用户名: 密码: 验证码:
新型阿霉素前体药PDOX联合细胞减灭术加腹腔热灌注化疗治疗胃癌腹膜转移癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌在内的腹盆腔恶性肿瘤易发生局域性进展,往往导致腹膜转移癌(peritonealcarcinomatosis, PC)。胃癌PC预后极差,其中位生存期约6个月。针对胃癌PC的传统治疗手段是以胃癌根治术为主,辅以全身化疗的综合治疗。然而,单纯手术仅切除肉眼可见肿瘤组织,无法清除腹腔内残余癌细胞[4-6]。因此,传统治疗方法不能有效延长PC患者的生存期。
     细胞减灭术(cytoreductive surgery, CRS)加术中腹腔热灌注化疗(hyperthermicintraperitoneal chemotherapy,HIPEC)在国际上探索了近30年,首先通过CRS切除肉眼可见瘤灶,再通过术中HIPEC清除腹腔内残余微癌灶和游离癌细胞,集根治手术、区域性化疗、热疗和大容量液体灌洗协同作用的优势,是治疗胃癌PC的有效方法。多项国内外临床研究结果表明,CRS+HIPEC可延缓PC患者肿瘤复发、提高远期生活质量[7-111。
     尽管CRS+HIPEC治疗PC已在临床应用多年,显示出临床治疗优势,但HIPEC相关的基础研究却有待深化,高水平的实验室研究结果很少,缺少足够的循证医学证据[12-14]。构建合理可靠的动物模型是进行疗效学研究的重要平台。近年来国内外相继构建了裸小鼠PC模型、小鼠PC模型和大鼠PC模型,用于PC的疗效学等研究。但由于动物体积小、循环血量少等原因,裸小鼠PC模型和小鼠PC模型仅适于非手术治疗研究,不能用于CRS、CRS+HIPEC等包含手术治疗措施的治疗策略的疗效评价,而使应用受限。大鼠动物体积相对较大,循环血量相对较多,对手术有一定的耐受能力,但仍然难以承受更大范围的手术及其他治疗。目前国内外尚无构建兔胃癌PC动物模型的报道,亦无CRS加术中HIPEC治疗胃癌PC的动物实验报道。
     在胃癌进展过程中,癌细胞可合成分泌组织蛋白酶B(Cathepsin B, Cat B),破坏细胞外基质,并促进癌细胞在腹膜表面种植和形成克隆,进而形成胃癌PC。Cat B可作为治疗胃癌PC的重要候选靶点。阿霉素(Doxorubicin,DOX)是重要的蒽环类抗生素,对胃癌等恶性肿瘤疗效显著,但也因其心脏毒性、骨髓抑制等毒副作用显著而使应用受限。
     本课题组利用胃癌等恶性肿瘤侵袭转移过程中局部释放Cat B的生物学特点,设计了新型阿霉素前体药(Peptide Doxorubicin, PDOX)[18-2,通过空间构象分子PABC在DOX分子上连接Cat B的特异底物Ac-Phe-Lys,以实现减毒增效。在正常组织和外周血中Cat B存在于细胞的溶酶体中,PDOX无活性,但在恶性肿瘤侵袭转移过程中,癌细胞分泌大量Cat B[21-22],降解Ac-Phe-Lys,随后PABC自水解[23],释放出游离DOX分子,杀灭周围癌细胞[18]。
     本研究内容分为三部分:
     第一部分:兔VX2腹膜转移癌模型的建立及转移特征研究
     目的:建立稳定的大动物(兔)胃癌PC模型,并鉴定其生物学行为,为开展大型手术在内的PC综合治疗策略等研究提供可靠的动物实验平台。
     方法:将36只新西兰大白兔随机分为三组,取VX2瘤组织制备1mm3瘤组织块和VX2瘤细胞悬液后,分别以下述三种方法建立兔胃癌腹膜癌模型:A组,以开腹穿刺种植法种瘤,开腹后将VX2瘤细胞悬液经胃窦部浆膜穿刺注入胃窦部粘膜下(n=12);B组,以开腹包埋种植法种瘤,开腹后将肿瘤组织块包埋种植于兔胃窦部大网膜内(n=12);C组,以直接经皮穿刺种植法种瘤,不行开腹手术,直接腹腔穿刺注入VX2瘤细胞悬液(n=12)。造模后,每天观察各组动物肿瘤生长状况,并通过病理学和影像学检查分析各组动物局部区域及远处转移情况。
     结果:三种方法构建模型的成功率分别是100%(12/12)、91.7%(11/12)和58.3%(7/12),与经皮穿刺法比较,开腹包埋法造模成功率明显提高(P<0.05);与开腹包埋法比较,开腹穿刺法造模成功率进一步明显提高(P<0.05)。成功构建的兔胃癌腹膜癌模型病理发展进程与人胃癌腹膜癌病理过程相似,接种1~2周后,形成典型溃疡性胃癌并区域性腹膜转移癌表现,精神、饮食、活动逐渐变差,4周时动物逐渐衰竭死亡,部分动物出现肺转移,病理学检查显示图胃癌腹膜癌病理特点符合典型的人胃癌腹膜癌病
     理学特点。
     结论:开腹穿刺法制作兔VX2胃癌腹膜转移癌模型成功率最高,制作过程简单,实验周期短,其病理发展进程与人胃癌腹膜癌病理过程相似,临床病理表现类似人类腹膜转移癌,为开展胃癌腹膜癌的实验研究提供可靠的大动物模型。第二部分:新型阿霉素前体药PDOX联合CRS+HIPEC治疗兔胃癌PC的疗效及安全性研究
     目的:在成功建立大动物(兔)胃癌PC模型基础上,研究CRS+HIPEC治疗兔胃癌PC的疗效和安全性,为CRS+HIPEC治疗胃癌PC的临床研究和应用提供理论支持和循证医学依据。
     方法:以成年雄性新西兰兔为研究对象,以开腹穿刺种植法将VX2癌细胞注射入胃窦部粘膜下层,形成兔胃癌PC模型,42只新西兰大白兔随机分为空白对照组(n=14),单纯CRS组(n=14),CRS+HIPEC组(n=14)。在接种肿瘤后第8~9d进行干预治疗,HIPEC药物为多西紫杉醇(10mg/只)、卡铂(40mg/只),加热至42℃,行腹腔灌注30分钟。主要疗效指标为生存期,次要疗效指标为体重、生化指标及安全性。
     结果:模型制作成功率为100%(42/42),动物生存期在空白对照组为24d(8~30d);单纯CRS组为27d(20~40d);CRS+HIPEC组为46d(23~55d)(单纯CRS组vs.空白对照组P=0.1133;CRS+HIPEC组vs.空白对照组P=2.45×10-6;CRS+HIPEC组VS.单纯CRS组P=0.0012)。与单纯CRS相比,HIPEC至少能使生存期延长70%。种瘤后三组动物均出现体重下降,与空白对照组及CRS组相比,HIPEC组动物体重变化特点是:治疗后早期体重明显下降,3~5d后体重下降减缓,约10d后体重再次出现下降趋势,提示HIPEC可延缓肿瘤所致的体重减轻。在肿瘤接种前、手术前及手术后第7d,各组的外周血、肝肾功能及血生化指标均无显著性差异。严重不良事件在空白对照组为0只;CRS组为2只,其中1只为麻醉意外死亡,另1只术后第2d腹腔大出血死亡;CRS+HIPEC组为3只,1只为麻醉意外死亡,另2只在分别术后23、27d因急性腹泻死亡。
     结论:对胃癌PC大动物模型,单纯CRS并不能改善预后,而CRS+HIPEC则能显著延长生存期,安全性可以接受。
     第三部分新型阿霉素前体药PDOX对胃癌腹膜转移癌模型的分子靶向治疗研究
     目的:合成新型阿霉素前体药PDOX,并利用成功构建的大动物(兔)胃癌PC模型,研究新型阿霉素前体药PDOX联合CRS+HIPEC治疗兔胃癌PC的疗效和安全性,评估PDOX靶向治疗胃癌PC的潜力并探讨可能存在的毒副反应。
     方法:通过7个化学步骤合成PDOX后,取成年雄性新西兰大白兔40只,将VX2瘤细胞悬液(约5×106个瘤细胞/0.1mL/兔)注入胃窦部粘膜下层,制成溃疡型胃癌PC模型,随机分为4组:Control组(n=10)不行任何治疗;HIPEC组(n=10)种瘤后第8d行CRS+HIPEC(多西紫杉醇10.0mg+卡铂50.0mg,42℃持续腹腔灌注30min);PDOX组(n=10)种瘤后第8d行CRS+HIPEC,第16d开始PDOX静脉化疗,每4d一次,共五次,每次给予PDOX10.0mg/kg,总剂量为50.0mg/kg;DOX组(n=10)种瘤后第8d行CRS+HIPEC,第16d开始DOX静脉化疗,每4d一次,共五次,每次给予DOX1.0mg/kg,总剂量为5.0mg/kg。定期观察动物一般状况,称体质量和检测血液指标。动物自然死亡后解剖记录胃肿瘤特点、腹腔内转移特点、全身转移特点、重要脏器病变情况等。本研究主要疗效指标为生存期,次要疗效指标为荷瘤程度和安全性。
     结果:合成的PDOX为红色固体,纯度99.1%,易溶于水,稳定性好。各组动物的中位生存期在Control组为23.0d(95%CI:19.9~26.1d),HIPEC组41.0d(36.9~45.1d),PDOX组65.0d(44.1~71.9d),DOX组58.0d(39.6~54.4d)。HIPEC组生存期较Control组延长70%(18d)以上(P<0.001),PDOX组较HIPEC组延长58%(24d)(P=0.021),DOX组较HIPEC组延长40%(17d)(P=0.029)。DOX组化疗后(D36)WBC、PLT明显低于HIPEC组(P=0.001),CK-MB明显高于HIPEC组(P=0.012),其余各组间血液学指标无统计学差异(P>0.05)。与Control组比较,HIPEC组PC程度减轻,肺转移概率增高;PDOX组和DOX组PC程度进一步降低,且肺转移概率无明显增高。DOX组光镜下见心肌凝固性坏死并核固缩,心肌组织透射电子显微照片(Transimission electronic micrograph, TEM)显示提示心肌细胞核退行性变,核周线粒体减少或消失,肌丝部分溶解等,其余组则未见上述改变。
     结论:新型阿霉素前体药PDOX纯度高、理化性质优良。在CRS+HIPEC基础上,联合PDOX可进一步延长荷瘤动物生存期,安全性好。与DOX比,PDOX具有高效低毒的特点。PDOX具有进一步开发的价值。
The loco-regional progression of gastric cancer usually results in peritoneal carcinomatosis (PC), characterized by the presence of tumor nodules of various size, number, and distribution on the peritoneal surface as well as malignant ascites, with very poor prognosis and a median survival of less than6months.
     The most widely accepted therapies for such PC are surgery alone plus chemotherapy. Surgery alone, however, can only remove the bulky visible tumor nodules. For the micrometastases, invisible free cancer cells and those tumor masses not suitable for resection, surgery can not achieve any effect. Therefore, the traditional therapy can not make obvious positive impact on the survival and quality of life in patients with PC.
     In order to tackle this difficult problem, a new treatment strategy called cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC) has been developed over the past three decades, which has the advantages of surgery to reduce the visible tumor burden and regional hyperthermic chemotherapy to eradicate micrometastses and free cancer cells.
     Although many clinical studies have been performed to test and confirm the efficacy of this combined treatment approach, there is a lack of high quality evidence from phase Ⅲ randomized prospective studies. In order to more objectively evaluate such treatment, it is necessary to study this treatment modality under experimental conditions, in which most of the confounding factors could be well controlled. In this respect, suitable animal models of PC are indispensable platforms. Small animal models of PC have been established, including nude mouse PC models, mouse PC models and rat PC models. In most of these animal models, cancer cells are injected directly into the peritoneum, which will result in widespread PC in due time. Such models have been used to test various treatment modalities, including CRS and HIPEC, either alone or in combination, producing valuable information on the validity of different therapies. The small body size and delicate hemodynamic conditions are limiting factors for complex surgical interventions. Large animal models of PC might be more suitable for extensive surgical treatment. Therefore, it is necessary to establish large animal model of gastric cancer with PC for experimental studies to test extensive CRS and HIPEC.
     During the development of peritoneal carcinomatosis, GC cells secret enzymes to facilitate cancer cells seeding and colonization on the peritoneum. Cathepsin B is among the key enzymes in this critical process, overexpressed in GC as well as other cancers,10-12and actively involved in cancer invasion. Conversely, its expression is extremely low in normal cells, and it is inactive or loses activity as soon as it is dispersed in aqueous media away from cells. Thus, cathepsin B has long been considered a candidate target in cancer therapy [16].
     Doxorubicin (DOX) is a typical representative of anthracyclines. Although doxorubicin is an important drug in chemotherapy, its toxicities are also well known, such as cardiac toxicities and bone marrow suppression [17]. To retain the therapeutic effect while reducing the side effects, we designed a smart prodrug of doxorubicin, PDOX (Ac-Phe-Lys-PABC-DOX)[18-20]. In this modified doxorubicin, Phe-Lys is a dipeptide specific for cathepsin B, and PABC (para-aminobenzyloxycarbonyl) is a self-immolative spacer [21]. The prodrug is inactive when there is little cathepsin B activity, such as in normal tissues and peripheral blood, thus avoiding the side effects on normal tissue. During cancer invasion, activated cathepsin B is overexpressed on the exterior membrane of the invading cancer cells, which cleaves the Phe-Lys dipeptide at the Lys-PABC bond [22]. Then the exposed PABC spacer can self-hydrolyze upon deacylation[23], and free doxorubicin molecules are released, resulting in direct killing of the invading cancer cells[16].
     This study was divided into three parts as below:
     Part One:Establishment and Identification of Rabbit Model of Gastric Cancer with Peritoneal Carcinomatosis
     Objective To establish a stable model of peritoneal carcinomatosis in rabbit using VX2tumor and analyzed the features of metastasis.
     Method VX2tumor was implanted into36New Zealand rabbits by3methods:laparotomic orthotopic injection of cancer cells into the submucosal layer of the stomach (Group A), laparotomic implantation of tumor tissue into the greater omentum immediately beneath the gastric antrum (Group B), and percutaneous injetion of tumor cells directly into the peritoneal cavity (Group C),12rabbits were randamized aranged in each group. The animals were
     closely observed and detailed clinico-pathological studies were conducted. Result The success rates of peritoneal carcinomatosis formation were100%(12/12),91.7%(11/12) and58.3%(7/12), respectively, for Groups A, B and C (P=0.019, A vs. C; P=0.077, B vs. C; P=0.500, A vs. B, Fisher's exact test). Two weeks after submucosal cancer cells injection in Group A, ulcerative gastric cancer with peritoneal carcinomatosis showed typical VX2tumor pathology, with widespread intraperitoneal metastatic nodules, bloody asites and perspicuous pulmonary metastases. The clinicalopathological progression pattern was very similar to patients of advanced gastric cancer with peritoneal carcinomatosis.
     Conclusion The orthotopic tissue implantation to establish a peritoneal carcinomatosis modelis convenient, feasible and timesaving. The clinicalpathological features of the model are similar to those of peritoneal carcinomatosis.
     Part Two:Experimental Animal Study on The Efficacy and Safty of Cytoreductive Surgery plus Hyperthermic Intraperitoneal Chemotherapy to Treat Peritoneal Carcinomatosis from Gastric Cancer
     Objective To study the efficacy and safety of cytoreductive surgery (CRS) with hyperthermic introperitoneal chemotherapy (HIPEC) to treat rabbit model of gastric cancer with peritoneal carcinomatosis (PC), so as to provide support to clinical application.
     Method VX2tumor cells were injected into the gastric submucosa of42adult male New Zealand rabbits using a laparotomic implantation technique, to construct rabbit model of gastric cancer with PC. The rabbits were randomly divided into three groups:Control group (n=14), CRS group (n=14), and CRS+HIPEC group (n=14). The Control group was observed for natural course of disease progression. Treatment was initiated8ro9days after tumor cells inoculation, including optimal removal of tumor nodules in CRS group, and maximal removal of tumor nodules and heperthermic chemoperfusion in the CRS+HIPEC group with docetaxel (10mg/rabbit) and carboplatin (40mg/rabbit) at42℃for30minutes. The primary endpoint was overall survival in each group. The secondary endpoints were body weight, biochemistry, major organ functions and serious adverse events.
     Result The success rates of rabbit PC model were100%(42/42). The clinicopathological feature of the model is similar to peritoneal carcinomatosis in human. Overall survival was18-30days (median24days) in Control group,20~40days (median27days) in CRS group; and23~55days (median46days) in CRS plus HIPEC group (CRS alone group vs. control group P=0.1133; CRS+HIPEC group vs. control group P=2.45x10-6; CRS+HIPEC group vs. pure CRS group P=0.0012). Compared with CRS only or Control group, HIPEC could extend the overall survival by at least60%. At the baseline, on the day of surgery and7days after surgery, the peripheral blood cells counts, liver and renal functions, and biochemistry parameters were all comparable. Serious adverse events occurred in0animal in Control group, 2animals in CRS alone group including1animal died of anesthesia overdose and another1died of postoperative hemorrhage, and3animlas in CRS+HIPEC group including1animal died of anesthesia overdose, and2died of diarrhea23and27days after operation.
     Conclusion For rabbit model of gastric cancer PC, CRS alone could not bring benefit while CRS+HIPEC with docetaxel and cisplatin could significantly prolong the survival with a acceptable safety.
     Part III:Synthesis, Identification and In Vivo Studies of Tumor-Targeting Agent Peptide Doxorubicin (PDOX) to Treat Peritoneal Carcinomatosis of Gastric Cancer with Similar Efficacy and Reduced Toxicity
     Objective This work aimed to synthesize a cathepsin B (Cat B)-cleavable tumor-targeting prodrug peptide doxorubicin (PDOX) and study the in vivo efficacy and toxicities on an animal model of gastric cancer (GC) with peritoneal carcinomatosis (PC).
     Methods PDOX was synthesized using doxorubicin (DOX) attaching to a Cat B-cleavable dipeptide Ac-Phe-Lys and a para-amino-benzyloxycarbonyl (PABC) spacer. PC model was established by injecting VX2tumor cells into the gastric sub-mucosa of40rabbits, which then were randomized into4groups:the Control (n=10) without treatment, the HIPEC (n=10) receiving cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC), the PDOX (n=10) and the DOX (n=10) receiving systemic chemotherapy with PDOX50.0mg/kg or DOX5.0mg/kg after CRS+HIPEC respectively.
     Results The median overall survivals (OS) were23.0d (95%CI:19.9d-26.1d) in the Control,41.0d (36.9d-45.1d) in the HIPEC,65.0d (44.1d-71.9d) in the PDOX, and58.0d (39.6d-54.4d) in the DOX. Compared with the Control, the OS was extended by70%in the HIPEC (P<0.001) and further extended by40%in the DOX (P=0.029) and by58%in the PDOX (P=0.021), the PC severity was decreased in the HIPEC and further decreased in the PDOX and DOX. Animals receiving DOX treatment showed hematological toxicities with marked reduction of white blood cells and platelets, as well as cardiac toxicities with significant increases in creatine kinase mb isoenzyme, evident myocardium coagulation necrosis, significant nuclear degeneration, peri-nucleus mitochondria deletion, mitochondria-pyknosis, and abnormal intercalated discs. But these toxicities were not evident in the PDOX.
     Conclusions PDOX is a newly synthesized tumor-targeting prodrug of DOX. Compared with DOX, PDOX has similar efficacy and reduced hematological and cardiac toxicities in treating rabbit model of GC with PC.
引文
1. Misawa K, Mochizuki Y, Ohashi N, et al. A randomized phase III trial exploring the prognostic value of extensive intraoperative peritoneal lavage in addition to standard treatment for resectable advanced gastric cancer:CCOG 1102 study [J]. Jpn J Clin Oncol.2014,44(1):101-103.
    2. Thomassen I, van Gestel YR, van Ramshorst B, et al. Peritoneal carcinomatosis of gastric origin:a population-based study on incidence, survival and risk factors [J]. Int J Cancer.2014,134(3):622-628.
    3. Al-Shammaa HAH, Li Y, Yonemura Y. Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthemic for peritoneal carcinomatosis [J]. World J Gastroenterol.2008, 14:1159-1166.
    4. Yonemura Y, Bando E, Kawamura T, et al. Cytoreduction and intraperitoneal chemotherapy for carcinomatosis from gastric cancer [J]. Cancer Treat Res.2007,134:357-373.
    5. 李雁,杨国梁,杨肖军.细胞减灭术加腹腔热灌注化疗治疗腹膜种植瘤的研究进展[J].中国肿瘤临床.2007,34(21):1257-1260.
    6. Yang XJ, Li Y, al-shammaa HAH, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival in selected patients with peritoneal carcinomatosis from abdominal and pelvic malignancies:results of 21 cases [J]. Ann Surg Oncol.2009,16 (2):345-351.
    7. Kim KW, Chow O, Parikh K, et al. Peritoneal carcinomatosis in patients with gastric cancer, and the role for surgical resection, cytoreductive surgery, and hyperthermic intraperitoneal chemotherapy [J]. Am J Surg.2014,207(1):78-83.
    8. Roviello F, Caruso S, Neri A, et al. Treatment and prevention of peritoneal carcinomatosis from gastric cancer by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy:overview and rationale [J]. Eur J Surg Oncol.2013,39(12):1309-1316.
    9. Yonemura Y, Kawamura T, Bandou E, et al. Treatment of peritoneal dissemination from gastric cancer by peritonectomy and chemohyperthermic peritoneal perfusion [J]. Br J Surg.2005,92:370-375.
    10. Glehen O, Schreiber V, Cotte E, et al. Cytoreductive surgery and intraperitoneal chemohyperthermia for peritoneal carcinomatosis arising from gastric cancer [J]. Arch Surg.2004,139:20-26.
    11. Mori T, Fujiwara Y, Sugita Y, Azama T, Ishii T, Taniguchi K, Yamazaki K, Takiguchi S, Yasuda T, Yano M, Monden M:Application of molecular diagnosis for detection of peritoneal micrometastasis and evaluation of preoperative chemotherapy in advanced gastric carcinoma [J]. Ann Surg Oncol. 2004,11:14-20.
    12. Yang XJ, Li Y, Yonemura Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy to treat gastric cancer with ascites and/or peritoneal carcinomatosis:results from a Chinese Center[J]. J Surg Oncol.2010,101(6):457-464.
    13. Mei LJ, Yang XJ, Tang L, et al. Establishment and identification of a rabbit model of peritoneal carcinomatosis from gastric cancer[J]. BMC Cancer.2010,10:124.
    14.梅列军,杨肖军,李雁,等.兔VX2腹膜转移癌模型的建立及转移特征[J].中华实验外科杂志.2009,26(7):128.
    15. Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion [J]. Cell Cycle. 2007,6:60-64.
    16. Vasiljeva O, Papazoglou A, Kruger A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer [J]. Cancer Res.2006, 66(10):5242-5250.
    17. Azoulay M, Florent JC, Monneret C, et al. Prodrugs of anthracycline antibiotics suited for tumor-specific activation [J]. Anticancer Drug Des.1995,10:441-450.
    18. Dubowchik GM, Firestone RA. Cathepsin B -sensitive dipeptide prodrugs.1. A model study of structural requirements for efficient release of doxorubicin [J]. Bioorg Med Chem Lett. 1998, 8(23):3341-3346.
    19. Dubowchik GM, Mosure K, Knipe JO, et al. athepsin B -sensitive dipeptide prodrugs.2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin [J]. Bioorg Med Chem Lett.1998, 8(23):3347-3352.
    20. Dubowchik GM, Firestone RA, Padilla L, et al. Cathepsin B -labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates:model studies of enzymatic drug release and antigen-specific in vitro anticancer activity [J]. Bioconjug Chem.2002,13:855-869.
    21. Gong F, Peng X, Luo C, et al. Cathepsin B as a potential prognostic and therapeutic marker for human lung squamous cell carcinoma [J]. Mol Cancer.2013,12:125.
    22. Nomura T, Katunuma N. Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells [J]. J Med Invest.2005,52(1-2):1-9.
    23. Bao W, Fan Q, Luo X, et al. Silencing of Cathepsin B suppresses the proliferation and invasion of endometrial cancer [J]. Oncol Rep.2013,30(2):723-30.
    24. Jemal A, Bray F, Center MM, et al. CA Cancer J Clin.2011 Mar-Apr;61(2):69-90.
    25.中华人民共和国国家卫生和计划生育委员会.2012中国卫生统计年鉴.http://www.nhfpc.gov.cn/htmlfiles/zwgkzt/ptjnj/year2012/index2012.html.
    26. Glehen O, Osinsky D, Cotte E, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis:morbidity and mortality analysis of 216 consecutive procedures [J]. Ann Surg Oncol.2003,10(8):863-869.
    27. lias D, Raynard B, Bonnay M, et al. Heated intra-operative intraperitoneal oxaliplatin alone and in combination with intraperitoneal irinotecan:Pharmacologic studies [J]. Eur J Surg Oncol.2006, 32(6):607-613.
    28. Markman M. Intraperitoneal hyperthermic chemotherapy as treatment of peritoneal carcinomatosis of colorectal cancer [J]. J Clin Oncol.2004,22(8):1527.
    29. Hildebrandt B, Rau B, Gellermann J, et al. Hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinosis [J]. J Clin Oncol.2004,22(8):1527-29.
    30. Dohchin A, Suzuki J, Seki H, et al. Immunostained cathepsins B and L correlate with depth of invasion and different metastatic pathways in early stage gastric carcinoma [J]. Cancer.2000, 89:482-487.
    31. Ebert MP, Kruger S, Fogeron ML, et al. Overexpression of cathepsin B in gastric cancer identified by proteome analysis [J]. Proteomics.2005,5:1693-1704.
    32. Sitabkhan Y, Frankfater A. Differences in the expression of cathepsin B in B16 melanoma metastatic variants depend on transcription factor Spl [J]. DNA Cell Biol 2007,26:673-682.
    33. Nouh MA, Mohamed MM, El-Shinawi M, et al. Cathepsin B:a potential prognostic marker for inflammatory breast cancer [J]. J Transl Med.2011,9:1.
    34. Cunningham D, Allum WH, Stenning SP, et al. MAGIC trial participants:perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer [J]. N Engl J Med.2006,355(1):11-20.
    35. Wong AL, Seng KY, Ong EM, et al. Body fat composition impacts the hematologic toxicities and pharmacokinetics of doxorubicin in Asian breast cancer patients [J]. Breast Cancer Res Treat.2014, 144(1):143-152.
    36. Li PC, Chen LD, Zheng F, et al. Intraperitoneal chemotherapy with hydroxycamptothecin reduces peritoneal carcinomatosis:results of an experimental study. J Cancer Res Clin Oncol,2008, 134(1):37-44.
    37. Rous P, Kidd JG, Smith WE. Experiments on the cause of the rabbit carcinomas derived from virus-induced papillomas. II. Loss by the Vx2 carcinoma of the power to immunize hosts against the papilloma virus [J]. J Exp Med.1952,96(2):159-174.
    38.刘险峰,任乐荣,苏广彦,等.兔VX2肿瘤细胞系的建立及其生物学特性的观察[J].中华病理学杂志.2005,34(10):661-663.
    39. Matsumura T, Sugahara T, Yui S, et al. Effect of irradiation on lung metastasis of VX2 carcinoma in maxillary sinus of rabbit [J]. Oral Radiol.1985,1:117-123.
    40. Schulz S, Haussler U, Mandic R, et al. Treatment with ozone/oxygen-pneumoperitoneum results in complete remission of rabbit squamous cell carcinomas [J]. Int J Cancer.2008,122(10):2360-2367.
    41. Ohira T, Okuma T, Matsuoka T, et al. FDG-MicroPET and diffusion-weighted MR image evaluation of early changes after radiofrequency ablation in implanted VX2 tumors in rabbits [J]. Cardiovasc Intervent Radiol.2009,32(1):114-1120.
    42. Luo W, Zhou X, Ren X, et al. Enhancing effects of SonoVue, a microbubble sonographic contrast agent, on high-intensity focused ultrasound ablation in rabbit livers in vivo [J]. J Ultrasound Med. 2007,26(4):469-476.
    43. Luo W, Zhou X, Yu M, et al. Ablation of high-intensity focused ultrasound assisted with SonoVue on Rabbit VX2 liver tumors:sequential findings with histopathology, immunohistochemistry, and enzyme histochemistry [J]. Ann Surg Oncol.2009,16(8):2359-2368.
    44. Kuszyk BS, Bluemke DA, Choti MA, et al.1999 ARRS Executive Council Award. Contrast-enhanced CT of small hypovascular hepatic tumors:effect of lesion enhancement on conspicuity in rabbits [J]. American Roentgen Ray Society. AJR Am J Roentgenol.2000,174(2):471-475.
    45. Pelz JO, Doerfer J, Hohenberger W, et al. A new survival model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing rats in the treatment of peritoneal carcinomatosis [J]. BMC Cancer.2005,5:56.
    46. Dunne AA, Schmidt A, Kuropkat C, et al. The auricular VX2 carcinoma--an animal model for sentinel node concept [J]. In Vivo.2003,17(5):457-61.
    47. 张晓青,刘炳亚,张明均,等。裸鼠人胃癌转移模型的建立及比较[J].中华实验外科杂 志.2005,22(12):1583.
    48.孙振球.医学统计学[M].北京:人民卫生出版社,2006,625-626.
    49. Lee MO. Determination of the surface area of the white rat with its application to the expression of metabolic results[J]. Am J Physiol.1929,89(1):24-33.
    50. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited [J]. FASEB J.2008,22 (3):659.
    51. Fujimoto S, Takahashi M, Mutou T, et al. Successful intraperitoneal hyperthermic chemoperfusion for postoperative peritoneal recurrence in patients with advanced gastriccarcinoma[J]. Cancer.1999,85(3): 529-534.
    52. Kim JY, Bae HS. Acontrolled clinical study of serosa-invasive gastric carcinoma patients who underwent surgery plus intraperitoneal hyperthermo-chemo-purfusion (IHCP) [J]. Gastric Cancer. 2001,4(1):27-33.
    53. Verwaal VJ, Ruth SV, Bree ED, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer[J]. J Clin Oncol.2003,21(20):3737-3743.
    54.唐利,梅列军,杨肖军,等.细胞减灭术加腹腔热灌注化疗治疗胃癌腹膜转移癌的实验研究[J].中华实验外科杂志.2011,28(3):332-340.
    55. Huang CQ, Feng JP, Yang XJ, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from colorectal cancer:A case-control study from a Chinese center [J]. J Surg Oncol.2013. doi:10.1002/jso.23545.
    56. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer:final results of a phase III randomized clinical trial [J]. Ann Surg Oncol.2011,18(6):1575-1581.
    57. Klaver YLB, Hendriks T, Lomme RMLM, et al. Introperative hyperthemic intraperitoneal chemotherapy after cytoreductive surgery for pertitoneal carcinomatosis in an experimental model[J]. Br J Surg.2010,97(12):1874-1880.
    58. Raue W, Kilian M, Braumann C, et al. Multmodel approach for treatment of peritoneal surface malignancises in a turner-bearing rat model[J]. Int J Colorectol Dis.2010,25(2):245-250.
    59. Zhu L, Gong SM, Peng KQ, et al. The distant occult peritoneal metastasis in patients with operable gastric cancer [J]. Clin J Cen Surg.2001,16(7):407-408.
    60.邵永胜,彭开勉,张应天,等.胃癌远处隐匿性腹膜转移组织学检测的意义[J].世界华人消化杂志,2008,16(8):862-868.
    61. Shao YS, Peng KM, Zhang YT, et al. Histologic detection and significance of distant occult peritoneal metastasis of gastric carcinoma [J]. Shijie Huaren Xiaohua Zazhi.2008,16(8):862-868.
    62. He JM, Pu YD, Zhu ZD, et al. Clinical study of detectable rate of intra-abdominal free cancer cells and hyperthermic peritoneal perfusion chemotherapy of patients with gastric cancer[J]. Chin J Bases Clin General Surg.2002,9(3):156-158.
    63. Bevanda M, Orsolic N, Basic I, et al. Prevention of peritoneal carcinomatosis in mice with combination hyperthermic intraperitoneal chemotherapy and IL-2[J]. Int J Hyperthermia.2009,25(2): 132-140.
    64. Glockzin G, Schlitt HJ, Piso P. Peritoneal carcinomatosis:patients selection, perioperative complications and quality of life related to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy [J]. World J Surg Oncol.2009,7:5.
    65. Pelz JOW, Doerfer J, Dimmler A, et al. Histological response of peritoneal carcinomatosis after hyperthermic intraperitoneal chemoperfusion (H1PEC) in experimental investigations[J]. BMC Cancer.2006,6:162.
    66. Raue W, Kilian M, Braumann C, et al. Multmodel approach for treatment of peritoneal surface malignancises in a turner-bearing rat model[J]. Int J Colorectol Dis.2010,25(2):245-250.
    67. Tang L, Mei LJ, Yang XJ, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival of gastric cancer with peritoneal carcinomatosis:evidence from an experimentalstudy[J].J Transl Med.2011,9:53.
    68. Shao LH, Liu SP, Hou JX, et al. Cathepsin b cleavable novel prodrug ac-phe-lys-pabc-DOX enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis:an experimental study [J]. Cancer.2012,118:2986-2996.
    69. Lorusso D, Scambia G, Amadio G, et al. Phase Ⅱ study of NGR-hTNF in combination with doxorubicin in relapsed ovarian cancer patients[J]. Br J Cancer.2012. doi:10.1038/bjc.2012.233.
    70. Kagami Y, Itoh K, Tobinai K, et al. Phase Ⅱ study of cyclophosphamide, doxorubicin, vincristine, prednisolone (CHOP) therapy for newly diagnosed patients with low-and low-intermediate risk, aggressive non-Hodgkin's lymphoma:final results of the Japan Clinical Oncology Group Study[J]. Int J Hematol.2012. doi:10.1007/sl2185-012-1101-2.
    71. Fujimoto S, Shrestha RD, Kokubun M, et al. Intraperitoneal hyperthermic perfusion combined with surgery effective for gastric cancer patients with peritoneal seeding [J]. Ann Surg.1988,208:36-41.
    72. Wang Q, Zhong YJ, Yuan JP, et al. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity:a preclinical study [J]. J Transl Med.2013,21;11:192.
    73. Macdonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction [J]. N Engl J Med. 2001,345(10):725-730.
    74. Chua YJ, Cunningham D. The UK NCRI MAGIC trial of perioperative chemotherapy in resectable gastric cancer:implications for clinical practice [J]. Ann Surg Oncol.2007,14:2687-2690.
    75. D'Ugo D, Rausei S, Biondi A, et al. Preoperative treatment and surgery in gastric cancer:friends or foes? [J]. Lancet Oncol.2009,10:191-195.
    76. Rabbani A, Finn RM, Ausio J. The anthracycline antibiotics:antitumor drugs that alter chromatin structure [J]. Bioessays.2005,27:50-56.
    77. Postma A, Elzenga NJ, Haaksma J, et al. Cardiac status in bone tumor survivors up to nearly 19 years after treatment with doxorubicin:a longitudinal study [J]. Med Pediatr Oncol.2002,39(2):86-92.
    78. Kratz F, Warnecke A, Schmid B, et al. Prodrugs of anthracyclines in cancer chemotherapy [J]. Curr Med Chem.2006,13(5):477-523.
    79. Fan Y, Du W, He B, et al. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin [J]. Biomaterials.2013,34(9):2277-88.
    80. Tiwari M. Nano cancer therapy strategies [J]. J Cancer Res Ther. 2012,8(1):19-22.
    81. Murdter TE, Friedel G, Backman JT, et al. Dose optimization of a doxorubicin prodrug (HMR 1826) in isolated perfused human lungs:low tumor pH promotes prodrug activation by beta-glucuronidase [J]. J Pharmacol Exp Ther.2002,301(1):223-228.
    82. Abu Ajaj K, Graeser R, Fichtner I, et al. In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B [J]. Cancer Chemother Pharmacol.2009,64(2):413-418.
    83. Schmid B, Chung DE, Warnecke A, et al. Albumin-binding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B:synthesis and antitumor efficacy [J]. Bioconjug Chem.2007,18(3):702-716.
    84. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA):a phase 3, open-label, randomised controlled trial [J]. Lancet.2010, 376:687-697.
    85. Stylianopoulos T, Jain RK:Combining two strategies to improve perfusion and drug delivery in solid tumors [J]. Proc Natl Acad Sci USA.2013,110:18632-18637.
    86. Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels [J]. Nat Commun.2013,4:2516.
    87. Chauhan VP, Stylianopoulos T, Boucher Y, et al. Delivery of molecular and nanoscale medicine to tumors:transport barriers and strategies [J]. Annu Rev Chem Biomol Eng.2011,2:281-298.
    88. Ravel D, Dubois V, Quinonero J, et al. Preclinical toxicity, toxicokinetics, and antitumoral efficacy studies of DTS-201, a tumor-selective peptidic prodrug of doxorubicin [J]. Clin Cancer Res.2008, 14(4):1258-1265.
    89. Harada M, Bobe I, Saito H, et al. Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, NC-6300 [J]. Cancer Sci.2011,102(1):192-199.
    90. Swenson CE, Perkins WR, Roberts P, et al. Liposome technology and the development of Myocet(TM) (liposomal doxorubicin citrate) [J]. Breast.2001,10 (Suppl 2):1-7.
    91. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer [J]. J Clin Oncol. 2001.19:1444-1454.
    92. Harris L, Batist G, Belt R, et al. Liposome encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma [J]. Cancer.2002,94:25-36.
    93. Tang L, Zhong YJ, Duan R, et al. Synthesis, identification and in vivo studies of tumor-targeting agent peptide doxorubicin (PDOX) to treat peritoneal carcinomatosis of gastric cancer with enhanced efficacy and reduced toxicity [J]. Mol Cancer.2014,13:44.
    94. Lai R, Long Y, Li Q, et al. Oxidative stress markers may not be early markers of doxorubicin-induced cardiotoxicity in rabbits [J]. Exp Ther Med.2011,2:947-950.
    95. Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity [J]. Nat Med.2012,18:1639-1642.
    96. Viswanatha Swamy AH, Wangikar U, Koti BC, et al. Cardioprotective effect of ascorbic acid on doxorubicin-induced myocardial toxicity in rats [J]. Indian J Pharmacol.2011,43:507-511.
    97. Rahman A, Alam M, Rao S, et al. Differential effects of doxorubicin on atrial natriuretic peptide expression in vivo and in vitro [J]. Biol Res.2001,34:195-206.
    [1]Jayne DG, Fook S, Loi C, et al. Peritoneal carcinomatosis from colorectal cancer[J]. Br J Surg,2002, 89(6):1545-1550.
    [2]Yang XJ, Li Y, Hassan AHA, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival in selected patients with peritoneal carcinomatosis from Abdominal and Pelvic Malignancies:Results of 21 Cases[J]. Ann Surg Oncol,2009,16(2):345-351.
    [3]Pilati P, Mocellin S, Rossi CR, et al. Cytoreductive surgery combined with hyper-thermic intraperitoneal intraoperative chemotherapy for peritoneal carcino-matosis arising from colon adenocarcinoma[J]. Ann Surg Oncol,2003,10(5):508-513.
    [4]李雁,杨国梁,杨肖军.细胞减灭术加腹腔热灌注化疗治疗腹膜种植瘤的研究进展[J].中国肿瘤临床,2007,34(21):1257-1260.
    [5]Piso P, Dahlke MH, Ghali N, et al. Multimodality treatment of peritoneal carcinomatosis from colorectal cancer:first results of a new German centre for peritoneal surface malignancies[J]. Int J Colorectal Dis,2007,22(11):1295-300.
    [6]Yan TD. Peritoneal carcinomatosis of colorectal origin:standard of care[J]. Ann Surg,2006, 244(4):632-633.
    [7]Bae JH, Lee JM, Ryu KS, et al. Treatment of ovarian cancer with paclitaxel-or carboplatin-based intraperitoneal hyperthermic chemotherapy during second surgery[J]. Gyn Oncol,2007, 106(1):193-200.
    [8]Yonemura Y, Ikeno T, Shinbo M, et al. Long-term results of peritonectomy on the patients with peritoneal carcinomatosis[J]. Gan To Kagaku Ryoho,2007,34(12):1926-1930.
    [9]Wang GP, Guan YS, Jin XR, et al. Development of novel 5-fluorouracil carrier erythrocyte with pharmacokinetics and potent antitumor activity in mice bearing malignant ascites[J]. J Gastroen Hepatol,2010,25(5):985-990.
    [10]Kulu Y, Dorfman JD, Kuruppu D, et al. Comparison of intravenous versus intraperitoneal administration of oncolytic herpes simplex virus 1 for peritoneal carcinomatosis in mice[J]. Cancer Gene Ther,2009,16(4):291-297.
    [11]Bevanda M, Orsolic N, Basic I. Prevention of peritoneal carcinomatosis in mice with combination hyperthermal intraperitoneal chemotherapy and IL-2[J]. Int J Hyperther,2009,25(2):132-140.
    [12]Li PC, Chen LD, Zheng F, et al. Intraperitoneal chemotherapy with hydroxycamptothecin reduces peritoneal carcinomatosis:results of an experimental study[J]. J Cancer Res Clin Oncol,2008, 134(1):37-44.
    [13]Keramidas M, Josserand V, Righini CA, et al. Intraoperative near-infrared image-guided surgery for peritoneal carcinomatosis in a preclinical experimental model[J]. Brit J Surg,2010,97(5):737-743.
    [14]Aarts F, Koppe MJ, Hendriks T, et al. Timing of Adjuvant Radioimmunotherapy after Cytoreductive Surgery in Experimental Peritoneal Carcinomatosis of Colorectal Origin[J]. Ann Surg Oncol,2007, 14(2):533-540.
    [15]Hartmann J, Kilian M, Atanassov V. First surgical tumour reduction of peritoneal surface malignancy in a rat's model[J]. Clin Exp Metastasis,2008,25(4):445-449.
    [16]Otto J, Jansen PL, Lucas S, et al. Reduction of peritoneal carcinomatosis by intraperitoneal administration of phospholipids in rats[J]. BMC Cancer,2007,7:104.
    [17]Raue W, Kilian M, Braumann C, et al. Multimodal approach for treatment of peritoneal surface malignancies in a tumour-bearing rat model[J]. Int J Colorectal Dis,2010,25(2):245-250.
    [18]Taguchi E, Nakamura K, Miura T, et al. Anti-tumor activity and tumor vessel normalization by the vascular endothelial growth factor receptor tyrosine kinase inhibitor KRN951 in a rat peritoneal disseminated tumor model [J]. Cancer Sci,2008,99(3):623-30.
    [19]Mei LJ, Yang XJ, Tang L, Hassan AHA, Yonemura Y, Li Y. Establishment and identification of a rabbit model of peritoneal carcinomatosis from gastric cancer[J]. BMC Cancer,2010,10:124.
    [20]梅列军,杨肖军,李雁,等.兔VX2腹膜转移癌模型的建立及转移特征.中华实验外科杂志.2009,26(7):128.
    [21]杨肖军,杨国樑,李雁.腹腔热灌注化疗治疗结直肠癌腹膜癌的现状及展望[J].国际肿瘤学杂志,2007,34(5):384-386.
    [22]Carmignani CP, Sugarbaker PH. Synchronous extraperitoneal and intraperitoneal dissemination of appendix cancer[J]. EJSO-Eur J Surg One,2004,30(8):864-868.
    [23]Esquivel J, Sticca R, Sugarbaker PH, et al. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy in the Management of Peritoneal Surface Malignancies of Colonic Origin:A Consensus Statemen[J]. Ann Surg Oncol,2007,14(1):128-133.
    [24]Steller EP, Ottow RT, Matthews W, et al. Recombinant interleukin-2 and adoptively transferred lymphokine-activated killer cells in the treatment of experimental peritoneal carcinomatosis[J]. Surg Forum,1985,36:390-392.
    [25]Koppe MJ, Hendriks T, Boerman OC, et al. Radioimmunotherapy is an effective adjuvant treatment modality after cytoreductive surgery of peritoneal carcinomatosis of colonic origin[J]. J Nucl Med, 2006,47(11):1867-1874.
    [26]Aarts F, Hendriks T, Boerman OC, et al. Hyperthermia and Fibrinolytic Therapy Do Not Improve the Beneficial Effect of Radioimmunotherapy Following Cytoreductive Surgery in Rats with Peritoneal Carcinomatosis of Colorectal Origin[J]. Cancer Biother Radio,2008,23(3):301-309.
    [27]Aarts F, Hendriks T, Boerman OC, et al. A Comparison Between Radioimmuno-therapy and Hyperthermic Intraperitoneal Chemotherapy for the Treatment of Peritoneal Carcinomatosis of Colonic Origin in Rats[J]. Ann Surg Oncol,2007,14(11):3274-3282.
    [28]余德芊,杜飞,高原.HGGZ2102型体腔热灌注机对犬腹腔热灌注化疗的安全性评估[J].遵义医学院学报,2006,29(1):10-14.
    [29]Ortega-Deballon P, Facy O, Magnin G, et al. Using a heating cable within the abdomen to make hyperthermic intraperitoneal chemotherapy easier: Feasibility and safety study in a pig model [J]. EJSO-Eur J Surg One,2010,36(3):324-328.
    [30]Ferron G, Gesson-Paute A, Classe JM, et al. Gynecol Oncol. Feasibility of laparoscopic peritonectomy followed by intra-peritoneal chemohyperthermia:An experimental study [J]. Gynecol Oncol,2005,99(2):358-361.
    [31]Sugarbaker PH, Mora JT, Carmignani P, et al. Update on chemotherapeutic agents utilized for perioperative intraperitoneal chemotherapy[J]. Oncologist,2005,10(2):112-122.
    [32]Glehen O, Stuart OA, Mohamed F, et al. Hyperthermia modifies pharmacokinetics and tissue distribution of intraperitoneal melphalan in a rat model[J]. Cancer Chemoth Pharm,2004, 54(1):79-84.
    [33]Hribaschek A, Kuhn R, Pross M, et al. Intraperitoneal Versus Intravenous CPT-11 Given Intra-and Postoperatively for Peritoneal Carcinomatosis in a Rat Model[J]. Surg Today,2006,36(1):57-62.
    [34]Zeamari S. Pharmacokinetics and pharmacodynamics of cisplatin afte rative hyperthermic intraperitoneal chemoperfusion[J]. Anticancer Res,2003,23(2)B:1643-1648.
    [35]Zeamari S. Pharmacokinetics of Oxaliplatin During Open Versus Laparoscopically Assisted Heat Intraoperative Intraperitoneal Chemotherapy [J]. Ann Surg Oncol,2003,15(1):339-344.
    [36]Bendavid Y, Leblond FA, Dube P. A study of the effect of temperature on the pharmacokinetic profile of raltitrexed administered by intraperitoneal route in the rat[J]. Med Sci Monit,2005,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700