用户名: 密码: 验证码:
甲状旁腺激素1-34对DH豚鼠原发性膝骨性关节炎的潜在保护作用及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分DH豚鼠原发性膝骨关节炎模型的实验研究
     目的:探讨Dunkin Hartley(DH)豚鼠原发性骨性关节炎的发生及其特点,对不同月龄的DH豚鼠不同原发osteoarthritis(OA)阶段关节软骨大体改变、关节软骨结构、组织化学成分的变化进行动态观察,了解软骨组织病理变化,为后续试验提供科学可用的OA原发模型。
     方法:32只雌性1月龄DH豚鼠随机分为4组,各组动物分别在1月龄、3月龄、6月龄、9月龄时处死,打开膝关节腔后,观察各组豚鼠膝关节软骨面并拍照记录。后腿去皮及肌肉组织,避免损伤膝关节,切取胫骨到股骨之间的关节软骨组织后,70%酒精固定豚鼠股骨,固定72小时后用EDTA-2Na制成脱钙液行脱钙处理,约8周后骨组织变软,钙盐彻底脱失后行常规梯度酒精脱水、二甲苯透明并进行石蜡包埋切片,将厚度约为6-8gm的骨组织石蜡切片行Masson染色,用于关节软骨组织形态学观察,采用Mankin评分方法定量分析关节软骨损伤情况;另取部分关节软骨标本立即按程序制成电镜标本行扫描电镜观察软骨面改变情况及透射电镜观察软骨细胞改变情况。采用免疫组化方法检测各组大鼠膝关节软骨中蛋白多糖(glycosaminoglycans, GAG)、基质金属蛋白酶-3(matrixmetalloproteinase-3, MMP-3)表达情况,应用Image pro-Plus6.0软件对免疫组化阳性蛋白表达情况进行积分光密度(integrated optical density, IOD)计算,定量分析各组大鼠膝关节软骨阳性细胞表达差异。采用ELISA法测量不同月份豚鼠血清中雌二醇的含量,进行统计分析。
     结果:
     1各组DH豚鼠体重变化随着月龄的增高,豚鼠体重逐渐升高,与前一月龄比较,差异具有统计学意义(P<0.05)。
     2不同月龄DH豚鼠膝关节软骨表面大体观察发现:1月龄组豚鼠膝关节软骨面光滑完整;而随着月龄的增长,3月龄时观察可见豚鼠膝关节软骨面晦涩,偶见关节面轻度破溃;6月龄时关节面晦涩加重,破溃面积增大;9月龄时破溃面积明显增大,周围可见较小骨赘形成。
     3关节软骨Masson染色形态学观察发现:1月龄组豚鼠关节软骨面完整,软骨层厚,软骨与软骨下骨界限清晰,基质着色均匀,细胞有序排列;3月龄组关节软骨面较完整,软骨略薄,软骨与软骨下骨界限较清晰,基质着色局部不一致,细胞排列出现簇集现象;6月龄组关节软骨面完整性欠佳,软骨更薄浅,软骨与软骨下骨界限模糊,中层部分失染,细胞数量减少,簇集现象较重;9月龄组关节软骨面完整性更差,软骨变薄明显,软骨与软骨下骨界限模糊不清,基质着色不均,软骨细胞变形坏死,且排列紊乱,深层有增殖细胞团生成。
     4关节软骨Mankin评分显示:随着DH豚鼠月龄增高,Mankin评分也不断升高,各组之间评分统计均有显著差异,具有统计学意义(P<0.05)。
     5扫描电镜结果:1月龄组软骨面光滑,似覆盖一层无定形物质,典型的垄形结构平行,无胶原暴露。3月龄组部分软骨表面无定形物质有所缺失,偶见圆形突起,部分暴露表层胶原纤维,排列较不规则,可见流水冲蚀样改变。6月龄组部分胶原纤维网增粗、断裂、剥脱样改变,圆形突起较3月龄组增多。部分软骨面垄形结构完全消失,表面粗糙,见散在凹塌,凹塌为缺失的表面软骨细胞所在。9月龄组软骨面胶原集合成粗枝状并翻起,裂缝中可见胶原纤维,凹塌样改变增多,软骨表面正常结构消失。
     6透射电镜结果:1月龄组分布在表层及深层的软骨细胞大多呈梭形或椭圆形,细胞结构、轮廓清晰,胞质内有丰富的线粒体、高尔基复合体和粗面内质网,且结构清晰。细胞外见纵横交错的胶原纤维,表层胶原纤维多与表面平行,深层多与软骨下骨垂直,不具明显横纹。3月龄组细胞基本清晰,少见不规则形,核膜基本清晰,染色质分布在核周边,部分细胞质结构不清,偶见粗面内质网肿胀。6月龄组细胞较不清晰,不规则形增多,核膜较不清晰,部分细胞质结构不清,可见粗面内质网肿胀,胞质中可见钙结晶体,胶原纤维部分增粗。9月龄组细胞不清晰且不规则,核膜不清晰,胞质结构不清,有大量钙结晶体,粗面内质网肿胀,胶原纤维增粗,出现明显横纹。
     7关节软骨免疫组化检测显示:随着DH豚鼠月龄增高,豚鼠软骨中GAG表达1月与3月间表达无明显差异,6月开始起显著降低,比较具有统计学差异(P<0.05);MMP-3表达3月开始显著升高,各组之间评分统计均有显著差异,具有统计学意义(P<0.05)。
     8随着DH豚鼠月龄的升高,血清中雌二醇含量呈增高趋势,1月至3月,3月至6月升高明显,有统计学意义(P<0.05),6月至9月雌二醇含量变化较平稳,无明显改变(P>0.05)。
     结论:雌性DH豚鼠随着月龄的增长,膝关节软骨发生了退行性变,且病变程度岁月龄增长而加重。 DH豚鼠作为一种原发性的OA动物模型,其发生过程与人OA的形成具有一定的相似之处,因此可以利用此模型来探讨OA发生的病因和机制。
     第二部分甲状旁腺激素1-34对豚鼠原发性膝骨关节炎潜在的保护作用
     目的:探讨早期应用甲状旁腺激素1-34(Parathyroid Hormone (1-34),PTH(1-34))干预对DH豚鼠原发性膝骨关节炎模型的保护作用。
     方法:48只雌性1月龄DH豚鼠随机分为6组,其中2组为给药组,在3月龄时开始给予PTH(1-34)皮下注射干预(15μg/kg/d,每周5天),分别干预3个月和6个月。在1月龄、3月龄、6月龄、9月龄时处死各组动物,打开膝关节腔后,观察各组豚鼠膝关节软骨面并拍照记录。后腿去皮及肌肉组织,避免损伤膝关节,切取胫骨到股骨之间的关节软骨组织后,70%酒精固定豚鼠股骨,固定72小时后用EDTA-2Na制成脱钙液行脱钙处理,约8周后待钙盐彻底脱失骨组织变软后行常规梯度酒精脱水、二甲苯透明并进行石蜡包埋切片,将厚度约为6-8gm的骨组织石蜡切片行Masson染色,用于关节软骨组织形态学观察,采用Mankin评分方法定量分析关节软骨损伤情况;采用免疫组化方法检测各组大鼠膝关节软骨中II型胶原(Type-II Collagen)、金属基质蛋白酶-13(matrix metalloproteinases-13,MMP-13)、骨硬化蛋白(sclerostin,SOST)表达情况,应用Image pro-Plus6.0软件对免疫组化阳性蛋白表达情况进行积分光密度(integrated optical density, IOD)计算,定量分析各组大鼠膝关节软骨阳性细胞表达差异。
     结果:
     1不同月龄DH豚鼠膝关节软骨表面大体观察发现:1月龄组豚鼠膝关节软骨面光滑完整;而随着月龄的增长,3月龄时观察可见豚鼠膝关节软骨面晦涩,偶见关节面轻度破溃;6月龄时关节面晦涩加重,破溃面积增大;9月龄时破溃面积明显增大,周围可见较小骨赘形成。6月PTH(1-34)给药组关节面破溃程度较轻,与3月龄组相仿;9月PTH(1-34)给药组关节面破溃程度较相同月龄对照组轻,且小骨赘形成较少。
     2关节软骨Masson染色形态学观察发现:1月龄组豚鼠关节软骨面完整,软骨厚,软骨与软骨下骨界限清晰,基质着色均匀一致,细胞排列有序;3月龄组关节软骨面较完整,软骨略薄,软骨与软骨下骨界限较清晰,基质着色局部不一致,细胞排列出现簇集现象;6月龄组关节软骨面完整性欠佳,软骨更薄浅,软骨与软骨下骨界限模糊,中层部分失染,细胞数量减少,簇集现象较重;6月PTH(1-34)给药组关节软骨面较完整,软骨厚度较相同月份对照组厚,基质着色较均匀,入骨细胞形态、排列均有所改善;9月龄组关节软骨面完整性更差,软骨变薄明显,软骨与软骨下骨界限模糊不清,基质着色不均,软骨细胞变形坏死,且排列紊乱,深层有增殖细胞团生成。9月PTH(1-34)给药组无论在软骨面完整性、软骨厚度、细胞形态、排列方面均较相同月龄对照组有改善。
     3关节软骨Mankin评分显示:随着DH豚鼠月龄增高,Mankin评分也不断升高,各组之间评分统计均有显著差异,具有统计学意义(P<0.05)。PTH(1-34)能显著降低Mankin评分,各给药组与同期对照组相比均有显著性差异(P<0.05)。
     4关节软骨免疫组化检测显示:随着DH豚鼠月龄增高,豚鼠软骨II型胶原表达显著降低,MMP-13与SOST显著升高,各组之间统计均有显著差异,具有统计学意义(P<0.05)。与同月龄对照组比较,PTH(1-34)能显著升高II型胶原表达,降低MMP-13与SOST的表达,各给药组与同期对照组相比均有显著性差异(P<0.05)。
     结论:在DH豚鼠原发性骨关节炎动物模型中,早期应用PTH(1-34)皮下注射能够刺激软骨细胞II型胶原合成,提高II型胶原表达,并降低MMP-13与SOST的表达,延缓DH豚鼠原发性膝关节软骨退变。
     第三部分甲状旁腺激素1-34对豚鼠原发性膝骨关节炎的作用机制
     目的:PTH(1-34)在软骨和骨调控中起重要作用,目前它作为一种治疗OA的潜在药物受到关注。本实验在DH豚鼠原发性骨关节炎动物模型基础上,早期给予PTH(1-34)进行干预,观察PTH(1-34)对豚鼠膝关节软骨及软骨下骨相关因子及骨组织形态结构的影响,初步探讨其作用机制。
     方法:48只雌性1月龄DH豚鼠随机分为6组,其中2组为给药组,在3月龄时开始给予PTH(1-34)皮下注射干预(15μg/kg/d,每周5天),分别干预3个月和6个月。在1月龄、3月龄、6月龄、9月龄时处死各组动物。后腿去皮及肌肉组织,避免损伤膝关节,采集的左右胫骨髁软骨下骨行Micro-CT检测,检测之后的远端标本放入4%多聚甲醛中固定72小时以上,用EDTA-2Na制成脱钙液行脱钙处理,约8-10周后骨组织变软待钙盐彻底脱失后行常规梯度酒精脱水、二甲苯透明并行石蜡包埋切片,将厚度约为6-8gm的骨组织石蜡切片分别行免疫组化检测各组豚鼠膝关节软骨及软骨下骨中骨保护素(osteoprotegerin, OPG)、核因子κB受体活化因子配基(receptor activator of nuclear factor-κB ligand, RANKL)、甲状旁腺激素受体(Parathyroid hormone-related peptide,PTH1R)表达情况,并计算软骨及软骨下骨中OPG/RANKL的比值变化。应用Image pro-Plus6.0软件对免疫组化阳性蛋白表达情况行积分光密度(integrated opticaldensity, IOD)计算,定量分析各组大鼠膝关节软骨阳性细胞表达差异。对各组胫骨软骨下骨行Micro-CT检测,计算软骨下骨骨小梁结构数据:骨密度(BMD)、相对体积(bone volume/trabecular volume, BV/TV)、骨小梁厚度(trabecular thickness, Tb.Th)、骨小梁数量(trabecular number,Tb.N)、软骨下骨骨板厚度(Plate thickness, Pl.Th)及结构模型指数(Struc-ture Model Index, SMI),定量分析软骨下骨结构参数。
     结果:
     1关节软骨免疫组化检测显示:随着DH豚鼠月龄的增高,豚鼠软骨RANKL表达显著升高,OPG、PTH1R表达降低,各组之间统计均有显著差异,具有统计学意义(P<0.05)。与同期对照组比较,PTH(1-34)能显著降低MMP-13、SOST、RANKL的表达,升高OPG、PTH1R的表达,各给药组与同期对照组相比均有显著性差异(P<0.05)。
     2软骨下骨免疫组化检测显示:随着DH豚鼠月龄增高,豚鼠软骨下骨OPG、PTH1R表达降低,RANKL表达升高,各组之间统计均有显著差异,具有统计学意义(P<0.05)。与同期对照组比较,PTH(1-34)能显著升高软骨下骨OPG、PTH1R表达,降低RANKL表达,各给药组与同期对照组相比均有显著性差异(P<0.05)。
     3DH豚鼠软骨OPG/RANKL比值及软骨下骨OPG/RANKL比值均随月龄增高而降低,各组之间统计均有显著差异,具有统计学意义(P<0.05)。与同期对照组比较,PTH(1-34)能显著升高软骨及软骨下骨OPG/RANKL比值,各给药组与同月龄对照组相比均有显著性差异(P<0.05)。
     4Micro-CT检测软骨下骨示:随着月龄的增高,对照组软骨下骨BMD升高,较前一月龄组相比,差异均具有统计学意义(P<0.05),6月给药组较相同月龄对照组BMD升高不明显,差异无统计学意义(P>0.05),9月给药组较相同月龄对照组BMD升高明显,差异具有统计学意义(P<0.05)。对照组软骨下骨BV/TV在3月龄时升高明显,6月龄和9月龄时无明显变化,给药组较同月龄对照组能显著升高BV/TV值,差异有统计学意义(P<0.05)。Tb.Th及Pl.Th随月龄升高而升高,较前一月龄组比较均有统计学意义(P<0.05),给药组较同月龄对照组能显著降低Tb.Th及Pl.Th值,差异有统计学意义(P<0.05)。对照组SMI在1月龄和3月龄无显著差异,在6月龄和9月龄时降低明显,差异有统计学意义(P<0.05),9月给药组较同月龄对照组能显著升高SMI值,差异有统计学意义(P<0.05)。
     结论:早期给予PTH(1-34)干预能通过降低RANKL在软骨及软骨下骨的表达,升高OPG、PTH1R在软骨及软骨下骨的表达,升高OPG/RANKL在软骨及软骨下骨的比值,改善软骨下骨骨小梁微观结构,维持软骨下骨生物力学性能发挥治疗OA的作用。
Part one Experimental study on guinea pigs with spontaneous kneeosteoarthritis
     Objective: To investigate the characteristics of Dunkin Hartley guineapigs with spontaneous knee osteoarthritis, and observe age-related changes inarticular cartilage, subchondral bone mineral density and estradiol levels inblood serum in this model over the entire course of osteoarthritis progression,and provide a scientific model of primary osteoarthritis.
     Methods: We studied spontaneous knee osteoarthritis in32femaleDunkin Hartley guinea pigs. Animals were randomly sacrificed at1,3,6,9, or12months of age (eight animals at each time point). Knee joints spaces wereopened. Then, cartilage surfaces of femur and tibia were observed andrecorded by digital camera. After disarticulation, femurs were fixed for72hours in70%ethanol and decalcified for6weeks with15%EDTA-2Na(pH7.4, at4°C). Tissues were regularly dehydrated, embedded in paraffin, andcut into6-8um-thick sections. The sections were stained with Masson. Usingwith light microscope (Olympus BX61, Japan), three color digital imageswere recorded to analysis articular cartilage lesions from each section indifferent regions. Mankin’s score system was properly adjusted and applied tomeasure morphological changes of cartilage. The expressions ofglycosaminoglycans and matrix metalloproteinase-3antibody were detectedusing immunohistochemistry method. Positive expression was quantified byoptical density method, using with Image pro-Plus (IPP) software. Bloodsamples were harvested before sacrifice for enzyme-linked immunosorbentassay (ELISA) analysis of estradiol concentration.
     Results:
     1As the animals’ age increased, they gained significantly more weight. The weight changes in each group were compared, and there weresignificantly different from each group animals(P<0.05).
     2The articular cartilage in1-month old animals was smooth and withoutany evidence of degeneration. At3months of age, mild discontinuous fibrosisoccasionally appeared. By6months of age, cartilage ulcerations and matrixloss were obvious and osteophytes had begun to develop when animalsreached9months of age.
     3As seen by Masson’s trichrome staining, articular cartilage in1-monthold animals had normal cellularity and extracellular matrix. Early histologicalchanges were observed in3-month old animals, including focal proteoglycanloss and fibrillation. At6months old, animals displayed chondrocytehypertrophy,“cloning” and surface cartilage lesions, and more obviouschondrocyte death/loss. Fibrillation and proteoglycan loss were observed in9-month old animals, and these degenerative changes extended into deeperzones.
     4All of the aforementioned changes were semi-quantitatively confirmedby age-dependent increased histological score according to the Mankinscoring system. There was a significant difference of Mankin scores betweenin each groups (P <0.05).
     5The cartilage surface of normal group was smooth as if it was coveredwith some amorphous substance, and the stria structure was intact, and nocollagen was exposed. The collagenous fibers on the cartilage surface of3-month group were exposed, and they arranged irregularly as if they wereeroded by running water, and in6month group some collagenous fiber retiabecame coarse, broken, exfoliative and even were turned over. In9monthgroup, there were some scattering on the surface of chondrocyte, collagenousfiber retia became coarser than6month group.
     6TEM revealed more details regarding cellular degenerations during OAprogression in this model: more chondrocytes were observed in1-month oldanimals and no apoptotic or necrotic chondrocytes were found; cell nucleiand membranes were integrated and rich in cytoplasmic organoids, chromatin was distributed uniformity, and few abnormal chondrocytes were detected in3-month old animals, with irregular shapes and loss of cytoplasmic organoids.Age-related increase in apoptotic or necrotic chondrocytes were detected, asshown in Figure5, the cavity around the cell became smaller with cellular andnuclear contraction, cytoplasmic organoid loss or disappearance, and loss ofnormal chondrocytes occurred. For each age group, normal and degeneratingcell numbers were calculated, as shown in Figure6, and the percentage ofdegenerating cells increased in an age-related manner.
     7We used immunohistochemistry to examine the distribution of MMP-3and GAG expression in knee joint cartilage from guinea pigs from each agegroup. The IOD values in each group showed that expression of GAG wasintense in younger animals, with a significant age-related decrease in GAGexpression beginning from6months of age(P<0.05). In contrast, an increasein MMP-3expression was detected with increasing age of the animals(P<0.05).
     8From months1to6, serum estradiol levels increased markedly(P<0.05), before remaining stable with no significant differences between6-month old and9-month old animals.
     Conclusion: Age-related articular cartilage degeneration occurred inDunkin Hartley guinea pigs beginning at3months of age in parallel withactivate cellular degeneration and matrix catabolism, while no directlypositive or negative correlation between osteoarthritis progression andestradiol serum level. Dunkin Hartley guinea pigs is a scientific model ofprimary osteoarthritis.
     Part two The protential effects of PTH(1-34) on knee joints of DH guineapigs with spontaneous osteoarthritis.
     Objective: To investigate the effect of PTH(1-34) on articular cartilagedegeneration in knee joints of DH guinea pigs with spontaneous osteoarthritis.
     Methods: Forty-eight1-month-old guinea pigs were divided into sixgroups: four groups were untreated and sacrificed at1,3,6and9months ofage; the other two groups received PTH (1-34)(15ug/kg/day,5days weekly) from3months of age, and were sacrificed at6and9months. Knee jointsspaces were opened. Then, cartilage surfaces of femur and tibia were observedand recorded by digital camera. After disarticulation, femurs were fixed for72hours in70%ethanol and decalcified for6weeks with15%EDTA-2Na(pH7.4, at4°C). Tissues were regularly dehydrated, embedded in paraffin, andcut into6-8um-thick sections. The sections were stained with Masson. Usingwith light microscope (Olympus BX61, Japan), three color digital imageswere recorded to analysis articular cartilage lesions from each section indifferent regions. Mankin’s score system was properly adjusted and applied tomeasure morphological changes of cartilage. The expressions of Type-IICollagen, matrix metalloproteinases-13and sclerostin antibody were detectedusing immunohistochemistry method. Positive expression was quantified byoptical density method, using with Image pro-Plus (IPP) software.
     Results:
     1The gross morphology at1month of age showed that the guinea pigs’articular surfaces were smooth, with an absence of osteophyte formation in thefemoral condyles and tibial plateaus. By3months of age, mild discontinuousfibrosis could be seen at the femoral condyles and tibial plateaus. The animalsdisplayed greater severity of OA with increasing age,6-month-old guinea pigsshowed obvious cartilage ulceration, and at9months of age, cartilage loss andtypical osteophyte were developed, the degeneration was particularlypronounced in the medial condyle. Although animals in the PTH(1-34)-treated group had rougher surfaces, ulceration and osteophytes, thesewere not as serious as those in the control groups.
     2With the Masson stain, the articular cartilage in1-month-old animalshad a smooth surface and normal cellularity, and no abnormalities were notedin the chondrocytes or extracellular matrix. Early histological changes wereobserved in3-month-old animals, including focal proteoglycan loss andfibrillation. With increasing age,6-month-old animals displayed more obviouschondrocyte death/loss, fibrillation and proteoglycan loss, and thesedegenerative changes extended into deeper zone and cell cloning is prominent in9-month-old animals. The cartilage samples in the PTH (1-34)-treatedgroups showed marked differences when compared with the control groups,with slight articular cartilage degeneration.
     3The Mankin score reflected pathological changes to the cartilage. Forthe age-matched groups, the Mankin scores increased with age (P <0.05).PTH (1-34) treatment reduced the Mankin score at6and9months of ageseparately, in contrast to the control group (P <0.05).
     4The analysis found a significant decrease in type-II collagen expressionand an increase in the expression of MMP-13and SOST in the control groupsas the age of the animals increased (P <0.05). Guinea pigs treated with PTH(1-34) showed a increase in type-II collagen expression, and a decrease inMMP-13and SOST expression at6and9months of age respectively, ascompared with the control groups(P <0.05).
     Conclusion: Early intervention with PTH (1-34) stimulated typeⅡc ollagen synthesis and inhibited expressions of SOST and MMP-13, andprevention of further aggravation of cartilage degradation in a naturallyoccurring OA modelPart three The mechanism of PTH(1-34) on knee joints of DH guinea pigs
     with spontaneous osteoarthritis.
     Objective: PTH (1-34) was a potent bone-turnover agent and appliedinto treatments of bone metabolic diseases. This study aimed to study themechanism of parathyroid hormone (1-34) on the micro-structure ofsubchondral bone, and protect against cartilage degradation in an animalmodel of naturally occurring OA.
     Methods: Forty-eight1-month-old guinea pigs were divided into sixgroups: four groups were untreated and sacrificed at1,3,6and9months ofage; the other two groups received PTH (1-34)(15ug/kg/day,5days weekly)from3months of age, and were sacrificed at6and9months. Knee jointsspaces were opened. Then, cartilage surfaces of femur and tibia were observedand recorded by digital camera. After soft tissues removed, femurs wereplaced under the probe and followed same position. The distal femur was scanned by micro computed tomography(Micro-CT). Static parameters anddynamic parameters, including bone mineral density(BMD), bone volume(BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), Platethickness(Pl.Th) and Structure Model Index(SMI). After Micro-CT test,femurs were fixed for72hours in70%ethanol and decalcified for6weekswith15%EDTA-2Na (pH7.4, at4°C). Tissues were regularly dehydrated,embedded in paraffin, and cut into6-8um-thick sections. The expressions ofosteoprotegerin, receptor activator of nuclear factor-κB ligand and Parathyroidhormone-related peptide antibody in cartilage and subchondral bone weredetected using immunohistochemistry method. Positive expression wasquantified by optical density method, using with Image pro-Plus (IPP)software.
     Results:
     1The expressions of OPG, RANKL and PTH1R in cartilage: Theanalysis found a significant decrease in OPG and PTH1R expression and anincrease in the expression of RANKL in the control groups as the age of theanimals increased (P <0.05). Guinea pigs treated with PTH (1-34) showed aincrease in OPG and PTH1R expression, and a decrease in RANKLexpression at6and9months of age respectively, as compared with the controlgroups (P <0.05).
     2The expressions of OPG, RANKL and PTH1R in subchondral bone:The analysis found a significant decrease in OPG and PTH1R expression andan increase in the expression of RANKL in the control groups as the age of theanimals increased (P <0.05). Guinea pigs treated with PTH (1-34) showed aincrease in OPG and PTH1R expression, and a decrease in RANKLexpression at6and9months of age respectively, as compared with the controlgroups (P <0.05).
     3With increasing age, the control group had a gradually decreasing ratioof OPG/RANKL in both the cartilage and subchondral bone. Compared withthe control animals, increases in the OPG/RANKL ratio for cartilage andsubchondral bone in the PTH (1-34)-treated groups (P <0.05).
     4Bone mineral density increased with age and reached constant levelsafter6months. PTH (1-34)-treated animals showed higher values comparedwith those of the control groups, with a significant difference between animalsaged9months. Tb.Th increased with age, and BV/TV was highest at3months,and then remained constant. With advanced age, the SMI were markedlydecreased. Compared with the control groups, PTH (1-34) treatment increasedBV/TV at both6months and9months, and SMI at9months of age. From1to6months of age, subchondral plate thickness of control group wereincreased markedly (P<0.05), and remained fairly constant thereafter. ThoughPTH treated group has slightly increased subchondral plate thickness, there isno difference when compared with control group.
     Conclusion: PTH (1-34) can increase OPG and PTH1R expression,OPG/RANKL ratio in both cartilage and subchondral bone, decrease RANKLexpression in both cartilage and subchondral bone, and retard the deteriorationof subchondral trabecular bone.
引文
1Wieland HA, Michaelis M, Kirschbaum BJ, et al. Osteoarthritis--anuntreatable disease? Nat Rev Drug Discov,2005,4(4):331-344
    2R.Forestier, A.Francon, V.Briole, et al. Prevalence of generalizedosteoarthritis in apopulation with knee osteoarthritis. Joint Bone Spine.2011,78(3):275-278
    3Mobasheri A. The future of osteoarthritis therapeutics: targetedpharmacological therapy. Curr Rheumatol Rep,2013,15(10):364
    4Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articularcartilage and sub-chondral bone changes in the rat anterior cruciateligament transection and meniscectomized models of osteoarthritis. Bone,2006,38(2):234-243
    5Abramson SB, Attur M. Developments in the scientific understanding ofosteoarthritis. Arthritis Res Ther,2009,11(3):227
    6Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone2012;51(2):204-211
    7Blagojevic M, Jinks C,Jeffery A, et al. Risk factors for onsetofosteoarthritis of the knee in older adults; a systematic reviewandmeta-analysis. Osteoarthritis Cartilage,2010;18(1):24-33
    8Merx H, Dreinh fer K, Schr der P, et al. International variation in hipreplacement rates. Ann Rheum Dis,2003,62(3):222-226
    9NIH Consensus Panel. NIH Consensus Statement on total kneereplacement December8-10,2003. J Bone Joint Surg Am,2004,86-A(6):1328-1335
    10Sellam J, Berenbaum F. The role of synovitis in pathophysiology andclinical symptoms of osteoarthritis. Nat Rev Rheumatol,2010,6(11):625-635
    11Mapp PI, Sagar DR, Ashraf S, et al. Differences in structural and painphenotypes in the sodium monoiodoacetate and meniscal transectionmodels of osteoarthritis. Osteoarthritis Cartilage2013;21(9):1336-1345
    12Orth P, Cucchiarini M, Zurakowski D, et al. Parathyroid hormone [1-34]improves articular cartilage surface architecture and integration andsubchondral bone reconstitution in osteochondral defects in vivo.Osteoarthritis Cartilage2013;21(4):614-624
    13Arunakul M, Tochigi Y, Goetz JE, et al. Replication of chronic abnormalcartilage loading by medial meniscus destabilization for modelingosteoarthritis in the rabbit knee in vivo. J Orthop Res2013;31(10):1555-1560
    14Mohan G, Perilli E, Parkinson IH, et al. Pre-emptive, early, and delayedalendronate treatment in a rat model of knee osteoarthritis: effect onsubchondral trabecular bone microarchitecture and cartilage degradationof the tibia, bone/cartilage turnover, and joint discomfort. OsteoarthritisCartilage2013;21(10):1595-1604
    15Cheng T, Zhang L, Fu X, et al. The potential protective effects ofcalcitonin involved in coordinating chondrocyte response, extracellularmatrix, and subchondral trabecular bone in experimental osteoarthritis.Connect Tissue Res2013;54(2):139-146
    16Huebner JL, Hanes MA, Beekman B, et al. A comparative analysis ofbone and cartilage metabolism in two strains of guinea-pig with varyingdegrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage2002;10(10):758-767
    17Wang T, Wen CY, Yan CH, et al. Spatial and temporal changes ofsubchondral bone proceed to microscopic articular cartilage degenerationin guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage2013;21(4):574-581
    18Qvist P, Bay-Jensen AC, Christiansen C, et al. The disease modifyingosteoarthritis drug (DMOAD): is it in the horizon? Pharmacol Res,2008,58(1):1-7
    19Hunter DJ. Pharmacologic therapy for osteoarthritis--the era of diseasemodification. Nat Rev Rheumatol,2011,7(1):13-22
    20Roth SH, Anderson S. The NSAID dilemma: managing osteoarthritis inhigh-risk patients. Phys Sportsmed,2011,39(3):62-74
    21Innes JF, Clayton J, Lascelles BD. Review of the safety and efficacy oflong-term NSAID use in the treatment of canine osteoarthritis. Vet Rec,2010,166(8):226-230
    22Fendrick AM, Greenberg BP. A review of the benefits and risks ofnonsteroidal anti-inflammatory drugs in the management of mild-to-moderate osteoarthritis. Osteopath Med Prim Care,2009,3(6):1
    23Krzeski P, Buckland-Wright C, Bálint G, et al. Development ofmusculoskeletal toxicity without clear benefit after administration ofPG-116800, a matrix metalloproteinase inhibitor, to patients with kneeosteoarthritis: a randomized,12-month, double-blind, placebo-controlledstudy. Arthritis Res Ther,2007,9(5):R109
    24Hock JM, Gera I. Effects of continuous and intermittent administrationand inhibition of resorption on the anabolic response of bone toparathyroid hormone. J Bone Miner Res1992;7(1):65-72
    25Uzawa T, Hori M, Ejiri S, et al. Comparison of the effects of intermittentand continuous administration of human parathyroid hormone (1–34) onrat bone. Bone1995;16(4):477-484
    26Chang JK, Chang LH, Hung SH, et al. Parathyroid hormone1–34inhibits terminal differentiation of human articular chondrocytes andosteoarthritis progression in rats. Arthritis Rheumatol2009;60(10):3049-3060
    27Lombardi G, Di Somma C, Rubino M, et al. The roles of parathyroidhormone in bone remodeling: prospects for novel therapeutics. JEndocrinol Invest2011;34(7):18-22
    1R.Forestier, A.Francon, V.Briole, et al. Prevalence of generalizedosteoarthritis in apopulation with knee osteoarthritis. Joint Bone Spine,2011,78(3):275-278
    2Mobasheri A. The future of osteoarthritis therapeutics: targetedpharmacological therapy. Curr Rheumatol Rep,2013(10),15:364
    3Wang T, Wen CY, Yan CH, et al. Spatial and temporal changes ofsubchondral bone proceed to microscopic articular cartilage degenerationin guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage,2013,21(4):574-581
    4Johnson K, Svensson CI, Etten DV, et al. Mediation of spontaneous kneeosteoarthritis by progressive chondrocyte ATP depletion in Hartley guineapigs. Arthritis Rheum,2004,50(4):1216-1225
    5Gurkan I, Ranganathan A, Yang X, et al. Modification of osteoarthritis inthe guinea pig with pulsed low-intensity ultrasound treatment.Osteoarthritis Cartilage,2010,18(5):724-733
    6Martín-Millán M, Casta eda S. Estrogens, osteoarthritis and inflammation.Joint Bone Spine,2013,80(4):368-373
    7Armstrong S, Read R, Ghosh P. The effects of intraarticular hyaluronan oncartilage and subchondral bone changes in an ovine model of earlyosteoarthritis. J Rheumatol,1994,21(4):680-688
    8Van den Berg, WB. Osteoarthritis year2010in review: pathomechanisms.Osteoarthritis Cartilage,2011,19(4):338-341
    9Li H, Li L, Min J, et al. Levels of metalloproteinase (MMP-3,MMP-9),NF-kappaB ligand (RANKL), and nitric oxide (NO) in peripheral blood ofosteoarthritis (OA) patients. Clin Lab,2012,58(7):755-762
    10Marijnissen AC, van Roermund PM, TeKoppele JM, et al. The canine'groove' model, compared with the ACLT model of osteoarthritis.Osteoarthritis Cartilage,2002,10(2):145-155
    11Muehleman C, Green J, Williams JM, et al. The effect of bone remodelinginhibition by zoledronic acid in an animal model of cartilage matrixdamage. Osteoarthritis Cartilage,2002,10(3):226-233
    12Jimenez PA, Glasson SS, Trubetskoy OV, et al. Spontaneous osteoarthritisin Dunkin Hartley guinea pigs: histologic, radiologic, and biochemicalchanges. Lab Anim Sci,1997,47(6):598-601
    13Huebner JL, Hanes MA, Beekman B, et al. A comparative analysis ofbone and cartilage metabolism in two strains of guinea-pig with varyingdegrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage,2002,10(10):758-767
    14Wang T, Wen CY, Yan CH, et al. Spatial and temporal changes ofsubchondral bone proceed to microscopic articular cartilage degenerationin guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage,2013,21(4):574-581
    15Bendele AM, Hulman JF. Effects of body weight restriction on thedevelopment and progression of spontaneous osteoarthritis in guinea pigs.Arthritis&Rheumatism,1991,34(9):1180-1184
    16Wei L, de Bri E, Lundberg A, et al. Mechanical load and primary guineapig osteoarthrosis. Acta Orthop Scand,1998,69(4):351-357
    17Ateshian GA. The role of interstitial fluid pressurization in articularcartilage lubrication. J Biomech,2009,42(9):1163-1176
    18Mort JS, Billington CJ. Articular cartilage and changes in arthritis:matrix degradation. Arthritis Res,2001,3(6):337-341
    19Wong M, Carter DR. Articular cartilage functional histomorphology andmechanobiology: a research perspective. Bone,2003,33(1):1-13
    20BhosaleAM, Richardson JB. Articular cartilage: structure, injuries andreview of management. Br Med Bul,2008,87(1):77-95
    21Abdallah BM, Bay-Jensen AC, Srinivasan B, et al. Estrogen inhibitsDlk1/FA1production: a potential mechanism for estrogen effects on boneturnover. J Bone Miner Res,2011,26(10):2548-2551
    22Claassen H, Schunke M, Kurz B. Estradiol protects cultured articularchondrocytes from oxygen-radicalYinduced damage. Cell Tissue Res,
    2005,319(3):439-445
    1Funderburgh JL. Keratan sulfate: structure, biosynthesis, and function.Glycobiology.2000,10(10):951-958
    2Poole AR, Kobayashi M, Yasuda T, et al. Type II collagen degradation andits regulation in articular cartilage in osteoarthritis. Ann Rheum Dis,2002,61(2):78-81
    3HeijinkA, Gomoll AH, Madry H, et al. Biomechanical considerations in thepathogenesis of osteoarthritis of the knee. Knee Surg Sports TraumatolArthrosc,2012,20(3):423-435
    4Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase(MMP-1, MMP-13) genes in arthritis: integration of complex signalingpathways for the recruitment of gene-specific transcription factors. ArthritisRes,2002,4(3):157-164
    5Sondergaard BC, Wulf H, Henriksen K, et al. Calcitonin directly attenuatescollagen type II degradation by inhibition of matrix metalloproteinaseexpression and activity in articular chondrocytes. OsteoarthritisCartilage,2006,14(8):759-768
    6Little CB, Fosang AJ. Is cartilage matrix breakdown an appropriatetherapeutic target in osteoarthritis-insights from studies of aggrecan andcollagen proteolysis? Curr Drug Targets,2010,11(5):561-575
    7Roth SH, Anderson S. The NSAID dilemma: managing osteoarthritis inhigh-risk patients. Phys Sportsmed,2011,39(3):62-74
    8Innes JF, Clayton J, Lascelles BD. Review of the safety and efficacy oflong-term NSAID use in the treatment of canine osteoarthritis. Vet Rec,2010,166(8):226-230
    9Hock JM, Gera I. Effects of continuous and intermittent administration andinhibition of resorption on the anabolic response of bone to parathyroidhormone. J Bone Miner Res,1992,7(1):65-72
    10Chang JK, Chang LH, Hung SH, et al. Parathyroid hormone1–34inhibitsterminal differentiation of human articular chondrocytes and osteoarthritisprogression in rats. Arthritis Rheumatol,2009,60(10):3049-3060
    11Arunakul M, Tochigi Y, Goetz JE, et al. Replication of chronic abnormalcartilage loading by medial meniscus destabilization for modelingosteoarthritis in the rabbit knee in vivo. J Orthop Res,2013,31(10):1555-1560.
    12Armstrong S, Read R, Ghosh P. The effects of intraarticular hyaluronan oncartilage and subchondral bone changes in an ovine model of earlyosteoarthritis. J Rheumatol,1994,21(4):680-688
    13Abramson SB, Attur M. Developments in the scientific understanding ofosteoarthritis. Arthritis Res Ther,2009,11(3):227
    14Felson DT. Developments in the clinical understanding of osteoarthritis.Arthritis Res Ther,2009,11(1):203
    15Poole AR, Kobayashi M, Yasuda T, et al. Type II collagen degradation andits regulation in articular cartilage in osteoarthritis. Ann Rheum Dis,2002,61(2):78-81
    16Little CB, Fosang AJ. Is cartilage matrix breakdown an appropriatetherapeutic target in osteoarthritis-insights from studies of aggrecan andcollagen proteolysis? Curr Drug Targets,2010,11(5):561-575
    17Pastoureau PC, Hunziker EB, Pelletier JP. Cartilage, bone and synovialhistomorphometry in animal models of osteoarthritis. OsteoarthritisCartilage,2010,18(3):S106-112
    18Rizkalla G, Reiner A, Bogoch E, Poole AR. Studies of the articularcartilage proteoglycan aggrecan in health and osteoarthritis. Evidence formolecular heterogeneity and extensive molecular changes in disease. J ClinInvest,1992,90(6):2268-2277
    19Venkatesan N, Barré L, Bourhim M, et al. Xylosyltransferase-I regulatesglycosaminoglycan synthesis during the pathogenic process of humanosteoarthritis. PLoS One,2012,7(3):e34020
    20Hardingham T. Extracellular matrix and pathogenic mechanisms inosteoarthritis. Curr Rheumatol Rep,2008,10(1):30-36
    21Cawston TE, Wilson AJ: Understanding the role of tissue degradingenzymes and their inhibitors in development and disease. Best Pract ResClin Rheumatol,2006,20(5):983-1002
    22Pelletier JP, Boileau C, Brunet J, et al. The inhibition of subchondral boneresorption in the early phase of experimental dog osteoarthritis bylicofelone is associated with a reduction in the synthesis of MMP-13andcathepsin K. Bone,2004,34(3):527-538
    23Burrage PS, Mix KS, Brinckerhoff CE: Matrix metalloproteinases: role inarthritis. Front Biosci,2006,11(1):529-543
    24Orth P, Cucchiarini M, Zurakowski D, et al. Parathyroid hormone [1-34]improves articular cartilage surface architecture and integration andsubchondral bone reconstitution in osteochondral defects in vivo.Osteoarthritis Cartilage,2013,21(4):614-624
    25Uzawa T, Hori M, Ejiri S, et al. Comparison of the effects of intermittentand continuous administration of human parathyroid hormone (1–34) on ratbone. Bone,1995,16(4):477-484
    26Gurkan I, Ranganathan A, Yang X, et al. Modification of osteoarthritis inthe guinea pig with pulsed low-intensity ultrasound treatment.Osteoarthritis Cartilage,2010,18(5):724-733
    27Krause C, Korchynskyi O, de Rooij KE, Weidauer SE, et al. Distinct modesof inhibition by Sclerostin on bone morphogenetic protein and Wntsignaling pathways. J Biol Chem,2010,285(53):41614-41626
    28Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6and a Wntsignaling inhibitor. J Biol Chem,2005,280(29):26770-26775
    29Chan BY, Fuller ES, Russell AK, et al. Increased chondrocyte sclerostinmay protect against cartilage degradation in osteoarthritis. OsteoarthritisCartilage,2011,19(7):874-885
    30Van Bezooijen RL, Bronckers AL, Gortzak RA, et al. Sclerostin inmineralized matrices and van Buchem disease. J Dent Res,2009,88(6):569-574
    1Wong BL, Bae WC, Chun J, et al. Biomechanics of cartilage articulation:effects of lubrication and degeneration on shear deformation. ArthritisRheum,2008,58(7):2065-2074
    2Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articularcartilage repair: current problems in the surgical management. Knee SurgSports Traumatol Arthrosc,2010,18(4):434-447
    3Lindsey CT, Narasimhan A, Adolfo JM, et al. Magnetic resonanceevaluation of the interrelationship between articular cartilage andtrabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage,2004,12(2):86-96
    4Ding M, Danielsen CC, Hvid I. Effect of hyaluronan on three-dimensionalmicroarchitecture of subchondral bone tissues in guinea pig primaryosteoarthrosis. Bone,2005,36(3):489-501
    5Bellido M, Lugo L, Roman-Blas JA, et al. Subchondral bonemicrostructural damage by increased remodelling aggravates experimentalosteoarthritis preceded by osteoporosis. Arthritis Res Ther,2010,12(4):R152
    6Young BD, Samii VF, Mattoon JS, et al. Subchondral bone density andcartilage degeneration patterns in osteoarthritic metacarpal condyles ofhorses. Am J Vet Res,2007,68(8):841-849
    7Burr DB, Radin EL. Microfractures and microcracks in subchondral bone:are they relevant to osteoarthrosis? Rheum Dis Clin North Am,2003,29(4):675-685
    8Orth P, Cucchiarini M, Zurakowski D, et al. Parathyroid hormone [1-34]improves articular cartilage surface architecture and integration andsubchondral bone reconstitution in osteochondral defects in vivo.Osteoarthritis Cartilage,2013,21(4):614-624
    9Uzawa T, Hori M, Ejiri S, et al. Comparison of the effects of intermittentand continuous administration of human parathyroid hormone (1–34) onrat bone. Bone,1995,16(4):477-484
    10Ding M. Microarchitectural adaptations in aging and osteoarthroticsubchondral bone issues. Acta Orthop Suppl,2010,81(340):1-53
    11Chiba K, Nango N, Kubota S, et al. Relationship between microstructureand degree of mineralization in subchondral bone of osteoarthritis-asynchrotron radiation micro CT study. J Bone Miner Res,2012,27(7):1511-1577
    12Hayami T, Pickarski M, Wesolowski GA, et al. The role of subchondralbone remodeling in osteoarthritis: reduction of cartilage degeneration andprevention of osteophyte formation by alendronate in the rat anteriorcruciate ligament transection model. Arthritis Rheum,2004,50(4):1193-1206
    13Burr DB. Bone quality: understanding what matters. J MusculoskeletNeuronal Interact,2004,4(2):184-186
    14Van den Berg, WB. Osteoarthritis year2010in review: pathomechanisms.Osteoarthritis Cartilage,2011,19(4):338-341
    15HeijinkA, Gomoll AH, Madry H, et al. Biomechanical considerations inthe pathogenesis of osteoarthritis of the knee. Knee Surg Sports TraumatolArthrosc,2012,20(3):423-435
    16Wieland HA, Michaelis M, Kirschbaum BJ, et al. Osteoarthritis--anuntreatable disease? Nat Rev Drug Discov,2005,4(4):331-344
    17Pastoureau PC, Hunziker EB, Pelletier JP. Cartilage, bone and synovialhistomorphometry in animal models of osteoarthritis. OsteoarthritisCartilage,2010,18(3):S106-112
    18Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articularcartilage and sub-chondral bone changes in the rat anterior cruciateligament transection and meniscectomized models of osteoarthritis. Bone,2006,38(2):234-243
    19Goldring MB, Goldring SR. Articular cartilage and subchondral bone inthe pathogenesis of osteoarthritis. Ann N Y Acad Sci,2010,1192:230-237
    20Cox LG, van Donkelaar CC, van Rietbergen B, et al. Alterations to thesubchondral bone architecture during osteoarthritis: bone adaptation vsendochondral bone formation. Osteoarthritis Cartilage,2013,21(2):331-338
    21Bobinac D, Marinovic M, Bazdulj E, et al. Microstructural alterations offemoral head articular cartilage and subchondral bone in osteoarthritis andosteoporosis. Osteoarthritis Cartilage,2013,21(11):1724-1730
    22Yen-You Lin, Yen-Hsuan Jean, Hsin-Pai Lee, et al. A Soft Coral-DerivedCompound,11-epi-Sinulariolide Acetate Suppresses InflammatoryResponse and Bone Destruction in Adjuvant-Induced Arthritis. PLoS One.2013,8(5): e62926
    23Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role inarthritis. Front Biosci,2006,11(1):529-543
    24Huebner JL, Hanes MA, Beekman B, et al. A comparative analysis ofbone and cartilage metabolism in two strains of guinea-pig with varyingdegrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage,2002,10(10):758-767
    25Fink C, Cooper HJ, Huebner JL, et al. Precision and accuracy of atransportable dual-energy X-ray absorptiometry unit for bone mineralmeasurements in guinea pigs. Calcif Tissue Int,2002,5;70(3):164-169
    26Becher C, Szuwart T, Ronstedt P, et al. Decrease in the expression of thetype1PTH/PTHrP receptor (PTH1R) on chondrocytes in animals withosteoarthritis. J Orthop Surg Res.2010,4(26):5-28
    27George H, Rakesh P, Krishna M, et al. Foot care knowledge and practicesand the prevalence of peripheral neuropathy among people with diabetesattending a secondary care rural hospital in southern India. J Family MedPrim Care.2013,2(1):27-32
    28Krause C, Korchynskyi O, de Rooij KE, Weidauer SE, de Gorter DJ, vanBezooijen RL, et al. Distinct modes of inhibition by Sclerostin on bonemorphogenetic protein and Wnt signaling pathways. J Biol Chem,2010,285(53):41614-41626
    29Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6and a Wntsignaling inhibitor. J Biol Chem,2005,280(29):26770-26775
    30Agarwal S, Misra R, Aggarwal A. Synovial fluid RANKL and matrixmetalloproteinase levels in enthesitis related arthritis subtype of juvenileidiopathic arthritis. Rheumatol Int,2009,29(8):907-911
    31Tat SK, Pelletier JP, Lajeunesse D, et al. The differential expression ofosteoprotegerin (OPG) and receptor activator of nuclear factor kappaBligand (RANKL) in human osteoarthritic subchondral bone osteoblasts isan indicator of the metabolic state of these disease cells. Clin ExpRheumatol,2008,26(2):295-304
    32Tat SK, Pelletier JP, Velasco CR, et al. New perspective in osteoarthritis:the OPG and RANKL system as a potential therapeutic target? Keio J Med,2009,58(1):29-40
    33Li H, Li L, Min J, et al. Levels of metalloproteinase (MMP-3, MMP-9),NF-kappaB ligand (RANKL), and nitric oxide (NO) in peripheral blood ofosteoarthritis (OA) patients. Clin Lab,2012,58(5):755-762
    34Upton AR, Holding CA, Dharmapatni AA, et al. The expression ofRANKL and OPG in the various grades of osteoarthritic cartilage.Rheumatol Int,2012,32(2):535-540
    35Haynes DR, Crotti TN, Loric M, et al. Osteoprotegerin and receptoractivator of nuclear factor kappa β ligand(RANKL)regulate osteoclastformation by cells in the human rheumatoid arthritic joint.Rheumatology,2001,40(6):623-630
    36Crotti T, Smith MD, Ahern MJ, et al. Receptor activator NF-κβ ligand(RANKL)expression in synovial tissue from patients with rheumatoidarthritis, spondyloarthropathy, osteoarthritis, and from normal patients:semiquantitative and quantitative analysis. Ann Rheum Dis,2002,61(12):1047-1054.
    37Onseca JE, Cortez-DIAs N, Francisco A, et al. Inflammatory cell infiltrateand RANKL/OPG expression in rheumatoid synovium: comparison withother inflammatory arthropathies and correlation with outcome. Clin ExpRheumatol,2005,23(2):185-192
    38ShaughnessYJ, Bart B. Interpreting the molecular biology and clinicalbehavior of multiple myeloma in the context of global gene expressionprofiling. Immunol Rev,2003,194(1):140-163
    1Brandt KD, Radin EL, Dieppe PA, et al. Yet more evidence thatosteoarthritis is not a cartilage disease. Ann Rheum Dis,2006,65(10):1261-1264
    2Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med,2006,354(8):841-848
    3Peat G, Mc, Carney R, Croft P. Knee pain and osteoarthritis in older adults:a Review of community burden and current use of healthcare. Ann RheumDis,2001,60(2):91-97
    4曾庆徐,黄少弼,肖征宇.症状性骨关节炎临床和流行病学探讨.中华内科杂志,1995,34(2):88-90.
    5Yelin E. The earnings, income, and assets of persons aged51-61with andwithout musculoskeletal conditions.J Rheumatol.1997,24(10):2024-2030
    6Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. BullWorld Health Organ,2003;81(9):646-656
    7Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalenceof arthritis and selected musculoskeletal disorders in the United States.Arthritis Rheum,1998,41(5):778-799
    8Harris ED Jr. The bone and joint decade: a catalyst for progress. ArthritisRheum,2001,44(9):1969-1970
    9胡波,胡志俊,张有为等.骨关节炎动物模型:人工诱导与动物自发.中国组织工程研究与临床康复,2010,14(33):6202-6205.
    10Uchida K, Urabe K, Naruse K, et al. Hyperlipidemia and hyperinsulinemiain the spontaneous osteoarthritis mouse model. Exp Anim,2009,58(2):181-187
    11Arunakul M, Tochigi Y, Goetz JE, et al. Replication of chronic abnormalcartilage loading by medial meniscus destabilization for modelingosteoarthritis in the rabbit knee in vivo. J Orthop Res,2013,31(10):1555-1560
    12Mohan G, Perilli E, Parkinson IH, et al. Pre-emptive, early, and delayedalendronate treatment in a rat model of knee osteoarthritis: effect onsubchondral trabecular bone microarchitecture and cartilage degradation ofthe tibia, bone/cartilage turnover, and joint discomfort. OsteoarthritisCartilage,2013,21(10):1595-1604
    13Rogart JN, Barrach HJ, Chichester CO. Articular collagen degradation inthe Hulth-Telhagmodel of osteoarthritis. Osteoarthritis Cartiage,1999,7(6):539-547
    14张楠,张柳,郑桓,等.降钙素在体内和体外实验中对兔关节炎关节软骨的保护作用.中国矫形外科杂志,2008,16(1):66-69
    15Mapp PI, Sagar DR, Ashraf S, et al. Differences in structural and painphenotypes in the sodium monoiodoacetate and meniscal transectionmodels of osteoarthritis. Osteoarthritis Cartilage,2013,21(9):1336-1345
    16Cheng T, Zhang L, Fu X, et al. The potential protective effects ofcalcitonin involved in coordinating chondrocyte response, extracellularmatrix, and subchondral trabecular bone in experimental osteoarthritis.Connect Tissue Res,2013,54(2):139-146
    17刘献祥,李西海,周江涛,等.改良Hulth造模法复制膝骨性关节炎的实验研究.中国中西医结合杂志,2005,25(12):1105
    18王云峰,白人晓,张扬,等.改良Hulth模型复制膝不同时期骨关节炎的实验研究.天津医科大学学报,2009,15(3):401-404
    19Huang GS, Lee HS, Chou MC, et al. Quantitative MR T2measurement ofarticular cartilage to assess the treatment effect of intra-articularhyaluronicacid injection on experimental osteoarthritis induced by ACLX.Osteoarthritis Cartilage,2010,18(1):54-60
    20Stoop R, Buma P, Van der Krann PM, et al. Type II collagen degradationin articular cartilage fibrillation after anterior cruciate ligament transectionin rats. Osteoarthritis Cartilage,2001,9(3):308-315
    21王婧,张忠辉,孙梦娇,等.大鼠骨关节炎三种动物模型的建立及比较.中国细胞生物学学报,2010,32(3):456-457
    22Papaioannou N, Krallis N, Triantafillopoulos I. Optimal timing of researchafter anterior cruciate ligamint resection in rabbits Contemporary topics inlaboratory animal science.Contemp Top Lab Anim Sci,2004,43(6):22
    23Wen ZH, Tang CC, Chang YC, et al. Glucosamine sulfate reducesexperimental osteoarthritis and nociception in rats: association withchanges of mitogen-activated protein kinase in chondrocytes.Osteoarthritis Cartilage,2010,18(9):1192-1202
    24Nielsen RH, Bay-Jensen AC, Byrjalsen I, et al. Oral salmon calcitoninreduces cartilage and bone pathology in an osteoarthritis rat model withincreased subchondral bone turnover. Osteoarthritis Cartilage,2011,9(4):466-473
    25Marijnissen AC, van Roermund PM, Tekoppele JM, et al. The caninegroove model, compared with the ACLT model of osteoarthritis.Osteoarthritis Cartilage,2002,10:145-155
    26Marijnissen AC, van Roermund PM, Verzijl N, et al. Steady progressionof osteoarthritic features in the canine groove model. OseoarthritisCartilage,2002,10:282-289
    27白希壮,任继尧.选择性臀肌切断诱发骨关节炎实验模型.中华骨科杂志,1994,14(2):118-120
    28黄肖华,段戳,袁长深,等.结扎股静脉对兔膝关节软骨组织形态学的影响.中医正骨,2010,22(8):16-18
    29陈宏贤,王大平,牛琼,等.骨关节炎动物模型的建立及选择.深圳中西医结合杂志,2008,18(4):209-211
    30刘蜀彬,孔祥星,黄迅悟,等.股骨干骺端髓内血运阻断诱发兔膝关节骨性关节炎模型.中国矫形外科杂志,2003,24(11):1706-1708
    31戴七一,文宗振,林光琪,等.揉髌手法对兔膝关节软骨细胞凋亡影响的超微结构观察.中国中医骨伤科杂志,2010,18(6):1-3
    32Ham KD, Oegema TR, Loeser RF, et al. Effects of long-term estrogenreplacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagenand proteoglycan levels in ovariectomized cynomolgus monkeys.Osteoarthritis Cartilage,2004,12:160-168
    33Hoegh-Andersen P, Tanko L, Andersen TL, et al. Ovariectomized rats as amodel of postmenopausal osteoarthritis: validation and application.Arthritis Res Ther,2004,6(2):169-180
    34Zhu S, Chen K, Lan Y, et al. Alendronate protects against articularcartilage erosion by inhibiting subchondral bone loss in ovariectomizedrats. Bone,2013,53(2):340-349
    35Hoegh-Anderson P, Tanko L B, Anderson T L, et al. Ovariectomized ratsas a model of postmenopausal osteoarthritis: validation and application.Arthritis Res Ther,2004,6(2):R169-180
    36HIegh Andersen P, TankóLB, Andersen TL, et al. Ovariectomized rats as amodel of postmenopausal osteoarthritis: validation and application.Arthritis Res Ther,2004,6(3):169-180
    37任永信,邓友章.雌激素对大鼠骨性关节炎影响的实验研究.中国修复重建外科杂志,2003,17(3):212-214
    38Sondergaard BC, Oestergaard S, Christiansen C, et al. The effect of oralcalcitonin on cartilage turnover and surface erosion in an ovariectomizedrat model. Arthritis Rheumatism,2007,56(8):2674-2678
    39Tchetina EV, Squires G, Poole AR. Increased type II collagen degradationand very early focal cartilage degeneration is associated with upregulationof chondrocyte differentiation related genes in early human articularcartilage lesions. J Rheumatol,2005,32(5):876-886
    40Guzman RE, Evans MG, Bove S, et al. Mono-iodoacetate-inducedhistologic changes in subchondral bone and articular cartilage of ratfemorotibial joints: an animal model of osteoarthritis. Toxicol Pathol,2003,31(6):619-624
    41Muehleman C, Green J, Williams JM, et al. The effect of bone remodelinginhibition by zoledronic acid in an animal model of cartilage matrixdamage. Osteoarthritis Cartilage,2002,10(3):226-233
    42Kikuchi T, Sakuta T, Yamaguchi T. Intra articular injection of collagenaseinduces experimental osteoarthritis in mature rabbits. OsteoarthritisCartilage,1998,6(3):177-186
    43邓宇,伍筱梅,任医民,等.关节腔内注射不同蛋白酶建立兔膝骨关节炎模型的对比研究.中华关节外科杂志,2009,3(3):332-339
    44Guzman RE, Evans MG, Bove S, et al. Mono-iodoacetate-inducedhistologic changes in subchondral bone and articular cartilage of ratfemorotibial joints: an animal model of osteoarthritis. Toxicol Pathol,2003,31(6):619-624.
    45Guingamp C, Gegout-Pottle P, Philipp L et al.Mono-iodoacetate-inducedexperimental osteoarthritis: a dose-response study of less of mobility,morphology, and biochemistry.Arthritis Rheum,1997,40(9):1670-1679
    46Saied A, Cherin E, Gaucher H, et a1. Assessment of articular cartilage andsubchondral bone: subtle and progressive changes in experimentalosteoarthritis using50MHz echography in vitro. J Bone Miner Res,1997,12(9):1378-1386
    47肖萍,董妙珠,叶玉薇,等.不同月龄豚鼠原发性骨关节炎的病理变化.环境与职业医学,2004,21(6):459-460
    48Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone inosteoarthritis development: a comparative study of two strains of guineapigs with and without spontaneously occurring osteoarthritis. ArthritisRheum.2007,56(10):3366-3374
    49Huebner JL, Hanes MA, Beekman B. A comparative analysis of bone andcartilage metabolism in two strains of guinea-pig with varying degrees ofnaturally occurring osteoarthritis. Osteoarthritis Cartilage,2002,10(10):758-767
    50Yamamaoto K, Shishido T, Masaoka T. Morphologicalstudies on theageing and osteoarthritis of the articular cartilage in C57black mice. JOrthop Surg,2005,13(1):8-18
    51Yamamoto H, Iwase N, Kohmo M. Histopathological characterization ofspontaneously developing osteoarthropathy in the BCBC/Ymouseestablished newly from B6C3F1mice Experimintal andtoxicologicpathology. Exp Toxicol Pathol,1999,51(1):15-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700