用户名: 密码: 验证码:
HMGB1在狼疮性肾炎肾小球系膜细胞增殖中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究拟以狼疮性肾炎(lupus nephrits,LN)模型MRL/faslpr小鼠和小鼠系膜细胞为研究对象,探讨高迁移率族蛋白(high mobility groupprotein B1,HMGB1)及其相关信号通路在狼疮性肾炎肾小球系膜细胞增殖中的作用及其可能作用机制,并应用电穿孔技术进行小鼠活体转染,观测敲低HMGB1及其相关信号通路因子的表达对小鼠肾脏损伤和肾功能改善情况,为狼疮性肾炎的病因研究和靶向治疗提供依据。
     方法:
     1检测HMGB1,PCNA和TLR2在MRL/faslpr小鼠肾组织的表达
     28周龄雄性MRL/MPJ小鼠和MRL/faslpr小鼠(体重:45-55g)各8只,分别设为对照组(Control组)和狼疮性肾炎组(LN组)。留取24h尿液及内眦动脉取血后处死小鼠,取肾脏皮质,部分置于4%多聚甲醛固定,用于光镜检测;部分置于液氮保存,用于冰冻切片和肾小球目的蛋白及RNA水平检测。常规病理染色技术观察肾小球形态结构;免疫荧光技术和Western blot检测肾皮质HMGB1、PCNA和TLR2蛋白的表达;显微切割技术提取肾小球组织,Real-time PCR检测肾小球HMGB1、PCNA和TLR2mRNA的表达;雷诺RT-9600半自动生化分析仪检测Scr、BUN和24h蛋白尿生化指标。
     2敲低MRL/faslpr小鼠肾皮质HMGB1的表达对小鼠肾脏增殖水平及肾功能的影响
     ⑴以小鼠系膜细胞为研究对象,脂质体介导向细胞内转染shHMGB1质粒,Western blot和Real-time PCR检测shHMGB1质粒对小鼠系膜细胞HMGB1蛋白及mRNA表达水平的抑制作用。⑵28周龄雄性MRL/MPJ小鼠(体重:45-55g)6只设为对照组(Control组),18只等周龄等体重MRL/faslpr雄性小鼠随机分为狼疮性肾炎组(LN组),shNC干预组(LN+shNC组)和shHMGB1干预组(LN+shHMGB1组)。电穿孔技术向治疗组小鼠肾脏皮质转染干扰质粒。2周后留取24h尿液和内眦动脉取血后处死小鼠取肾脏皮质,部分置于4%多聚甲醛固定,用于常规形态学检测;部分皮质置于液氮保存,用于冰冻切片和肾皮质蛋白检测。常规病理染色技术检测小鼠组织形态结构;免疫荧光检测肾小球内HMGB1和PCNA蛋白的表达;Western blot和Real-time PCR检测肾皮质中HMGB1和PCNA蛋白及mRNA表达水平;雷诺RT-9600半自动生化分析仪检测Scr、BUN和24h蛋白尿生化指标。
     3检测HMGB1对体外培养小鼠系膜细胞增殖水平的影响及其作用机制
     小鼠系膜细胞在37℃、5%CO2条件下,以含10%胎牛血清的DMEM/F12(3:1)培养基培养。⑴为了探讨HMGB1对细胞增殖的影响,将细胞分别以50μg.L-1、100μg.L-1和200μg.L-1HMGB1刺激2、4、8和12h,并于收集细胞前1h加入10μmol.L-1BrdU,以ELISA技术检测小鼠系膜细胞的增殖水平。⑵根据⑴的实验结果,将MMC细胞随机分为对照组和100μg.L-1HMGB1刺激组,分别于刺激10min、20min、30min、40min、50min和1h时收集细胞,Western blot检测p85、p110、p-Aktser473、Akt、p-IκBa和IκBa蛋白的表达水平,免疫细胞化学检测NF-κB p65核转位情况。⑶细胞随机分为Control组、HMGB1刺激组、LPS+HMGB1组和TLR2AB(block antibody)+LPS+HMGB1组,先后加入5μg.mL-1TLR2AB(blockantibody)孵育1h,5μg.mL-1LPS孵育2h,100μg.L-1HMGB1或DMSO,继续孵育8h,并于收集细胞前1h加入10μmol.L-1BrdU,Western blot和Real-time PCR检测PCNA蛋白和mRNA表达情况,免疫细胞化学检测BrdU表达情况。⑷细胞随机分为Control组和HMGB1刺激组,100μg.L-1HMGB1孵育10min,免疫共沉淀结合Western blot检测TLR2蛋白和p85蛋白结合水平。⑸细胞随机分为Control组,HMGB1刺激组,LY294002+HMGB1组和DMSO+HMGB1组,先后加入30μmol.L-1LY294002或DMSO孵育1h和100μg.L-1HMGB1孵育8h,并于收集细胞前1h加入10μmol.L-1BrdU,Western blot和免疫细胞化学检测细胞增殖水平;或先后加入或不加30μmol.L-1LY294002孵育1h和100μg.L-1HMGB1孵育50min,免疫细胞化学检测NF-κB p65核转位水平。⑹细胞随机分为Control组, HMGB1刺激组, PDTC+HMGB1组和DMSO+HMGB1组,先后加入或不加30μmol.L-1PDTC孵育1h和100μg.L-1HMGB1孵育8h,并于收集细胞前1h加入10μmol.L-1BrdU,Western blot和免疫细胞化学检测细胞增殖水平;或先后加入或不加30μmol.L-1PDTC孵育1h和100μg.L-1HMGB1孵育30min,Western blot检测p-Aktser473表达水平。⑺细胞随机分为Control组和HMGB1刺激组,100μg.L-1HMGB1孵育90min,染色质免疫共沉淀检测NF-κB p65蛋白和CylinD1启动子序列的结合水平。
     4敲低MRL/faslpr小鼠肾组织TLR2或Akt的表达对小鼠肾脏增殖水平及蛋白尿水平的影响
     ⑴以小鼠系膜细胞为研究对象,脂质体介导向细胞内转染shTLR2或shAkt质粒,Western blot和Real-time PCR检测质粒对小鼠系膜细胞TLR2或Akt蛋白及mRNA表达水平的抑制作用。⑵28周龄雄性MRL/MPJ小鼠(体重:45-55g)6只设为对照组(Control组),18只等周龄等体重MRL/faslpr雄性小鼠随机分为狼疮性肾炎组(LN组),shNC干预组(LN+shNC组)组和shTLR2干预组(LN+shTLR2组)或shAkt干预组(LN+shAkt组)。电穿孔技术向治疗组小鼠肾脏皮质转染干扰质粒。2周后留取24h尿液和内眦动脉取血后处死小鼠取肾脏皮质,部分置于4%多聚甲醛固定,用于常规病理学染色技术检测;部分皮质置于液氮保存,用于冰冻切片和肾皮质蛋白检测。HE染色检测小鼠组织形态结构;免疫荧光检测肾小球内PCNA和TLR2或Akt蛋白的表达;Western blot和Real-time PCR检测肾小球中PCNA和TLR2或Akt蛋白及mRNA表达水平;雷诺RT-9600半自动生化分析仪检测Scr、BUN、尿白蛋白生化指标。
     结果:
     1HMGB1、PCNA和TLR2在MRL/faslpr小鼠肾小球的表达上调
     ⑴光镜观察:与Control组相比,LN组小鼠肾小球体积增大,细胞数目增多。⑵免疫荧光检测显示,在Control组小鼠肾小球中,HMGB1只表达于细胞核中,而在LN组小鼠肾组织中HMGB1则同时表达于肾小球细胞的胞核和核外; PCNA阳性信号在Control组和LN组小鼠肾小球中都主要定位于细胞核,但在后者的表达强于前者;TLR2在Control组小鼠肾小球中无明显表达,而在LN组肾小球中出现明显的阳性表达,且阳性信号呈系膜状呈现。⑶Western blot结果表明,与Control组相比,LN组小鼠肾皮质HMGB1、PCNA和TLR2蛋白的相对表达量显著升高。⑷Real-time PCR检测结果显示,与Control组相比,LN组小鼠肾小球HMGB1、PCNA和TLR2mRNA的表达水平均明显升高。⑷肾功能:与正常组相比,狼疮组小鼠24h蛋白尿水平升高,而Scr和BUN变化不明显。
     2敲低HMGB1表达有效降低MRL/faslpr小鼠肾小球增殖水平及蛋白尿水平
     ⑴shHMGB1质粒能够有效下调小鼠系膜细胞中HMGB1蛋白及mRNA表达水平:Western blot结果显示,与Control组相比,shHMGB1组小鼠系膜细胞的HMGB1蛋白的表达水平明显降低; Real-time PCR结果显示,shHMGB1组小鼠系膜细胞的HMGB1mRNA水平较Control组均明显下调。⑵活体电穿孔技术可有效的将质粒转染至小鼠肾皮质:冰冻切片荧光显微镜下观察结果提示,电穿孔转染后1天、7天和14天目的质粒在小鼠肾皮质均有荧光表达,其中第7天时表达最强,第14天表达较低。⑶shHMGB1质粒有效下调狼疮模型小鼠HMGB1蛋白和mRNA的表达:免疫荧光检测结果显示,与LN组小鼠相比,shHMGB1组小鼠肾小球HMGB1蛋白的表达明显降低,且主要定位于细胞核;Western blot结果显示,与LN组小鼠相比,shHMGB1组小鼠肾皮质中HMGB1蛋白的表达水平明显降低;Real-time PCR结果显示,与LN组小鼠相比,shHMGB1组小鼠肾小球的HMGB1mRNA表达水平明显降低。⑷敲低肾组织中HMGB1表达能够降低狼疮模型小鼠肾小球细胞增殖水平:肉眼观察,各组小鼠肾脏体积、质量均无明显变化。光镜下观察,与LN组相比,LN+shHMGB1组小鼠肾小球细胞细胞数目有所减少,但仍高于Control组;免疫荧光检测结果显示,与LN组小鼠相比,shHMGB1组小鼠肾小球PCNA蛋白的表达明显降低;Western blot结果显示,与LN组小鼠相比,shHMGB1组小鼠肾皮质中PCNA蛋白的表达水平明显降低;Real-timePCR结果显示,与LN组小鼠相比,shHMGB1组小鼠肾小球的PCNAmRNA表达水平明显降低。⑸沉默肾组织中HMGB1表达能够降低狼疮性肾炎模型小鼠蛋白尿水平:生化检测结果显示,与LN组小鼠相比,shHMGB1组小鼠24h蛋白尿量出现明显的降低,血肌酐和血尿素水平无明显差别。
     3HMGB1通过PI3K/Akt/NF-Κb/Cylin D1信号通路上调体外培养小鼠系膜细胞的增殖水平
     ⑴HMGB1能够上调小鼠系膜细胞增殖水平:BrdU掺入法ELISA技术检测结果显示,100μg.L-1HMGB1或200μg.L-1HMGB1刺激2h后,系膜细胞增殖水平均逐渐升高,并于8h达到高峰,12h逐渐降低;50μg.L-1HMGB1各时间点对系膜细胞的促增殖作用均低于100μg.L-1HMGB1组;而100μg.L-1HMGB1和200μg.L-1HMGB1两组之间HMGB1作用8h细胞增殖水平无明显差别。⑵HMGB1的促增殖作用是TLR2依赖性的: BrdU掺入法细胞免疫荧光检测结果显示,与Control组相比,HMGB1刺激组系膜细胞中BrdU阳性表达率明显增高;与HMGB1刺激组相比, LPS+HMGB1组BrdU阳性细胞比例显著增加,而TLR2中和抗体能够降低BrdU阳性细胞比例。⑶HMGB1上调TLR2与p85蛋白的结合:免疫共沉淀结合Western blot结果提示,Control组TLR2与p85无明显结合,HMGB1刺激5min后,检测到较明显与TLR2结合的p85蛋白条带。⑷HMGB1能够激活小鼠系膜细胞的PI3K/Akt/NF-κB信号通路:Western blot结果显示,HMGB1刺激30min时,p-Aktser473蛋白表达水平瞬时升高,同时,p-IκBa表达水平升高,而IκBa表达开始降低;细胞免疫荧光检测结果显示,正常细胞NF-κBp65主要定位于细胞浆,HMGB1刺激50min后,NF-κBp65主要在细胞核表达。⑸HMGB1所介导的核转位的NF-κBp65与Cyclin D1启动子区域结合增强:染色质免疫共沉淀结果提示,HMGB1刺激90min后,PCR检测到明显的与NF-κBp65结合的Cylin D1DNA。⑹LY294002和PDTC均能够抑制HMGB1对小鼠系膜细胞的增殖作用:BrdU掺入法细胞免疫荧光检测结果显示,与HMGB1组相比,LY294002+HMGB1组和PDTC+HMGB1组BrdU阳性细胞比例降低,Western blot和Real-time PCR结果显示,与HMGB1组相比,LY294002+HMGB1组和PDTC+HMGB1组PCNA和Cyclin D1蛋白和mRNA表达水平降低。⑺LY294002能够部分抑制NF-κBp65的核转位而PDTC对Akt活化水平无明显影响:免疫荧光结果显示,与HMGB1组相比,LY294002+HMGB1组NF-κBp65蛋白在系膜细胞细胞核内的表达降低,定位于胞浆和胞核。Western blot结果提示,PDTC+HMGB1组p-Aktser473表达水平与HMGB1组无明显区别。
     4敲低TLR2表达有效降低MRL/faslpr小鼠肾小球增殖水平及蛋白尿水平,敲低Akt则对肾小球增殖水平及蛋白尿水平无明显影响
     ⑴shTLR2质粒可有效下调小鼠系膜细胞和肾组织中TLR2蛋白和mRNA水平:Western blot结果显示,与Control组相比,shTLR2组小鼠系膜细胞的TLR2蛋白的表达水平明显降低;Real-time PCR结果显示,shTLR2组小鼠系膜细胞的TLR2mRNA水平明显将低。⑵shTLR2质粒能够降低肾组织中TLR2蛋白和mRNA表达:免疫荧光检测结果显示,与LN组小鼠相比,LN+shTLR2组小鼠肾小球的TLR2的表达水平明显降低;Western blot结果显示,与LN组小鼠相比,LN+shTLR2组小鼠肾皮质TLR2蛋白表达明显降低;Realtime-PCR结果显示,与LN组小鼠相比,shTLR2组小鼠肾小球的TLR2mRNA表达水平均明显降低。⑶沉默肾组织中TLR2表达可降低肾小球细胞增殖:肉眼观察,各组小鼠肾脏体积、质量均无明显变化。但光镜下观察,与LN组相比,LN+shTLR2组小鼠肾小球细胞数目有所减少,但仍高于Control组;免疫荧光检测结果显示,与LN组小鼠相比,LN+shTLR2组小鼠肾小球的PCNA同样表达于细胞核,但表达水平明显降低;Western blot结果显示,与LN组小鼠相比,LN+shTLR2组小鼠肾皮质PCNA蛋白表达明显降低;Realtime-PCR结果显示,与LN组小鼠相比,shTLR2组小鼠肾小球的PCNAmRNA表达水平均明显降低。⑷沉默肾组织中TLR2表达能够有效降低小鼠蛋白尿水平:生化检测结果显示,与LN组小鼠相比,LN+shTLR2组小鼠的24h蛋白尿量出现降低,血肌酐和血尿素无明显差别。⑸shTLR2质粒对小鼠肾皮质p-Aktser473表达水平无明显影响:免疫荧光检测结果显示,与LN组小鼠相比,LN+shTLR2组小鼠肾小球p-Aktser473蛋白表达水平无明显变化。⑹shAkt质粒可有效下调小鼠系膜细胞中Akt蛋白和mRNA水平:Western blot结果显示,与Control组相比,shAkt组小鼠系膜细胞的Akt蛋白的表达水平明显降低;Real-time PCR结果显示,shAkt组小鼠系膜细胞的Ak tmRNA水平明显将低。⑺shAkt质粒能够降低肾组织中Akt蛋白和mRNA表达:免疫荧光检测结果显示,与LN组小鼠相比,LN+shAkt组小鼠肾小球的Akt的表达水平明显降低;Western blot结果显示,与LN组小鼠相比,LN+shAkt组小鼠肾皮质Akt蛋白表达明显降低;Realtime-PCR结果显示,与LN组小鼠相比,shAkt组小鼠肾小球的AktmRNA表达水平均明显降低。⑻shAkt对小鼠肾小球增殖水平无明显改善:肉眼观察,各组小鼠肾脏体积,质量均无明显变化。光镜下观察,LN组和LN+shAkt组小鼠肾小球形态结构无明显改善;免疫荧光检测结果显示,与LN组小鼠相比,LN+shAkt组小鼠肾小球的PCNA蛋白表达水平无明显改变;Western blot结果显示,与LN组小鼠相比,LN+shAkt组小鼠肾皮质PCNA蛋白表达水平无明显改变;Realtime-PCR结果显示,与LN组小鼠相比,shAkt组小鼠肾小球PCNAmRNA表达水平无明显改变。⑼shAkt质粒对小鼠蛋白尿水平无明显影响:生化检测结果显示,与LN组小鼠相比, LN+shAkt组小鼠的24h蛋白尿量、血肌酐和血尿素均未出现明显差别。
     结论:
     1与正常对照组MRL/MPJ小鼠相比,狼疮性肾炎模型MRL/faslpr小鼠肾组织中HMGB1、PCNA和TLR2的表达水平明显升高,而采用电穿孔转染技术沉默肾组织中HMGB1和TLR2表达能够降低肾小球细胞增殖水平和24h蛋白尿水平,提示HMGB1可能通过TLR2相关途径上调系膜细胞增殖水平从而参与狼疮性肾炎发生的。
     2HMGB1可以上调体外小鼠系膜细胞的增殖水平,TLR2参与了促增殖过程,而PI3K/Akt/NF-κB/CylinD1信号通路被激活;TLR2抑制可有效的阻滞HMGB1的促增殖作用及PI3K/Akt/NF-κB/Cylin D1信号通路的活化;LY294002和PDTC均可阻滞HMGB1的促增殖作用,同时LY294002有效阻断HMGB1引起的p65的核转位,而PDTC对HMGB1引起的PI3K/Akt活化无明显影响;提示HMGB1在体外通过与其受体TLR2结合激活PI3K/Akt/NF-κB/Cylin D1信号通路,推动细胞周期进程,促进系膜细胞增生。
     3电穿孔技术可有效介导目的质粒在狼疮性肾炎模型小鼠肾脏的活体转染并可维持质粒的较长时间表达。
Objective: MRL/faslpr mice and MMC (mice mesangial cell) line wereused in this study to investigate the role and possible mechanism of HMGB1on the proliferation of MMC in lupus nephritis, and to deternmine whetherproliferation level of glomeruli and renal function of mice were inproved byknockdowning HMGB1, TLR2and Akt expression in renal tissue ofMRL/faslpr mice by electroporation technology; which will provide amimportant basis for targeted therapy of lupus nephritis.
     Methods:
     1The expression of HMGB1, TLR2and PCNA in glomeruli ofMRL/faslpr mice
     Eight28-week male MRL/MPJ mice and MRL/faslpr mice (weight45-55g) were respectively designed as control group and LN (lupus nephritis)group.24h urine and angular venous blood were obtained for detecting renalfunction and renal cortex was collected for relevant detections. HE stainingwas used to observe the morphological structure of glomeruli; the expressionof HMGB1, TLR2and PCNA was detected by immunofluorescence techniqueand Western blot; laser capture microdissection method was used to collectthe renal glomeruli and Real-time PCR was used to determine the HMGB1,TLR2and PCNA mRNA expression;24h Upro (urine protein), BUN (bloodurea nitrogen) and Scr (serum creatinine) was detected by Rayto RT-9600semiautomatic biochemistry analyzer.
     2The effect of shHMGB1on glomeruli proliferation level and renalfunction of MRL/faslpr mice
     ⑴The silencing effect of shHMGB1vector on HMGB1protein andmRNA in mice mesangial cell was indentified by Western blot and Real-timePCR.⑵Six28-week male MRL/MPJ mice was designed as Control group, eighteen28-week male MRL/faslpr mice was randomly divided into LN group,LN+shNC group and LN+shHMGB1group. Electroporation technology wasused to transfect vector in vivo in treatment group. Mice were sacrificed twoweeks later after24h urine and angular venous blood were obtained, and renalcortex was collected for relevant detections. HE staining and PCNA detectionwere used to evaluate the proliferation of glomeruli in mice. Expression ofHMGB1and PCNA was detected by immunofluorescence technique andWestern blot; and expression of HMGB1and PCNA mRNA were observed byReal-time PCR.24h urine protein, blood urea nitrogen (BUN) and serumcreatinine (Scr) was detected by Rayto RT-9600semiautomatic biochemistryanalyzer.
     3The effect and its mechanism of HMGB1on proliferation level of micemesangial cell line
     Mice mesangial cell line (SV40MES130) were cultured in DMEM/F12(3:1) medium (Gibco BRL) supplemented with10%fetal bovine serum(Gibco BRL). The cells were synchronised by culturing in serum-free mediumfor24h.⑴To detect the effect of HMGB1on cell proliferation, the cells wererandomly divided into control group and the HMGB1groups (containing50,100, and200μg.L-1mouse recombinant HMGB1protein). Then the cells werecollected at2,4,8, and12h after stimulation or not. The cells were mixedwith BrdU (10μmol.L-1, SIGMA) for2h before collection.⑵The cells werecollected at10,20,30,40,50, and60min after stimulation with HMGB1(100μg.L-1) to detect the expression of PTEN, p-Akt (p-Ser473and p-Thy308), Akt,p-IκBα, IκBα by Western blot, the nuclear translocation of NF-κBp65wasobserved by immunofluorescence.⑶Cells were randomly divided into controlgroup, HMGB1group, LPS+HMGB1group and TLR2AB+LPS+HMGB1group to detect the role of TLR2in HMB1-induced proliferation of micemesangial cell. Cells were combined with5μg.mL-1TLR2AB for1h,5μg.mL-1LPS for2h,100μg.L-1HMGB1for8h and10μmol.L-1BrdU for1h.The proliferation level was measured by the expression of PCNA and CylinD1detected by Western blot and Real-time PCR and the corporation level of BrdU detected by immunofluorescence.⑷Cells were randomly divided intothree groups (control group, DMSO group and HMGB1group), and collectedafter stimulated by DMSO or HMGB1for10min, immunoprecipitationcombine with Western blot was performed to detect the expression level ofp85protein that incorporated with TLR2.⑸LY294002, specific inhibitors ofthe PI3K/Akr pathway, was used to determine the role of PI3K/Akt pathway inHMGB1-induced proliferation. Cells were randomly divided into four groups(control, HMGB1, HMGB1+LY294002, and HMGB1+DMSO) to explore theeffect of LY294002on the proliferation and nuclear translocation ofNF-κBp65and the expression of PCNA, Cyclin D1. The cells in theHMGB1+PDTC group were pre-treated with LY294002(30μmol.L-1, SIGMA)for1h. The cells were collected at50min as well as8h after stimulation withHMGB1(100μg.L-1), and the nuclear translocation of NF-κBp65andproliferation level were detected by immunofluorescence, Western blot andReal-time PCR respectively.⑹PDTC, specific inhibitors of the NF-κBpathway, was used to detect the role of NF-κB pathway in HMGB1-dependentproliferation. The cells were randomly divided into four groups (control,HMGB1, HMGB1+PDTC, and HMGB1+DMSO) to explore the effect ofPDTC on the proliferation and nuclear translocation of NF-κBp65and theexpression of PCNA, Cyclin D. The cells in the HMGB1+PDTC group werepre-treated with PDTC (5μmol.L-1, SIGMA) for30min. The cells werecollected at20and50min as well as8h after stimulation with HMGB1(100μg.L-1), and the phosphorylation level of Akt (p-ser473), the nucleartranslocation of NF-κB p65and proliferation level were detected by Westernblot, Real-time PCR and immunofluorescence respectively.⑺Cells wererandomly divided into three groups (control group, DMSO group and HMGB1group) and collected after stimulated by DMSO or HMGB1for90min, andchromatin immunoprecipitation was performed to detect the combine level ofp65protein and NF-κBp65promoter.
     4Effect of knockdowning TLR2and Akt expression on glomeruliproliferation level and renal function of MRL/faslpr mice
     ⑴The silencing effect of shTLR2and shAkt vector on TLR2or Aktprotein and mRNA in mice mesangial cell was indentified by Western blot andReal-time PCR.⑵Six28-week male MRL/MPJ mice was designed as Controlgroup, eighteen28-week male MRL/faslpr mice was randomly divided intoLN group, LN+shNC group and LN+shTLR2group (LN+shAkt group).Electroporation technology was used to transfect vector in vivo in treatmentgroup. The expression of TLR2(Akt),p-Aktser473and PCNA was detectedby immuno fluorescence technique and Western blot; Real-time PCR was usedto detect the expression of TLR2, Akt and PCNA mRNA.
     Results:
     1The expression of HMGB1, TLR2and PCNA were up-regulated inrenal of MRL/faslpr mice.
     ⑴HE staining showed that the volume of glomeruli and the number ofglomeruli cells increased compared with control group.⑵Immunofluorescenceresult showed that HMGB1protein was mainly located in nuclear of glomerulicells in control group mice, however, extranuclear HMGB1expression wasdetected in the glomeruli of LN mice. PCNA protein was located in nuclear ofglomeruli cells in both control and LN group, but the expression of PCNA wassignificantly higher in LN group than that in control group. No obviouslyTLR2expression was detected in glomeruli of control group mice, but highTLR2fluorescence intensity was obtained in renal of LN group mice and thepositive signal was located in both nuclear and extranuclear of glomerulicells.⑶Western blot showed that the HMGB1, TLR2and PCNA proteinexpressions in renal cortex of LN group mice were up-regulated comparedwith control group.⑷The results of Real-time PCR showed that the HMGB1,TLR2and PCNA mRNA expression in glomeruli of LN group mice wereup-regulated compared with control group.
     2shHMGB1effectively decreases the glomeruli proliferation level and24h urine protein of MRL/faslpr mice.
     ⑴The liposome-mediated gene transfer technology could successfullytransfer shNC and shHMGB1vector into mice mesangial cell line, and shHMGB1vector significantly decreased the expression of HMGB1proteinand mRNA of mice mesangial cells.⑵There was no obviously change inappearance, volume and quality of mice renal among different groups;however, HE staining showed tha the cell number of glomeruli decreased inshHMGB1group mice compared with LN group.⑶Immunofluorescence andWestern blot result showed that the expression of HMGB1and PCNA proteindecreased in glomeruli of mice of shHMGB1group compared with LN group,and Real-time PCR also showed the down-regulated HMGB1and PCNAmRNA in shHMGB1group.⑷The24h urine protein of mice in shHMGB1group decreased compared with LN group; and no significantly different wasobserved in BUN and Scr between two groups.
     3HMGB1mediated the proliferation of mice mesangial cell byTLR2/PI3K/Akt/NF-κB/Cylin D1signal pathway.
     ⑴The BrdU assay showed that the proliferation level of MMC cells inthe100μg.L-1and200μg.L-1HMGB1-stimulated groups increased at8h and12h compared with control group, peaked at8h. But there was no significantdifference between100μg.L-1and200μg.L-1HMGB1-stimulated groups. Theimmunocytochemistry analysis revealed that the percentage of BrdU-positivecells in the HMGB1group was increased noticeably compared with thecontrol group at8h.⑵Western blot result showed that p-Aktser473(thephosphorylation of Akt ser473) was elevated at20min,, additionally, theexpression of IκBa was down-regulated and accompanied with up-regulatedexpression of p-IκBa at30min in HMGB1group. The positive expression ofNF-κB p65was located in the cytoplasm, and no positive staining wasobserved in the nuclei of the control MMC cells. However, the positiveexpression of the NF-κB p65subunit was located in the nuclei andsignificantly increased at50min exposed to HMGB1.⑶Immunofluorescenceresult showed that the positive BrdU ratio was significantly increased inLPS+HMGB1group compared with HMGB1group, but the BrdU posotiveexpression decreased pretreated with TLR2AB. In addition, the expression ofPCNA and Cylin D1protein and mRNA decreased in TLR2 AB+LPS+HMGB1group compared with LPS+HMGB1group.⑷Immunoprecipitation result showed that no western blot signal wasfound in control group and DMSO group, and an obviously fragment wasobtained from protein that immunoprecipitated with TLR2antibody in MMCstimulated by HMGB1.⑸The ChIP experiment showed that no PCR signalwas found in control group and DMSO group amplified by a pair primerspanning the kB2site in promoter of CyclinD1, but an obviously fragmentwas obtained from chromatin that immunoprecipitated with NF-κB p65antibody in MMC stimulated by HMGB1.⑹Immunofluorescence resultshowed thatthe positive BrdU ratio in LY294002+HMGB1group andPDTC+HMGB1group both decreased compared with HMGB1group; Westernblot and Real-time PCR result showed that the expression of PCNA and CylinD1protein and mRNA was down-regulated compared with HMGB1group.⑺Immunofluorescence result showed that the positive expression ofNF-κB p65protein located in both nuclear and cytoplasm of mice mesangialcell and nuclear location of NF-κBp65decreased compared with HMGB1group; However, PDTC did effect the level of pAkt-ser374induced byHMGB1by western blot.
     4shTLR2other than shAkt effectively downregulated the glomeruliproliferation level and24h urine protein of MRL/faslpr mice
     ⑴The liposome-mediated gene transfer technology could successfullytransfer shNC, shTLR2and shAkt vector into mice mesangial cell line, andshTLR2and shAkt vector significantly decreased the expression of TLR2orAkt protein and mRNA of MMC cells.⑵There was no obviously change inappearance, volume and quality of mice renal among different groups,moreover, HE staining showed that the cell number in glomeruli decreased inshTLR2group compared with LN group, but no obviously change in renalcorex was detected between LN group and shAkt group.⑶Immunofluorescence, Western blot and Real-time PCR result showed that theexpression of TLR2or Akt protein and mRNA decreased in mice glomeruli ofshTLR2group or shAkt group compared with LN group. Importantly, the expression of PCNA protein and mRNA decreased in shTLR2groupcompared with LN group, but no significantly change was observed in shAktgroup.⑷The24h urine protein of mice in shTLR2group decreased comparedwith LN group; however, no significantly different was observed in BUN andScr between two groups. Interestingly, knockdown of Akt expression couldnot affect the renal function of MRL/faslpr mice.⑸Immunofluorescence resultshowed that there was no noticeable change in expression of p-Aktser473inglomeruli of shAkt group mice compared with LN group,.
     Conclusions:
     1The expression level of HMGB1, PCNA and TLR2increased inMRL/faslpr mice compared with control group, and knockdown of HMGB1and TLR2expression could decrease cell proliferation of glomeruli inMRL/faslpr and improve renal function, which indicates that HMGB1andTLR2-related signal pathway might play an important role in proliferation ofglomeruli of lupus nephritis.
     2HMGB1up-regulated the proliferation level of MMC cell by aTLR2-dependent pathway, meanwhile PI3K/Akt/NF-κB/Cylin D1signalpathway was activated; in addition both LY294002and PDTC abolished theHMGB1-induced proliferation; LY294002block the nuclear translocation ofNF-κBp65, however, PDTC did not effect the activation of PI3K/Akt pathway.Above all, we concluded that HMGB1could mediate the proliferation ofMMC via TLR2-related pathway, and TLR2/PI3K/Akt/NF-κB/Cyclin D1signal pathway plays a crucial role in HMGB1-mediated development ofLN
     3Electroporation technology could effectively mediate the transfection oftarget plasmid into renal of MRL/faslpr mice in vivo, in addition, the plasmidcould express in renal contex for at least two weeks.
引文
1D'cruz D P, Khamashta M A, Hughes G R. Systemic lupus erythematosus.Lancet,2007,369(9561):587-596
    2Seret G, Le Meur Y, Renaudineau Y, et al. Mesangial cell-specificantibodies are central to the pathogenesis of lupus nephritis. Clin DevImmunol,2012,2012:579670
    3Alshayeb H, Wall B M, Gosmanova E O. Treatment of proliferative andmembranous lupus nephritis: review of key clinical trials. Am J Med Sci,2012,343(1):86-90
    4Iwata Y, Furuichi K, Kaneko S, et al. The role of cytokine in the lupusnephritis. J Biomed Biotechnol,2011,2011:594809
    5Harris H E, Andersson U, Pisetsky D S. HMGB1: a multifunctionalalarmin driving autoimmune and inflammatory disease. Nat RevRheumatol,2012,8(4):195-202
    6Barkauskaite V, Ek M, Popovic K, et al. Translocation of the novelcytokine HMGB1to the cytoplasm and extracellular space coincides withthe peak of clinical activity in experimentally UV-induced lesions ofcutaneous lupus erythematosus. Lupus,2007,16(10):794-802
    7Palumbo R, Sampaolesi M, De Marchis F, et al. Extracellular HMGB1, asignal of tissue damage, induces mesoangioblast migration andproliferation. J Cell Biol,2004,164(3):441-449
    8Abdulahad D A, Westra J, Bijzet J, et al. High mobility group box1(HMGB1) and anti-HMGB1antibodies and their relation to diseasecharacteristics in systemic lupus erythematosus. Arthritis Res Ther,2011,13(3): R71
    9Feng X, Hao J, Liu Q, et al. HMGB1mediates IFN-gamma-induced cellproliferation in MMC cells through regulation of cyclin D1/CDK4/p16pathway. J Cell Biochem,2012,113(6):2009-2019
    10Andrews B S, Eisenberg R A, Theofilopoulos a N, et al. Spontaneousmurine lupus-like syndromes. Clinical and immunopathologicalmanifestations in several strains. J Exp Med,1978,148(5):1198-1215
    11Scaffidi P, Misteli T, Bianchi M E. Release of chromatin protein HMGB1by necrotic cells triggers inflammation[J]. Nature,2002,418(6894):191-195
    12Bekeredjian-Ding I, Inamura S, Giese T, et al. Staphylococcus aureusprotein A triggers T cell-independent B cell proliferation by sensitizing Bcells for TLR2ligands. J Immunol,2007,178(5):2803-2812
    13Cottalorda A, Mercier B C, Mbitikon-Kobo F M, et al. TLR2engagementon memory CD8(+) T cells improves their cytokine-mediated proliferationand IFN-gamma secretion in the absence of Ag. Eur J Immunol,2009,39(10):2673-2681
    14Spanedda M V, Heurtault B, Weidner S, et al. Novel powerfulwater-soluble lipid immunoa djuvants inducing mouse dendritic cellmaturation and B cell proliferation using TLR2pathway. Bioorg MedChem Lett,2010,20(6):1869-1872
    15Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol,2001,1(2):135-145
    16Walker W E, Nasr I W, Camirand G, et al. Absence of innate MyD88signaling promotes inducible allograft acceptance. J Immunol,2006,177(8):5307-5316
    17Frasnelli M E, Tarussio D, Chobaz-Peclat V, et al. TLR2modulatesinflammation in zymosan-induced arthritis in mice. Arthritis Res Ther,2005,7(2): R370-379
    18Anders H J, Banas B, Schlondorff D. Signaling danger: toll-like receptorsand their potential roles in kidney disease. J Am Soc Nephrol,2004,15(4):854-867
    19Komatsuda A, Wakui H, Iwamoto K, et al. Up-regulated expression ofToll-like receptors mRNAs in peripheral blood mononuclear cells frompatients with systemic lupus erythematosus. Clin Exp Immunol,2008,152(3):482-487
    20刘淑霞,郝军,郭惠芳,等. HMGB1/TLR/NF-κB在狼疮性肾炎小鼠肾组织中的表达及意义[J].中国免疫学杂志,2009,25(05):450-453
    1Feng X, Hao J, Liu Q, et al. HMGB1mediates IFN-gamma-induced cellproliferation in MMC cells through regulation of cyclin D1/CDK4/p16pathway. J Cell Biochem,2012,113(6):2009-2019
    2封晓娟,刘淑霞,张玉军,等. NF-κB信号途径在小鼠狼疮性肾炎发病中的可能作用.中国免疫学杂志,2010,26(02):169-173+177
    3刘淑霞,郝军,郭惠芳,等. HMGB1/TLR/NF-κB在狼疮性肾炎小鼠肾组织中的表达及意义.中国免疫学杂志,2009,25(05):450-453
    4张玉军,刘淑霞,杨敏.狼疮性肾炎小鼠肾组织中HMGB1、TLR4、STAT3、PCNA的表达及意义.山东医药,2013,53(08):26-29+103
    5封晓娟,刘淑霞,吕欣,等. HMGB1对小鼠系膜细胞细胞周期及细胞周期相关蛋白表达的影响.中国细胞生物学学报,2011,33(11):1230-1236
    6Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of21-nucleotideRNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-498
    7Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals bysystemic administration of plasmid DNA. Gene Ther,1999,6(7):1258-1266
    8Zhang G, Gao X, Song Y K, et al. Hydroporation as the mechanism ofhydrodynamic delivery. Gene Ther,2004,11(8):675-682
    9刘亮明,罗杰,张吉翔,等.鼠尾静脉流体力学转染技术对绿色荧光蛋白表达质粒器官靶向分布的影响.中国组织工程研究与临床康复,2007,(23):4558-4561
    10Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouselyoma cells by electroporation in high electric fields. EMBO J,1982,1(7):841-845
    11Heller L C, Heller R. In vivo electroporation for gene therapy. Hum GeneTher,2006,17(9):890-897
    12Hoegler K J, Horne J H. Targeting the zebrafish optic tectum using in vivoelectroporation. Cold Spring Harb Protoc,2010,2010(7): pdb prot5463
    13Yomgogida K. Mammalian testis: a target of in vivo electroporation. DevGrowth Differ,2008,50(6):513-515
    14Brown C Y, Eom D S, Amarnath S, et al. A simple technique for early invivo electroporation of E1chick embryos. Dev Dyn,2012,241(3):545-552
    15Barker M, Billups B, Hamann M. Focal macromolecule delivery inneuronal tissue using simultaneous pressure ejection and localelectroporation. J Neurosci Methods,2009,177(2):273-284
    16Chabot S, Orio J, Schmeer M, et al. Minicircle DNA electrotransfer forefficient tissue-targeted gene delivery. Gene Ther,2013,20(1):62-68
    17Hargrave B, Downey H, Strange R, Jr., et al. Electroporation-mediatedgene transfer directly to the swine heart. Gene Ther,2013,20(2):151-157
    18Matsuda T, Cepko C L. Electroporation and RNA interference in therodent retina in vivo and in vitro. Proc Natl Acad Sci U S A,2004,101(1):16-22
    1Nogueira-Machado J A, Volpe C M, Veloso C A, et al. HMGB1, TLR andRAGE: a functional tripod that leads to diabetic inflammation. ExpertOpin Ther Targets,2011,15(8):1023-1035
    2米亚英,杨丽丽,孙利平. HMGB1及TLR2、TLR4在类风湿关节炎中的表达及意义.基础医学与临床,2013,33(04):476-479
    3刘淑霞,郝军,郭惠芳,等. HMGB1/TLR/NF-κB在狼疮性肾炎小鼠肾组织中的表达及意义.中国免疫学杂志,2009,25(05):450-453
    4Hinz M, Krappmann D, Eichten A, et al. NF-kappaB function in growthcontrol: regulation of cyclin D1expression and G0/G1-to-S-phasetransition. Mol Cell Biol,1999,19(4):2690-2698
    5Thomas J O, Stott K. H1and HMGB1: modulators of chromatin structure.Biochem Soc Trans,2012,40(2):341-346
    6Winter N, Meyer A, Richter A, et al. Elevated levels of HMGB1incancerous and inflammatory effusions. Anticancer Res,2009,29(12):5013-5017
    7Yu M, Wang H, Ding A, et al. HMGB1signals through toll-like receptor(TLR)4and TLR2. Shock,2006,26(2):174-179
    8Cottalorda A, Mercier B C, Mbitikon-Kobo F M, et al. TLR2engagementon memory CD8(+) T cells improves their cytokine-mediated proliferationand IFN-gamma secretion in the absence of Ag. Eur J Immunol,2009,39(10):2673-2681
    9He Z, Shotorbani S S, Jiao Z, et al. HMGB1promotes the differentiationof Th17via up-regulating TLR2and IL-23of CD14+monocytes frompatients with rheumatoid arthritis. Scand J Immunol,2012,76(5):483-490
    10Kruger B, Yin N, Zhang N, et al. Islet-expressed TLR2and TLR4senseinjury and mediate early graft failure after transplantation. Eur J Immunol,2010,40(10):2914-2924
    11Pullerits R, Urbonaviciute V, Voll R E, et al. Serum levels of HMGB1inpostmenopausal patients with rheumatoid arthritis: associations withproinflammatory cytokines, acute-phase reactants, and clinical diseasecharacteristics. J Rheumatol,2011,38(7):1523-1525
    12Harris H E, Andersson U, Pisetsky D S. HMGB1: a multifunctionalalarmin driving autoimmune and inflammatory disease. Nat RevRheumatol,2012,8(4):195-202
    13Sundberg E, Grundtman C, Af Klint E, et al. Systemic TNF blockade doesnot modulate synovial expression of the pro-inflammatory mediatorHMGB1in rheumatoid arthritis patients--a prospective clinical study.Arthritis Res Ther,2008,10(2): R33
    14Iwata Y, Furuichi K, Kaneko S, et al. The role of cytokine in the lupusnephritis. J Biomed Biotechnol,2011,2011:594809
    15Lee J Y, Ye J, Gao Z, et al. Reciprocal modulation of Toll-like receptor-4signaling pathways involving MyD88and phosphatidylinositol3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem,2003,278(39):37041-37051
    16Arbibe L, Mira J P, Teusch N, et al. Toll-like receptor2-mediatedNF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol,2000,1(6):533-540
    17Burns K, Martinon F, Esslinger C, et al. MyD88, an adapter proteininvolved in interleukin-1signaling. J Biol Chem,1998,273(20):12203-12209
    18Perkins N D. Integrating cell-signalling pathways with NF-kappaB andIKK function. Nat Rev Mol Cell Biol,2007,8(1):49-62
    19Toualbi-Abed K, Daniel F, Guller M C, et al. Jun D cooperates with p65toactivate the proximal kappaB site of the cyclin D1promoter: role ofPI3K/PDK-1. Carcinogenesis,2008,29(3):536-543
    20Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions andalterations in human cancer. Apoptosis,2004,9(6):667-676
    1Feng X, Hao J, Liu Q, et al. HMGB1mediates IFN-gamma-induced cellproliferation in MMC cells through regulation of cyclin D1/CDK4/p16pathway. J Cell Biochem,2012,113(6):2009-2019
    2封晓娟,刘淑霞,张玉军,等. NF-κB信号途径在小鼠狼疮性肾炎发病中的可能作用.中国免疫学杂志,2010,26(02):169-173+177
    3刘淑霞,郝军,郭惠芳,等. HMGB1/TLR/NF-κB在狼疮性肾炎小鼠肾组织中的表达及意义.中国免疫学杂志,2009,25(05):450-453
    4张玉军,刘淑霞,杨敏.狼疮性肾炎小鼠肾组织中HMGB1、TLR4、STAT3、PCNA的表达及意义.山东医药,2013,53(08):26-29+103
    5Qing X, Pitashny M, Thomas D B, et al. Pathogenic anti-DNA antibodiesmodulate gene expression in mesangial cells: involvement of HMGB1inanti-DNA antibody-induced renal injury. Immunol Lett,2008,121(1):61-73
    6Migita K, Miyashita T, Maeda Y, et al. Toll-like receptor expression inlupus peripheral blood mononuclear cells. J Rheumatol,2007,34(3):493-500
    7Hashimoto C, Hudson K L, Anderson K V. The Toll gene of Drosophila,required for dorsal-ventral embryonic polarity, appears to encode atransmembrane protein. Cell,1988,52(2):269-279
    8Hibino T, Loza-Coll M, Messier C, et al. The immune gene repertoireencoded in the purple sea urchin genome. Dev Biol,2006,300(1):349-365
    9Roach J C, Glusman G, Rowen L, et al. The evolution of vertebrateToll-like receptors[J]. Proc Natl Acad Sci U S A,2005,102(27):9577-9582
    10Du Pasquier L, Schwager J, Flajnik M F. The immune system of Xenopus.Annu Rev Immunol,1989,7:251-275
    11Palsson-Mcdermott E M, O'neill L A. The potential of targeting Toll-likereceptor2in autoimmune and inflammatory diseases. Ir J Med Sci,2007,176(4):253-260
    12Liu Y, Yin H, Zhao M, et al. TLR2and TLR4in Autoimmune Diseases: aComprehensive Review. Clin Rev Allergy Immunol,2013.[Epub ahead ofprint]
    13Ding J, Chang T L. TLR2activation enhances HIV nuclear import andinfection through T cell activation-independent and-dependent pathways.J Immunol,2012,188(3):992-1001
    14Ding J, Rapista A, Teleshova N, et al. Neisseria gonorrhoeae enhancesHIV-1infection of primary resting CD4+T cells through TLR2activation.J Immunol,2010,184(6):2814-2824
    15冷静,吴亚滨,郑禹,等.乙肝病毒携带者PBMC细胞中Toll样受体2表达水平与乙肝病毒增殖相关性研究.广西医科大学学报,2010,27(02):224-227
    16Qiu Y, Shen Y, Li X, et al. Molecular cloning and functionalcharacterization of a novel isoform of chicken myeloid differentiationfactor88(MyD88). Dev Comp Immunol,2008,32(12):1522-1530
    17Brightbill H D, Modlin R L. Toll-like receptors: molecular mechanisms ofthe mammalian immune response. Immunology,2000,101(1):1-10
    18Lu C, Liu L, Chen Y, et al. TLR2ligand induces protection againstcerebral ischemia/reperfusion injury via activation of phosphoinositide3-kinase/Akt signaling. J Immunol,2011,187(3):1458-1466
    1Leulier F, Lemaitre B. Toll-like receptors--taking an evolutionary approach.Nat Rev Genet,2008,9(3):165-178
    2West a P, Koblansky a A, Ghosh S. Recognition and signaling by toll-likereceptors. Annu Rev Cell Dev Biol,2006,22:409-437
    3Matsushima N, Tanaka T, Enkhbayar P, et al. Comparative sequenceanalysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.BMC Genomics,2007,8:124
    4Rock F L, Hardiman G, Timans J C, et al. A family of human receptorsstructurally related to Drosophila Toll. Proc Natl Acad Sci U S A,1998,95(2):588-593
    5Flo T H, Halaas O, Torp S, et al. Differential expression of Toll-likereceptor2in human cells. J Leukoc Biol,2001,69(3):474-481
    6Brzezinska-Blaszczyk E, Wierzbicki M.[Mast cell Toll-like receptors(TLRs)]. Postepy Hig Med Dosw (Online),2010,64:11-21
    7Zahringer U, Lindner B, Inamura S, et al. TLR2-promiscuous or specific?A critical re-evaluation of a receptor expressing apparent broad specificity.Immunobiology,2008,213(3-4):205-224
    8Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innateimmunity. Cell,2006,124(4):783-801
    9Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity.Biochem Biophys Res Commun,2009,388(4):621-625
    10Lebeer S, Vanderleyden J, De Keersmaecker S C. Host interactions ofprobiotic bacterial surface molecules: comparison with commensals andpathogens. Nat Rev Microbiol,2010,8(3):171-184
    11Travassos L H, Girardin S E, Philpott D J, et al. Toll-like receptor2-dependent bacterial sensing does not occur via peptidoglycanrecognition. EMBO Rep,2004,5(10):1000-1006
    12Hashimoto M, Tawaratsumida K, Kariya H, et al. Lipoprotein is apredominant Toll-like receptor2ligand in Staphylococcus aureus cell wallcomponents. Int Immunol,2006,18(2):355-362
    13Deininger S, Figueroa-Perez I, Sigel S, et al. Use of synthetic derivativesto determine the minimal active structure of cytokine-inducing lipoteichoicacid. Clin Vaccine Immunol,2007,14(12):1629-1633
    14Kang J Y, Nan X, Jin M S, et al. Recognition of lipopeptide patterns byToll-like receptor2-Toll-like receptor6heterodimer. Immunity,2009,31(6):873-884
    15Babu M M, Priya M L, Selvan a T, et al. A database of bacteriallipoproteins (DOLOP) with functional assignments to predictedlipoproteins. J Bacteriol,2006,188(8):2761-2773
    16Nakayama H, Kurokawa K, Lee B L. Lipoproteins in bacteria: structuresand biosynthetic pathways. FEBS J,2012,279(23):4247-4268
    17Spohn R, Buwitt-Beckmann U, Brock R, et al. Synthetic lipopeptideadjuvants and Toll-like receptor2--structure-activity relationships. Vaccine,2004,22(19):2494-2499
    18Azuma M, Sawahata R, Akao Y, et al. The peptide sequence of diacyllipopeptides determines dendritic cell TLR2-mediated NK activation.PLoS One,2010,5(9)
    19Sawahata R, Shime H, Yamazaki S, et al. Failure of mycoplasmalipoprotein MALP-2to induce NK cell activation through dendritic cellTLR2. Microbes Infect,2011,13(4):350-358
    20Agnihotri G, Crall B M, Lewis T C, et al. Structure-activity relationships intoll-like receptor2-agonists leading to simplified monoacyl lipopeptides. JMed Chem,2011,54(23):8148-8160
    21Wu W, Li R, Malladi S S, et al. Structure-activity relationships in toll-likereceptor-2agonistic diacylthioglycerol lipopeptides. J Med Chem,2010,53(8):3198-3213
    22Buwitt-Beckmann U, Heine H, Wiesmuller K H, et al. TLR1-andTLR6-independent recognition of bacterial lipopeptides. J Biol Chem,2006,281(14):9049-9057
    23Bianchi M E. DAMPs, PAMPs and alarmins: all we need to know aboutdanger. J Leukoc Biol,2007,81(1):1-5
    24Erridge C. Endogenous ligands of TLR2and TLR4: agonists or assistants?J Leukoc Biol,2010,87(6):989-999
    25Wagner H. Endogenous TLR ligands and autoimmunity. Adv Immunol,2006,91:159-173
    26Jin M S, Kim S E, Heo J Y, et al. Crystal structure of the TLR1-TLR2heterodimer induced by binding of a tri-acylated lipopeptide. Cell,2007,130(6):1071-1082
    27Beutler B, Jiang Z, Georgel P, et al. Genetic analysis of host resistance:Toll-like receptor signaling and immunity at large. Annu Rev Immunol,2006,24:353-389
    28Liang S, Wang M, Triantafilou K, et al. The A subunit of type IIbenterotoxin (LT-IIb) suppresses the proinflammatory potential of the Bsubunit and its ability to recruit and interact with TLR2. J Immunol,2007,178(8):4811-4819
    29Ikeda Y, Adachi Y, Ishii T, et al. Dissociation of Toll-like receptor2-mediated innate immune response to Zymosan by organicsolvent-treatment without loss of Dectin-1reactivity. Biol Pharm Bull,2008,31(1):13-18
    30Seo H S, Nahm M H. Lipoprotein lipase and hydrofluoric acid deactivateboth bacterial lipoproteins and lipoteichoic acids, but platelet-activatingfactor-acetylhydrolase degrades only lipoteichoic acids. Clin VaccineImmunol,2009,16(8):1187-1195
    31Scheibner K A, Lutz M A, Boodoo S, et al. Hyaluronan fragments act asan endogenous danger signal by engaging TLR2. J Immunol,2006,177(2):1272-1281
    32Funderburg N, Lederman M M, Feng Z, et al. Human-defensin-3activatesprofessional antigen-presenting cells via Toll-like receptors1and2. ProcNatl Acad Sci U S A,2007,104(47):18631-18635
    33Curtin J F, Liu N, Candolfi M, et al. HMGB1mediates endogenous TLR2activation and brain tumor regression. PLoS Med,2009,6(1):10
    34Jimenez-Dalmaroni M J, Xiao N, Corper a L, et al. Soluble CD36ectodomain binds negatively charged diacylglycerol ligands and acts as aco-receptor for TLR2. PLoS One,2009,4(10):7411
    35Triantafilou M, Gamper F G, Haston R M, et al. Membrane sorting oftoll-like receptor (TLR)-2/6and TLR2/1heterodimers at the cell surfacedetermines heterotypic associations with CD36and intracellular targeting.J Biol Chem,2006,281(41):31002-31011
    36Hoebe K, Georgel P, Rutschmann S, et al. CD36is a sensor ofdiacylglycerides. Nature,2005,433(7025):523-527
    37Nakata T, Yasuda M, Fujita M, et al. CD14directly binds to triacylatedlipopeptides and facilitates recognition of the lipopeptides by the receptorcomplex of Toll-like receptors2and1without binding to the complex.Cell Microbiol,2006,8(12):1899-1909
    38Patel S N, Lu Z, Ayi K, et al. Disruption of CD36impairs cytokineresponse to Plasmodium falciparum glycosylphosphatidylinositol andconfers susceptibility to severe and fatal malaria in vivo. J Immunol,2007,178(6):3954-3961
    39Debierre-Grockiego F, Niehus S, Coddeville B, et al. Binding ofToxoplasma gondii glycosylphosphatidylinositols to galectin-3is requiredfor their recognition by macrophages. J Biol Chem,2010,285(43):32744-32750
    40Massari P, Henneke P, Ho Y, et al. Cutting edge: Immune stimulation byneisserial porins is toll-like receptor2and MyD88dependent. J Immunol,2002,168(4):1533-1537
    41Liu X, Wetzler L M, Massari P. The PorB porin from commensal Neisserialactamica induces Th1and Th2immune responses to ovalbumin in miceand is a potential immune adjuvant. Vaccine,2008,26(6):786-796
    42Massari P, Visintin A, Gunawardana J, et al. Meningococcal porin PorBbinds to TLR2and requires TLR1for signaling. J Immunol,2006,176(4):2373-2380
    43Raby a C, Le Bouder E, Colmont C, et al. Soluble TLR2reducesinflammation without compromising bacterial clearance by disruptingTLR2triggering. J Immunol,2009,183(1):506-517
    44Dulay a T, Buhimschi C S, Zhao G, et al. Soluble TLR2is present inhuman amniotic fluid and modulates the intraamniotic inflammatoryresponse to infection. J Immunol,2009,182(11):7244-7253
    45Watters T M, Kenny E F, O'neill L A. Structure, function and regulation ofthe Toll/IL-1receptor adaptor proteins. Immunol Cell Biol,2007,85(6):411-419
    46Cao Z, Henzel W J, Gao X. IRAK: a kinase associated with theinterleukin-1receptor. Science,1996,271(5252):1128-1131
    47Swantek J L, Tsen M F, Cobb M H, et al. IL-1receptor-associated kinasemodulates host responsiveness to endotoxin. J Immunol,2000,164(8):4301-4306
    48Cao Z, Xiong J, Takeuchi M, et al. TRAF6is a signal transducer forinterleukin-1. Nature,1996,383(6599):443-446
    49Lomaga M A, Yeh W C, Sarosi I, et al. TRAF6deficiency results inosteopetrosis and defective interleukin-1, CD40, and LPS signaling. GenesDev,1999,13(8):1015-1024
    50Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the controlof NF-[kappa]B activity. Annu Rev Immunol,2000,18:621-663
    51Li Z W, Chu W, Hu Y, et al. The IKKbeta subunit of IkappaB kinase (IKK)is essential for nuclear factor kappaB activation and prevention ofapoptosis. J Exp Med,1999,189(11):1839-1845
    52Rudolph D, Yeh W C, Wakeham A, et al. Severe liver degeneration andlack of NF-kappaB activation in NEMO/IKKgamma-deficient mice.Genes Dev,2000,14(7):854-862
    53Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities inmice lacking IKKalpha. Science,1999,284(5412):313-316
    54Li Q, Lu Q, Hwang J Y, et al. IKK1-deficient mice exhibit abnormaldevelopment of skin and skeleton. Genes Dev,1999,13(10):1322-1328
    55Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKKactivation in mice lacking the IKKalpha subunit of IkappaB kinase.Science,1999,284(5412):316-320
    56Irie T, Muta T, Takeshige K. TAK1mediates an activation signal fromtoll-like receptor(s) to nuclear factor-kappaB inlipopolysaccharide-stimulated macrophages. FEBS Lett,2000,467(2-3):160-164
    57Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK1canactivate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1signalling pathway. Nature,1999,398(6724):252-256
    58Kopp E, Medzhitov R, Carothers J, et al. ECSIT is an evolutionarilyconserved intermediate in the Toll/IL-1signal transduction pathway.Genes Dev,1999,13(16):2059-2071
    59Adachi O, Kawai T, Takeda K, et al. Targeted disruption of the MyD88gene results in loss of IL-1-and IL-18-mediated function. Immunity,1998,9(1):143-150
    60Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficientmice to endotoxin. Immunity,1999,11(1):115-122
    61Takeuchi O, Takeda K, Hoshino K, et al. Cellular responses to bacterialcell wall components are mediated through MyD88-dependent signalingcascades. Int Immunol,2000,12(1):113-117
    62Goh F G, Midwood K S. Intrinsic danger: activation of Toll-like receptorsin rheumatoid arthritis. Rheumatology (Oxford),2012,51(1):7-23
    63Takagi M. Toll-like receptor--a potent driving force behind rheumatoidarthritis. J Clin Exp Hematop,2011,51(2):77-92
    64Neumann E, Lefevre S, Zimmermann B, et al. Rheumatoid arthritisprogression mediated by activated synovial fibroblasts. Trends Mol Med,2010,16(10):458-468
    65Ospelt C, Brentano F, Rengel Y, et al. Overexpression of toll-like receptors
    3and4in synovial tissue from patients with early rheumatoid arthritis:toll-like receptor expression in early and longstanding arthritis. ArthritisRheum,2008,58(12):3684-3692
    66Saber T, Veale D J, Balogh E, et al. Toll-like receptor2inducedangiogenesis and invasion is mediated through the Tie2signalling pathwayin rheumatoid arthritis. PLoS One,2011,6(8): e23540
    67Chovanova L, Vlcek M, Krskova K, et al. Increased production of IL-6and IL-17in lipopolysaccharide-stimulated peripheral mononuclears frompatients with rheumatoid arthritis. Gen Physiol Biophys,2013,32(3):395-404
    68Lorenz W, Buhrmann C, Mobasheri A, et al. Bacterial lipopolysaccharidesform procollagen-endotoxin complexes that trigger cartilage inflammationand degeneration: implications for the development of rheumatoid arthritis.Arthritis Res Ther,2013,15(5): R111
    69Hu F, Mu R, Zhu J, et al. Hypoxia and hypoxia-inducible factor-1alphaprovoke toll-like receptor signalling-induced inflammation in rheumatoidarthritis. Ann Rheum Dis,2014,73(5):928-936
    70Hu F, Shi L, Mu R, et al. Hypoxia-inducible factor-1alpha and interleukin
    33form a regulatory circuit to perpetuate the inflammation in rheumatoidarthritis. PLoS One,2013,8(8): e72650
    71Huang Q Q, Koessler R E, Birkett R, et al. Glycoprotein96perpetuates thepersistent inflammation of rheumatoid arthritis. Arthritis Rheum,2012,64(11):3638-3648
    72He Z, Shotorbani S S, Jiao Z, et al. HMGB1promotes the differentiationof Th17via up-regulating TLR2and IL-23of CD14+monocytes frompatients with rheumatoid arthritis. Scand J Immunol,2012,76(5):483-490
    73Abdollahi-Roodsaz S, Joosten L A, Koenders M I, et al. Stimulation ofTLR2and TLR4differentially skews the balance of T cells in a mousemodel of arthritis. J Clin Invest,2008,118(1):205-216
    74Han E C. Systemic lupus erythematosus. N Engl J Med,2012,366(6):573-574; author reply574
    75Conti G, Coppo R, Amore A.[Pathogenesis of systemic lupuserythematosus (LES)]. G Ital Nefrol,2012,29Suppl54: S84-90
    76Jallouli M, Frigui M, Marzouk S, et al.[Infectious complications insystemic lupus erythematosus: a series of146patients. Rev Med Interne,2008,29(8):626-631
    77Kirchner M, Sonnenschein A, Schoofs S, et al. Surface expression andgenotypes of Toll-like receptors2and4in patients with juvenile idiopathicarthritis and systemic lupus erythematosus. Pediatr Rheumatol Online J,2013,11(1):9
    78Komatsuda A, Wakui H, Iwamoto K, et al. Up-regulated expression ofToll-like receptors mRNAs in peripheral blood mononuclear cells frompatients with systemic lupus erythematosus. Clin Exp Immunol,2008,152(3):482-487
    79Fujita K, Akasaka Y, Kuwabara T, et al. Pathogenesis of lupus-likenephritis through autoimmune antibody produced by CD180-negative Blymphocytes in NZBWF1mouse. Immunol Lett,2012,144(1-2):1-6
    80Loser K, Vogl T, Voskort M, et al. The Toll-like receptor4ligands Mrp8and Mrp14are crucial in the development of autoreactive CD8+T cells.Nat Med,2010,16(6):713-717
    81Vakaloglou K M, Mavragani C P. Activation of the type I interferonpathway in primary Sjogren's syndrome: an update. Curr Opin Rheumatol,2011,23(5):459-464
    82Nguyen C Q, Peck a B. The Interferon-Signature of Sjogren's Syndrome:How Unique Biomarkers Can Identify Underlying Inflammatory andImmunopathological Mechanisms of Specific Diseases. Front Immunol,2013,4:142
    83Kawakami A, Nakashima K, Tamai M, et al. Toll-like receptor in salivaryglands from patients with Sjogren's syndrome: functional analysis byhuman salivary gland cell line. J Rheumatol,2007,34(5):1019-1026
    84Kwok S K, Cho M L, Her Y M, et al. TLR2ligation induces theproduction of IL-23/IL-17via IL-6, STAT3and NF-kB pathway in patientswith primary Sjogren's syndrome. Arthritis Res Ther,2012,14(2): R64
    85Chong H T, Kopecki Z, Cowin a J. Lifting the silver flakes: thepathogenesis and management of chronic plaque psoriasis. Biomed Res Int,2013,2013:168321
    86Carrasco S, Neves F S, Fonseca M H, et al. Toll-like receptor (TLR)2isupregulated on peripheral blood monocytes of patients with psoriaticarthritis: a role for a gram-positive inflammatory trigger?. Clin ExpRheumatol,2011,29(6):958-962
    87Garcia-Rodriguez S, Arias-Santiago S, Perandres-Lopez R, et al. Increasedgene expression of Toll-like receptor4on peripheral blood mononuclearcells in patients with psoriasis. J Eur Acad Dermatol Venereol,2013,27(2):242-250
    88Castrop F, Haslinger B, Hemmer B, et al. Review of thepharmacoeconomics of early treatment of multiple sclerosis usinginterferon beta. Neuropsychiatr Dis Treat,2013,9:1339-1349
    89Shaw P J, Barr M J, Lukens J R, et al. Signaling via the RIP2adaptorprotein in central nervous system-infiltrating dendritic cells promotesinflammation and autoimmunity. Immunity,2011,34(1):75-84
    90Sloane J A, Batt C, Ma Y, et al. Hyaluronan blocks oligodendrocyteprogenitor maturation and remyelination through TLR2. Proc Natl AcadSci U S A,2010,107(25):11555-11560
    91Andersson A, Covacu R, Sunnemark D, et al. Pivotal advance: HMGB1expression in active lesions of human and experimental multiple sclerosis.J Leukoc Biol,2008,84(5):1248-1255
    92Nokoff N, Rewers M. Pathogenesis of type1diabetes: lessons fromnatural history studies of high-risk individuals. Ann N Y Acad Sci,2013,1281:1-15
    93Lien E, Zipris D. The role of Toll-like receptor pathways in the mechanismof type1diabetes. Curr Mol Med,2009,9(1):52-68
    94Devaraj S, Jialal I, Yun J M, et al. Demonstration of increased toll-likereceptor2and toll-like receptor4expression in monocytes of type1diabetes mellitus patients with microvascular complications. Metabolism,2011,60(2):256-259
    95Ururahy M A, Loureiro M B, Freire-Neto F P, et al. Increased TLR2expression in patients with type1diabetes: evidenced risk ofmicroalbuminuria. Pediatr Diabetes,2012,13(2):147-154
    96Jagannathan M, Mcdonnell M, Liang Y, et al. Toll-like receptors regulateB cell cytokine production in patients with diabetes. Diabetologia,2010,53(7):1461-1471
    97Lee M S, Kim D H, Lee J C, et al. Role of TLR2in the pathogenesis ofautoimmune diabetes and its therapeutic implication. Diabetes Metab ResRev,2011,27(8):797-801
    98Filippi C M, Ehrhardt K, Estes E A, et al. TLR2signaling improvesimmunoregulation to prevent type1diabetes. Eur J Immunol,2011,41(5):1399-1409
    99Kim D H, Lee J C, Kim S, et al. Inhibition of autoimmune diabetes byTLR2tolerance. J Immunol,2011,187(10):5211-5220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700