular carcinoma[J]. World J Gastroenterol,2013,19(26):4106-4118.
    [39] Duan C, Liu M, Zhang Z, et al. Radiofrequency ablation versus hepatic resection forthe treatment of early-stage hepatocellular carcinoma meeting Milan criteria: asystematic review and meta-analysis[J]. World J Surg Oncol,2013,11(1):190.
    [40] Lu DS, Yu NC, Raman SS, et al. Radiofrequency ablation of hepatocellular carcinoma:treatment success as defined by histologic examination of the explanted liver[J].Radiology,2005,234(3):954-960.
    [41] Dubinsky TJ, Cuevas C, Dighe MK, et al. High-intensity focused ultrasound: currentpotential and oncologic applications[J]. AJR Am J Roentgenol,2008,190(1):191-199.
    [42] Li C, Zhang W, Zhang R, et al. Therapeutic effects and prognostic factors inhigh-intensity focused ultrasound combined with chemoembolisation for largerhepatocellular carcinoma[J]. Eur J Cancer,2010,46(13):2513-2521.
    [43] Liao M, Yang F, Zhang Y, et al. Childhood maltreatment is associated with larger leftthalamic gray matter volume in adolescents with generalized anxiety disorder[J].PLoS One,2013,8(8): e71898.
    [44] Zhu AX. Systemic treatment of hepatocellular carcinoma: dawn of a new era?[J]. AnnSurg Oncol,2010,17(5):1247-1256.
    [45] Rahbari NN, Mehrabi A, Mollberg NM, et al. Hepatocellular carcinoma: currentmanagement and perspectives for the future[J]. Ann Surg,2011,253(3):453-469.
    [46] Lammer J, Malagari K, Vogl T, et al. Prospective randomized study ofdoxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma:results of the PRECISION V study[J]. Cardiovasc Intervent Radiol,2010,33(1):41-52.
    [47] Chua CW, Choo SP. Targeted therapy in hepatocellular carcinoma[J]. Int J Hepatol,2011,2011(348297.
    [48] Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma[J].Gastroenterology,2011,140(5):1410-1426.
    [49] Abou-Alfa GK, Huitzil-Melendez FD, O'Reilly EMSaltz LB. Current management ofadvanced hepatocellular carcinoma[J]. Gastrointest Cancer Res,2008,2(2):64-70.
    [50] Reya T, Morrison SJ, Clarke MFWeissman IL. Stem cells, cancer, and cancer stemcells[J]. Nature,2001,414(6859):105-111.
    [51] Chiba T, Kamiya A, Yokosuka O, Iwama A. Cancer stem cells in hepatocellularcarcinoma: Recent progress and perspective[J]. Cancer Lett,2009,286(2):145-153.
    [52] Shafritz DA, Oertel M, Menthena A, et al. Liver stem cells and prospects for liverreconstitution by transplanted cells[J]. Hepatology,2006,43(2Suppl1): S89-98.
    [53]李锦军顾健人.癌干细胞研究进展[J].生命科学,2006,04):333-339.
    [54]宋尔卫.实体瘤中肿瘤干细胞研究进展[J].中山大学学报(医学科学版),2010,02):172-178.
    [55] Hahn WC, Weinberg RA. Rules for making human tumor cells[J]. N Engl J Med,2002,347(20):1593-1603.
    [56] Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell,2000,100(1):57-70.
    [57] Mackillop WJ, Ciampi A, Till JE, Buick RN. A stem cell model of human tumorgrowth: implications for tumor cell clonogenic assays[J]. J Natl Cancer Inst,1983,70(1):9-16.
    [58] Fulda S, Pervaiz S. Apoptosis signaling in cancer stem cells[J]. Int J Biochem CellBiol,2010,42(1):31-38.
    [59] Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology tocancer[J]. Nat Rev Cancer,2003,3(12):895-902.
    [60] Polyak K, Hahn WC. Roots and stems: stem cells in cancer[J]. Nat Med,2006,12(3):296-300.
    [61] Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification oftumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7):3983-3988.
    [62] Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells[J]. AnnuRev Cell Dev Biol,2007,23(675-699.
    [63] Wright MH, Calcagno AM, Salcido CD, et al. Brca1breast tumors contain distinctCD44+/CD24-and CD133+cells with cancer stem cell characteristics[J]. BreastCancer Res,2008,10(1): R10.
    [64] Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murinehematopoietic stem cells that are replicating in vivo[J]. J Exp Med,1996,183(4):1797-1806.
    [65] Tokar EJ, Ancrile BB, Cunha GR, Webber MM. Stem/progenitor and intermediate celltypes and the origin of human prostate cancer[J]. Differentiation,2005,73(9-10):463-473.
    [66]王榕,蒋敬庭,杨伊林吴昌平.肿瘤干细胞的分离与纯化研究进展[J].中国组织工程研究与临床康复,2009,01):161-164.
    [67] Richard V, Nair MG, Santhosh Kumar TR, Pillai MR. Side population cells asprototype of chemoresistant, tumor-initiating cells[J]. Biomed Res Int,2013,2013(517237.
    [68] Montanaro F, Liadaki K, Schienda J, et al. Demystifying SP cell purification: viability,yield, and phenotype are defined by isolation parameters[J]. Exp Cell Res,2004,298(1):144-154.
    [69]陈健陈增良.乳腺癌干细胞的分选鉴定[J].癌症,2010,03):284-289.
    [70] Ucar D, Cogle CR, Zucali JR, et al. Aldehyde dehydrogenase activity as a functionalmarker for lung cancer[J]. Chem Biol Interact,2009,178(1-3):48-55.
    [71] Schofield R. The relationship between the spleen colony-forming cell and thehaemopoietic stem cell[J]. Blood Cells,1978,4(1-2):7-25.
    [72]罗成基.造血微环境基质细胞的研究概况及前景[J].解放军医学杂志,1999,01):4-6.
    [73] Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches[J]. Nat RevImmunol,2006,6(2):93-106.
    [74] Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation ofhaematopoietic stem cells[J]. Nat Rev Mol Cell Biol,2011,12(10):643-655.
    [75] Moore KA, Lemischka IR. Stem cells and their niches[J]. Science,2006,311(5769):1880-1885.
    [76] Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cellresearch[J]. Nat Rev Cancer,2005,5(4):311-321.
    [77]李小青,李少林.肿瘤干细胞及其微环境[J].肿瘤防治研究,2011,01):115-117.
    [78] Yi SY, Hao YB, Nan KJFan TL. Cancer stem cells niche: a target for novel cancertherapeutics[J]. Cancer Treat Rev,2013,39(3):290-296.
    [79] Teng Y, Wang X, Wang Y, Ma D. Wnt/beta-catenin signaling regulates cancer stemcells in lung cancer A549cells[J]. Biochem Biophys Res Commun,2010,392(3):373-379.
    [80] Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibitingWnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol,2011,8(2):97-106.
    [81] Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required forthe development of leukemia stem cells in AML[J]. Science,2010,327(5973):1650-1653.
    [82] Janssen KP, Alberici P, Fsihi H, et al. APC and oncogenic KRAS are synergistic inenhancing Wnt signaling in intestinal tumor formation and progression[J].Gastroenterology,2006,131(4):1096-1109.
    [83] Villanueva T. Cancer stem cells: Wnt--looking outside in[J]. Nat Rev Cancer,2010,10(6):386.
    [84] Prosperi JR, Goss KH. A Wnt-ow of opportunity: targeting the Wnt/beta-cateninpathway in breast cancer[J]. Curr Drug Targets,2010,11(9):1074-1088.
    [85] Medina V, Calvo MB, Diaz-Prado S, Espada J. Hedgehog signalling as a target incancer stem cells[J]. Clin Transl Oncol,2009,11(4):199-207.
    [86] Steg AD, Bevis KS, Katre AA, et al. Stem cell pathways contribute to clinicalchemoresistance in ovarian cancer[J]. Clin Cancer Res,2012,18(3):869-881.
    [87] Krantz SB, Shields MA, Dangi-Garimella S, et al. Contribution ofepithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancerprogression[J]. J Surg Res,2012,173(1):105-112.
    [88] Bailey JM, Mohr AM, Hollings worth MA. Sonic hedgehog paracrine signalingregulates metastasis and lymphangiogenesis in pancreatic cancer[J]. Oncogene,2009,28(40):3513-3525.
    [89] Sarkar FH, Li Y, Wang Z, Kong D. The role of nutraceuticals in the regulation of Wntand Hedgehog signaling in cancer[J]. Cancer Metastasis Rev,2010,29(3):383-394.
    [90] Pannuti A, Foreman K, Rizzo P, et al. Targeting Notch to target cancer stem cells[J].Clin Cancer Res,2010,16(12):3141-3152.
    [91] Chen J, Crabbe A, Van Duppen V, Vankelecom H. The notch signaling system ispresent in the postnatal pituitary: marked expression and regulatory activity in thenewly discovered side population[J]. Mol Endocrinol,2006,20(12):3293-3307.
    [92] Robine S, Fre S, Huyghe M, et al.[Notch signals control the fate of immatureprogenitor cells in the intestine][J]. Med Sci (Paris),2005,21(8-9):780-782.
    [93] van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turnsproliferative cells in intestinal crypts and adenomas into goblet cells[J]. Nature,2005,435(7044):959-963.
    [94] Chiba S. Notch signaling in stem cell systems[J]. Stem Cells,2006,24(11):2437-2447.
    [95] Dong XB, Ji CY, Ma DX, et al.[Notch signaling in human breast cancer][J].Zhonghua Zhong Liu Za Zhi,2007,29(6):425-428.
    [96] Zhang S, Yu D. PI(3)king apart PTEN's role in cancer[J]. Clin Cancer Res,2010,16(17):4325-4330.
    [97]张英,林洪生. Wnt信号转导通路与肿瘤干细胞[J].现代肿瘤医学,2009,02):347-350.
    [98] Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathwaysduring carcinogenesis[J]. Stem Cell Rev,2007,3(1):30-38.
    [99] Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+cancer stem cells in humanliver cancer[J]. Cancer Cell,2008,13(2):153-166.
    [100] Osta WA, Chen Y, Mikhitarian K, et al. EpCAM is overexpressed in breast cancer andis a potential target for breast cancer gene therapy[J]. Cancer Res,2004,64(16):5818-5824.
    [101] Lee TK, Castilho A, Cheung VC, et al. CD24(+) liver tumor-initiating cells driveself-renewal and tumor initiation through STAT3-mediated NANOG regulation[J].Cell Stem Cell,2011,9(1):50-63.
    [102] Hu J, Dong A, Fernandez-Ruiz V, et al. Blockade of Wnt signaling inhibitsangiogenesis and tumor growth in hepatocellular carcinoma[J]. Cancer Res,2009,69(17):6951-6959.
    [103] Mueller MT, Hermann PC, Witthauer J, et al. Combined targeted treatment toeliminate tumorigenic cancer stem cells in human pancreatic cancer[J].Gastroenterology,2009,137(3):1102-1113.
    [104] Lee TK, Castilho A, Ma S, Ng IO. Liver cancer stem cells: implications for a newtherapeutic target[J]. Liver Int,2009,29(7):955-965.
    [105] Balyasnikova IV, Ferguson SD, Sengupta S, et al. Mesenchymal stem cells modifiedwith a single-chain antibody against EGFRvIII successfully inhibit the growth ofhuman xenograft malignant glioma[J]. PLoS One,2010,5(3): e9750.
    [106] Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005,5(4):275-284.
    [107] Behbod F, Rosen JM. Will cancer stem cells provide new therapeutic targets?[J].Carcinogenesis,2005,26(4):703-711.
    [108] Lee KH, Min HS, Han SW, et al. ERCC1expression by immunohistochemistry andEGFR mutations in resected non-small cell lung cancer[J]. Lung Cancer,2008,60(3):401-407.
    [109]贾茜,高建,张小丽等. HepG2、Hep3B细胞中肿瘤干细胞相关标志分子的表达[J].第三军医大学学报,2012,09):852-856.
    [110] Zimmerer RM, Korn P, Demougin P, et al. Functional features of cancer stem cells inmelanoma cell lines[J]. Cancer Cell Int,2013,13(1):78.
    [111] Luk SU, Lee TK, Liu J, et al. Chemopreventive effect of PSP through targeting ofprostate cancer stem cell-like population[J]. PLoS One,2011,6(5): e19804.
    [112] Xu XL, Xing BC, Han HB, et al. The properties of tumor-initiating cells from ahepatocellular carcinoma patient's primary and recurrent tumor[J]. Carcinogenesis,2010,31(2):167-174.
    [113] Ma S, Tang KH, Chan YP, et al. miR-130b Promotes CD133(+) liver tumor-initiatingcell growth and self-renewal via tumor protein53-induced nuclear protein1[J]. CellStem Cell,2010,7(6):694-707.
    [114] Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells[J].Cancer Res,2007,67(3):1030-1037.
    [115] Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stemcells in normal lung and lung cancer[J]. Cell,2005,121(6):823-835.
    [116]付军,陈忠平.脑肿瘤干细胞分选技术[J].中国神经肿瘤杂志,2008,01):20-24.
    [117] Hadnagy A, Gaboury L, Beaulieu R,Balicki D. SP analysis may be used to identifycancer stem cell populations[J]. Exp Cell Res,2006,312(19):3701-3710.
    [118] Triel C, Vestergaard ME, Bolund L, et al. Side population cells in human and mouseepidermis lack stem cell characteristics[J]. Exp Cell Res,2004,295(1):79-90.
    [119]刘胜军.肝癌细胞中干细胞亚群的分离、培养、鉴定及特征初探[D].2007,第一军医大学.
    [120] Tong CM, Ma S, Guan XY. Biology of hepatic cancer stem cells[J]. J GastroenterolHepatol,2011,26(8):1229-1237.
    [121] Ji J, Wang XW. Clinical implications of cancer stem cell biology in hepatocellularcarcinoma[J]. Semin Oncol,2012,39(4):461-472.
    [122] Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoieticstem cell antigen: isolation, characterization, and molecular cloning[J]. Blood,1997,90(12):5013-5021.
    [123]庄建良,黄荣金,潘群雄. CD24及其免疫调节与免疫耐受诱导作用[J].医学分子生物学杂志,2007,06):541-544.
    [124] Fang X, Zheng P, Tang J, Liu Y. CD24: from A to Z[J]. Cell Mol Immunol,2010,7(2):100-103.
    [125] Van Phuc P, Nhan PL, Nhung TH, et al. Downregulation of CD44reducesdoxorubicin resistance of CD44CD24breast cancer cells[J]. Onco Targets Ther,2011,4(71-78.
    [126] Zheng Y, de la Cruz CC, Sayles LC, et al. A rare population ofCD24(+)ITGB4(+)Notch(hi) cells drives tumor propagation in NSCLC and requiresNotch3for self-renewal[J]. Cancer Cell,2013,24(1):59-74.
    [127] Yenigun VB, Ozpolat B, Kose GT. Response of CD44+/CD24-/low breast cancerstem/progenitor cells to tamoxifen and doxorubicininduced autophagy[J]. Int J MolMed,2013,31(6):1477-1483.
    [128] Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133+hepatocellularcarcinoma cells as cancer stem/progenitor cells[J]. Biochem Biophys Res Commun,2006,351(4):820-824.
    [129] Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic livercancer stem/progenitor cells[J]. Gastroenterology,2007,132(7):2542-2556.
    [130] Tang KH, Ma S, Lee TK, et al. CD133(+) liver tumor-initiating cells promote tumorangiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1signaling[J]. Hepatology,2012,55(3):807-820.
    [131] Piao LS, Hur W, Kim TK, et al. CD133+liver cancer stem cells modulateradioresistance in human hepatocellular carcinoma[J]. Cancer Lett,2012,315(2):129-137.
    [132] Chen Y, Yu D, Zhang H, et al. CD133(+)EpCAM(+) phenotype possesses morecharacteristics of tumor initiating cells in hepatocellular carcinoma Huh7cells[J]. Int JBiol Sci,2012,8(7):992-1004.
    [133] Qiu J, Huang P, Liu Q, et al. Identification of MACC1as a novel prognostic markerin hepatocellular carcinoma[J]. J Transl Med,2011,9(166.
    [134] Jordan CT, Guzman ML, Noble M. Cancer stem cells[J]. N Engl J Med,2006,355(12):1253-1261.
    [135] Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts[J]. Annu RevMed,2007,58(267-284.
    [136] Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treatinghepatocellular carcinoma[J]. CA Cancer J Clin,2012,62(6):394-399.
    [137] Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side populationdefines cells with stem cell-like characteristics and Mullerian Inhibiting Substanceresponsiveness[J]. Proc Natl Acad Sci USA,2006,103(30):11154-11159.
    [138] Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells ofthe adult mammalian central nervous system[J]. Science,1992,255(5052):1707-1710.
    [139] Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenicbreast cancer cells with stem/progenitor cell properties[J]. Cancer Res,2005,65(13):5506-5511.
    [140] Yamashita T, Forgues M, Wang W, et al. EpCAM and alpha-fetoprotein expressiondefines novel prognostic subtypes of hepatocellular carcinoma[J]. Cancer Res,2008,68(5):1451-1461.
    [141] Huang FT, Zhuan-Sun YX, Zhuang YY, et al. Inhibition of hedgehog signalingdepresses self-renewal of pancreatic cancer stem cells and reverseschemoresistance[J]. Int J Oncol,2012,41(5):1707-1714.
    [142] Wang P, Gao Q, Suo Z, et al. Identification and characterization of cells with cancerstem cell properties in human primary lung cancer cell lines[J]. PLoS One,2013,8(3):e57020.
    [143] Locke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cellhierarchies in carcinoma-derived cell lines[J]. Cancer Res,2005,65(19):8944-8950.
    [144] Li H, Chen X, Calhoun-Davis T, et al. PC3human prostate carcinoma cell holoclonescontain self-renewing tumor-initiating cells[J]. Cancer Res,2008,68(6):1820-1825.
    [145] Liu TJ, Sun BC, Zhao XL, et al. CD133+cells with cancer stem cell characteristicsassociates with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene,2013,32(5):544-553.
    [146] Gharagozloo M, Mirzaei HR, Bagherpour B, et al. Cell cycle analysis of the CD133(+)and CD133(-) cells isolated from human colorectal cancer[J]. J Cancer Res Ther,2012,8(3):399-403.
    [147] McKeage MJ. Lobaplatin: a new antitumour platinum drug[J]. Expert Opin InvestigDrugs,2001,10(1):119-128.
    [148] Sukowati CH, Rosso N, Croce LS, Tiribelli C. Hepatic cancer stem cells and drugresistance: Relevance in targeted therapies for hepatocellular carcinoma[J]. World JHepatol,2010,2(3):114-126.
    [149] Sotiropoulou PA, Christodoulou MS, Silvani A, et al. Chemical approaches totargeting drug resistance in cancer stem cells[J]. Drug Discov Today,2014.
    [150]王聪仁,苏子剑,潘群雄,庄建良. CD24在原发性肝癌中的表达及其临床意义[J].中国肿瘤外科杂志,2012,04):193-196.
    [151]潘群雄,庄建良,柯少迎等.肝癌组织CD24基因表达及其临床意义[J].中华肿瘤防治杂志,2009,20):1583-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700