用户名: 密码: 验证码:
凝集素芯片技术在鉴别胃癌与溃疡的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌(carcinoma of stomach)是我国最常见的恶性肿瘤之一,胃癌的死亡率高居各类恶性肿瘤第二位。胃癌被广泛的认为起源于胃壁最表层的粘膜上皮细胞,它常常可以侵犯胃壁的不同广度和深度,临床发现胃癌可发生于胃的各个部位(其中胃窦幽门区最多、胃底贲门区次之、胃体部略少)。
     早期胃癌是指癌灶仅仅局限在胃部粘膜内或粘膜下层,进展期胃癌是指癌灶侵犯肌层深度,或者有转移到胃以外区域。实际上胃癌有多种的形态和分类,最常见的有溃疡型、浸润型、表浅型、肿块型、溃疡癌(也有观点认为这属于慢性胃溃疡癌变)。通过显微镜观测,从组织学角度也可以将胃癌分为腺鳞癌、鳞状细胞癌、未分化癌、腺癌(占约90%,包括管状腺癌、粘液腺癌、乳头状腺癌、印戒细胞癌)以及类癌。即便显微镜下的组织学形态是一致的,胃癌细胞内部更细微的分子结构也有很多的不同,按照这种分法,还有很多独特的胃癌种类等待研究者们的进一步发现。
     凝集素是一类糖蛋白,它具有糖的专一性,并可以促进细胞的凝集。凝集素被发现可以可逆的与糖发生专一、非共价结合。动物细胞和植物细胞都可以自主的对凝集素进行合成和分泌,凝集素广泛存在于动物、植物等生物细胞膜、细胞质及细胞外基质中,其在细胞识别和粘着反应中起着重要作用。
     近年来,如核磁共振(NMR)、FAC、质谱(MS)等许多先进技术的应用使糖组学的研究取得了一定的进展,但是每种技术都有其各自的缺点和优点。事实上,各种技术对于样品准备和结果的分析都需要消耗大量的时间,且需要高昂的费用。而凝集素芯片技术则无需事先对样品的某些糖链进行修饰或移除,耗时短,相对费用也较低,从而能简便、快速、高通量地对蛋白组学及糖组学进行研究。寡糖、糖脂或糖蛋白均可以通过糖芯片固定在支持物上,以用于对蛋白质或者细胞与糖结合活性的检测。目前,各种基于凝集素的特异性的糖组学相关研究技术的高速发展,特别是基因芯片技术的逐步商业化,将有助于推动对糖复合物上的聚糖结构以及功能的研究,从而有助于了解其在生物过程中所扮演的重要角色。
     方法:本研究收集了来自北华大学附属医院的胃癌及胃溃疡患者活检组织,利用凝集素特异结合糖链的原理,建立了基于凝集素芯片技术检测糖蛋白的模型,分析了胃癌组织与胃溃疡组织中糖蛋白糖链结构的差异,并通过凝集素组织化学方法加以验证。
     结果:利用凝集素芯片分别对病人胃癌组织和胃溃疡组织的糖蛋白表达进行了检测及分析,结果显示:
     1.通过凝集素芯片分析发现,胃癌病人癌变组织中糖蛋白的表达种类多于胃溃疡组,且糖链分支数明显增加;
     2.通过凝集素芯片分析发现,癌变组织糖蛋白中的乙酰氨基半乳糖(GalNAc)较胃溃疡组相比明显增加;
     3.通过免疫组化研究进一步证实与MPL特异结合的含有GalNAc的糖蛋白,与VVA特异性结合的含有GalNAc和GalNAcα-Ser/Thr(Tn)的糖蛋白在胃癌组织中均高表达;
     4.与MPL及VVA特异结合的含有GalNAc的糖蛋白主要表达于细胞质,在癌组织中大部分着色为棕黄色和棕褐色,为中度或强染色。
     5.所有类型的胃癌组织均显示了较强的染色,与胃溃疡相比均有显著差异性。凝集素免疫组化结果与凝集素芯片结果一致。
     6.在不同类型的胃癌组织中,与MPL特异结合的含有GalNAc的糖蛋白的表达量从高到低依次为:粘膜内癌、印戒细胞癌、腺癌、淋巴转移腺癌、未分化癌、类癌;
     7.在不同类型的胃癌组织中,与VVA特异性结合的GalNAc和GalNAcα-Ser/Thr(Tn)的糖蛋白的表达量从高到低依次为:粘膜内癌、印戒细胞癌、类癌、未分化癌、腺癌、淋巴转移腺癌;
     8.凝集素芯片检测糖蛋白技术可为胃癌的早期诊断及治疗提供依据。
Gastric cancer is the most common epithelial cancer worldwide and the second leadingcause of cancer death, with an incidence of18.9/100,000/year. In china, these are400,000new cases of gastric cancer and300,000deaths annually, making gastric cancer China’s thirdmost common type of cancer. Surgery is the only known cure, so new prognostic indicators ortumor markers are necessary to increase patient survival, treatment outcome, and facilitateearly diagnosis.
     The relation between gastric ulcer and cancer has long been disput ed ever sinceCruveilhier in1839first distinguished clearly between chronic ulcer and cancer bothclinically and pathologically, but there is accumulating evidence that gastric ulcer disease ispositively associated with the risk of developing stomach cancer. Discovery of a tool fordistinguishing early gastric cancer from ulcer is necessary.
     Protein glycosylation, the attachment of a saccharide moiety to a protein, is amodification that occurs posttranslationally. The difference in tissue distribution and substratespecificity toward peptides are related to the diverse functions of these different subtypes ofGalNAc-Tases. GalNAc-Tase expression pattern have been reported in several types ofcancers, including gastric cancer, which suggested that GalNAc played a key role in gastriccancer genesis.
     Lectin microarray is a sensitive tool with the potential to allow high-throught analysis ofcancer-associated changes in glycosylation, and it has been used for biomarker discovery forcancer.
     Methods:Human gastric ulcer and gastric cancer tissueswere obtained from AffiliateHospital of Beihua University (Jilin, China) as frozen tissues, and they were proved bypathologists.
     A lectin microarray was produced by using37lectins with different binding preferences covering N-and O-linked glycans. Each sample was observed consistently by three repeatedslides and the normalized medians of each lectin from9repeated blocks were averaged and itsSD was counted.
     Data are presented as means±SD for the indicated number of independent experiments.Statistical differences between groups were calculated by using Student’s two-tailed t-test.Differences were considered statistically significant for values.
     Result:Lectin histochemistry indicated that more positive cells and intensive stainingcould be visible in gastric cancer when compared with gastic ulcer using the selected twolectins (MPL and VVA), which was consistent with the results of lectin microarray, suggestingthat lectins-MPL and VVA could be used for distinguishing gastric cancer from ulcer.
     1. The types of glycoprotein expression and the numbers of sugar chain branch in gastriccancer tissue were increased compared with in gastric ulcer tissue through the lectinmicroarray analysis.
     2. The GalNAc′s content of glycoprotein in gastric cancer tissue was increasedcompared with in gastric ulcer tissue through the lectin microarray analysis.
     3. The GalNAc′s content combined with MPL specific and GalNAcα-Ser/Thr (Tn)′scontent combined with VAA specific in gastric ulcer tissue were high expression byimmunohistochemical study.
     4. The glycoprotein contains GalNAc combined with MPL or VAA specific was mainlyexpressed in the cytoplasm, and most color was tan and brown of moderate or strong stainingin gastric cancer tissue.
     5. All types of gastric cancer group showed strong staining, were significantly differencecompared with gastric ulcer. The results of lectins immunohistochemical were consistent withthe results of lectin chip.
     6. In different types of gastric cancer tissues, MPL specific glycoprotein containingGalNAc expression quantity order from high to low was: intra-mucosal carcinoma, signet ringcell carcinoma, adenocarcinoma, lymphatic metastatic carcinoid, undifferentiated carcinoma,adenocarcinoma;
     7. In different types of gastric cancer tissues, VAA specific glycoprotein containing GalNAc and GalNAcα-Ser/Thr(Tn)expression quantity order from high to low was:intra-mucosal carcinoma, signet ring cell carcinoma, carcinoma and undifferentiatedcarcinoma, adenocarcinoma, lymphatic metastasis adenocarcinoma.
     8. Lectins chip detection glycoprotein technology could provide the basis for earlydiagnosis and treatment of gastric cancer.
引文
[1] Wen SL, Zhang F, Feng S, et al. Decreased copy number of mitochondrial DNA: Apotential diagnostic criterion for gastric cancer [J]. Oncol Lett,2013,6(4):1098-1102.
    [2]张叶丽,胡梅洁.胃癌癌前病变相关研究进展[J].上海交通大学学报(医学版),2010,30(2):236-239.
    [3]陈万宵,张思维,郑荣寿等.中国肿瘤登记地区2007年肿瘤发病和死亡分析[J].中国肿瘤,2011,20(3):162-169.
    [4]陈孝平.外科学(第2版)[M].北京:人民卫生出版社,2010.
    [5]沈定丰,董平,徐雷鸣等.超声内镜在胃癌术前诊断和分期中的作用[J].上海第二医科大学学报,2003,9(23):91-92.
    [6] Correa P, Haenszel W, Cuello C, et al. Gastric precancerous procession a high riskpopulation: cross sectional studies [J]. Cancer Res,1990,50(15):4731-4736.
    [7] Kweon SS, Shu XO, Xiang Y, et al. Intake of specific nonfermented soy foods may beinversely associated with risk of distal gastric cancer in a Chinese population [J]. J Nutr,2013,143(11):1736-42.
    [8] Lv L, Wang P, Sun B, et al. The polymorphism of methylenetetrahydrofolate reductaseC677T but not A1298C contributes to gastric cancer [J]. Tumour Biol,2014,35(1):227-37.
    [9]罗元辉.胃癌组织P53蛋白产物的表达与患者预后[J].免疫学杂志,1995,11(3):179-181.
    [10] Bani-Hani KE, Almasri NM, YS Khader, et al. Combined evaluation of expressions ofcyclin E and p53proteins as prognostic factors for patients with gastric cancer [J]. ClinCancer Res,2005,11:1447-1453.
    [11]米建强,沈铭昌. Cmyc原癌基因产物在胃癌及癌前病变组织中的表达[J].中国肿瘤临床,1995,22(10):702-705.
    [12]陈波,王舒宝.胃癌分期系统的沿革和现状[J].中国实用外科杂志,2001,21(7):438-440.
    [13]张文范,张荫昌,陈峻青等.胃癌(第2版)[M].上海:上海科学技术出版社,2001,254-256.
    [14] Ye S, Long YM, Rong J, et al. Nuclear factor kappa B: a marker of chemotherapy forhuman stage IV gastrid carcinoma [J]. World J Gastroenterol,2008,14(30):4739-4744.
    [15] Abe N, Watanabe T, Sugiyama M, et al. Endoscopic treament or surgery forundifferentiated early gastric cancer?[J]. Am J Surg,2004,188(2):181-184.
    [16] Hyung WJ, Cheong JH, Kim J, et al. Application of minimally invasive treatment forearly gastric cancer [J]. J Surg Oncol,2004,85(4):181-185.
    [17] Guo HB, Randolph M, Pierce M, et al. Inhibition of a specific N-glycosylation activityresults in attenuation of breast carcinoma cell invasiveness-related phenotypes:inhibition of epidermal growth factor-induced dephosphorylation of focal adhesionkinase [J]. J Biol Chem,2007,282:22150-22162.
    [18] Wu CW, Hsiung CA, Lo SS, et al. Nodal dissection for patients with gastric cancer: arandomised controlled trial [J]. Lancet Oncol,2006,7(4):309-315.
    [19] Warneke VS, Behrens HM, Haag J, et al. Members of the EpCAM signalling pathwayare expressed in gastric cancer tissue and are correlated with patient prognosis [J]. Br JCancer,2013,109(8):2217-2227.
    [20]李建刚,陈忠,刘云等.CEA、CAl99、CA124、MGAg单项及联合检测对诊断胃癌的临床价值[J].同位素,2002,15:58-60.
    [21] Imdahl A. Early diagnosis is crucial for prognosis in gastric cancer [J]. MMW FortschrMed,2008,150:27-28.
    [22] Sun M, Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3is associatedwith poor prognosis and promotes cell proliferation in gastric cancer [J]. Tumour Biol,2014,35(2):1065-1673.
    [23]王轶.胃癌病程分期与血清CA724、CA242及CEA水平关系探讨[J].放射免疫学杂志,2006,19(3):225-226.
    [24]缪林,季国忠,范志宁等.联合检测血清CA199、CA125、CEA对胃癌诊断价值[J].现代中西医杂志,2004,1(2):2315-2316.
    [25] Jinawath N, Furukawa Y, Hasegawa S, et al. Comparison of gene-expression profilesbetween diffuse-and intestinal-type gastric cancers using a genome-wide cDNAmicroarray [J]. Oncogene,2004,23:6830-6844.
    [26] Wijnhoven BPL, Hussey DJ, Watson DI, et al. MicroRNA profiling of Barrett'soesophagus and oesophageal adenocarcinoma [J]. Br J Surg,2010,97(6):853-861.
    [27] Qing YH, Ta TY, Muyao L, et al. Proteomic analyses of arsenic induced celltransformation with SELDI-TOF protein Clip technology [J]. J Cell Biochem,2003,88(1): l-8.
    [28] Chen K, Xu XW, Zhang RC, et al. Systematic review and meta-analysis oflaparoscopy-assisted and open total gastrectomy for gastric cancer [J]. World JGastroenterol,2013,19(32):5365-5376.
    [29] Takahashi K, Tsukamoto S, Saito K, et al. Complete response to multidisciplinarytherapy in a patient with primary gastric choriocarcinoma [J]. World J Gastroenterol.2013,19(31):5187-5394.
    [30] Mac IC. World leaders heappraise on human genome landmark [J]. Nature,2000,405(6790):983-984
    [31] Lou Y, Yao JH, Zenreski A, et al. Nek2A interacts with Mad1and possibly functions asa novel integrator of the spindle checkpoint signaling [J]. J Biol Chem,2004,279:20049-20057.
    [32] Hogan JM. Complementary structural information from a tryptic A-linked glycopeptidevia electron transfer ion/ion reactions and collision-induced dissociation [J]. J ProteomeRes,2005,4:628-32.
    [33] Lauriere M, Bouchez I, Doyen C, et al. Identification of glycosylated forms of wheatstorage proteins using two-dimensional electrophoresis and blotting [J]. Electrophoresis,1996,17(3):497-501.
    [34] Streif D, Iglseder E, Hauser-Kronberger C, et al. Expression of the non-gastric H+/K+ATPase ATP12A in normal and pathological human prostate tissue [J]. Cell PhysiolBiochem,2011,28(6):1287-94.
    [35] Gupta G, Avadhesaha S, Srinivasa G, et al. Lectin microarrays for glycomic analysis [J].OM/GS,2010,14(4):419-36.
    [36] Yi Z, Liuh-Yow C, Xin H, et al. Phosphorylation of TPP1regulates cellcycle-dependent telomerase recruitment [J]. PNAS,2013,110(14):5457-5462.
    [37] Gwen E, Dressing, Todd P, et al. Progesterone Receptor–Cyclin D1Complexes InduceCell Cycle–Dependent Transcriptional Programs in Breast Cancer Cells [J]. MolEndocrinol,2014,28(4):442-457.
    [38] Geyer R, Geyer H. Strategies for analysis of glycoprotein glycosylation [J]. BiochimBiophys Acta,2006,1764(12):1853-1869.
    [39] Lau KS, Dennis JW. V-Glycans in cancer progression [J]. Glycobiology,2008,18(10):750-60.
    [40] Borsig. Synergistic effects of L-and P-selectin in facilitating tumor metastasis caninvolve non-mucinigands and implicate leukocytes as enhancers of metastasis [J].Proc Natl Acad Sci,2002,99(4):2193-2198.
    [41] Zhang H, Li XJ, Martin DB, et al. Identification and quantification of N-linkedglycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry[J]. Nat Biotechnol,2003,21(6):660-666.
    [42] Yang L, Levi E, Zhu S, et al. Cancer stem cells biomarkers in gastric carcinogenesis [J].J Gastrointest Cancer,2013,44(4):428-35.
    [43] Wang X, Song ZF, Xie RM, et al. Analysis of death causes of in-patients withmalignant tumors in Sichuan Cancer Hospital of China from2002to2012[J]. AsianPac J Cancer Prev,2013,14(7):4399-4402.
    [44] Lehto MT, Sharom FJ. PI-specific phospholipase C cleavage of a reconstitutedGPI-anchored protein: modulation by the lipid bilayer [J]. Biochemistry,2002,41(4):1398-1408.
    [45] Dodds ED, Seiper RR, Glowers BH, et al. Analytical performance of immobilizedpronase for glycopeptide footprinting and implications for surpassing reductionistglycoproteomics [J]. J Proteome Res,2009,8(2):502-512.
    [46] Taniguchi N, Hancock W, Lubman DM, et al. The second golden age of glycomics:from functional glycomics to clinical applications [J]. J Proteome Res,2009,8(2):425-426.
    [47] Bleckmann C, Geyer H, Reinhold V, et al. Glycomic analysis of TV-linkedcarbohydrate epitopes from CD24of mouse brain [J]. J Proteome Res,2009,8(2):567-82.
    [48] Graziosi L, Mencarelli A, Santorelli C, et al. Mechanistic role of p38MAPK in gastriccancer dissemination in a rodent model peritoneal metastasis[J]. Eur J Pharmacol,2012,674(2-3):143-52.
    [49] Pilobello KT, Agrawal P, Rouse R, et al. Advances in Lectin Microarray Technology:Optimized Protocols for Piezoelectric Print Conditions [J]. Curr Protoc Chem Biol,2013,5:1-23
    [50] Liu Y, He J, Lubman DM, et al. Characterization of Membrane-AssociatedGlycoproteins Using Lectin Affinity Chromatography and Mass Spectrometry [J].Methods in Mol Biol,2013,951:69-77.
    [51] Tateno H. A novel strategy for mammalian cell surface glycome profiling using lectinmicroarray [J]. Glycobiology,2007,17(10):1138-1746.
    [52] Zhan FZ, Man W, Qiang X, et al. The lectin of Dolichos biflorus agglutinin recognisesglycan epitopes on the surface of a subset of cardiac progenitor cells [J]. Cell Biol Int,2013,33(17):1238-1245.
    [53] Liu Z, Liu B, Zhang ZT, et al. A mannose-binding lectin from sophora flavescensinduces apoptosis in HeLa cells [J]. Phytomedicine,2008,15:867-875.
    [54] Vosseller K, Trinidad JC, Chalkley RJ, et al. O-linked N-acetylglucosamine proteomicsof postsynaptic density preparations using lectin weak affinity chromatography andmass spectrometry [J]. Mol Cell Proteomics,2006,5:923-934.
    [55] Inagaki Y, Tang W, Guo Q, et al. Sialogycoconjugate expression in primary colorectalcancer and metastatic lymph node tissues [J]. Hepatogastroenterology,2007,54:53-57.
    [56] Wedepohl S, Kaup ML, Riese SB, et al. Glycan analysis of recombinant L-Selectinreveals sulfated GalNAc and GalN Ac-GalN Ac motifs [J]. J Proteome Res2010,9(7):3403-3411.
    [57] Brenner B, Hoshen MB, Purim O, et al. MicroRNAs as a potential prognostic factor ingastric cancer [J]. World J Gastroenterol,2011,17(35):3976-3985.
    [58] Lee A, Kolarich D, Haynes PA et al. Rat liver membrane glycoproteome: enrichmentby phase partitioning and glycoprotein capture [J]. J Proteome Res,2009,8(2):770-781.
    [59] Sohn SH, Lee YC. The genome-wide expression profile of gastric epithelial cellsinfected by naturally occurring cag A isogenic strains of Helicobacter pylori [J].Environ Toxicol Pharmacol,2011,32(3):382-389.
    [60] Dai Z, Fan J, Liu Y, et al. Identification and analysis of alpha1,6-fucosylated proteinsin human normal liver tissues by a target glycoproteomic approach [J]. Electrophoresis,2007,28(23):4382-4291.
    [61] Zielinska DR, Gnad R, Wisniewski JR, et al. Precision mapping of an in vivoglycoproteome reveals rigid topological and sequence constraints [J]. Cell2010,141(5):897-907.
    [62] Chen R, Jiang X, Sun D, et al. Glycoproteomics analysis of human liver tissue bycombination of multiple enzyme digestion and hydrazide chemistry [J]. J Proteome Res,2009,8(2):651-661.
    [63] Sun B, Ranish JA, Utleg AG, et al. Shotgun glycopeptide capture approach coupledwith mass spectrometry for comprehensive glycoproteomics [J]. Mol Cell Proteomics,2007,6(1):141-149.
    [64] Zhou Y, Aebersold R, Zhang H, et al. Isolation of AMinked glycopeptides from plasma[J]. Anal Chem,2007,79(15):5826-5837.
    [65] Tian Y, Zhou Y, Elliott S, Aebersold R, et al. Solid-phase extraction of AMinkedglycopeptides [J]. Nat Protoc,2007,2(2):334-339.
    [66] Berven FS, Ahmad R, Clauser KR, et al. Optimizing performance of glycopeptidecapture for plasma proteomics [J]. J Proteome Res,2010,9(4):1706-1715.
    [67] Wollscheid B, Bausch-Fluck D, Henderson C et al. Mass-spectrometric identificationand relative quantification of N-linked cell surface glycoproteins [J]. Nat Biotechnol,2009,27(4):378-386.
    [68] Zeng Y, Ramya TN, Dirksen A, et al. High-efficiency labeling of sialylatedglycoproteins on living cells [J]. Nat Methods,2009,6(3):207-209.
    [69] Shakey Q, Bates B, Wu J, et al. An approach to quantifying TV-linked glycoproteins byenzyme-catalyzed Os-labeling of solid-phase enriched glycopeptides [J]. Anal Chem,2010,82(18):7722-7728.
    [70] Larsen MR. Roepst of the Characterization of gels eparated glycoproteins using twostep proteolytic digestion combined with sequential microcolumns and massspectrometry [J]. Mol Cell Proteomics,2005,4(2):107-119.
    [71] Shimizu Y, Nakata M, Kuroda Y, et al. Rapid and simple preparation of N-linkedoligosaccharides by cellulose-column chromatography [J]. Carbohydr Res,2001,332(4):381-388.
    [72] Ding W, Nothaft H, Szymanski CM, et al. Identification and quantification ofglycoproteins using ion-pairing normal-phase liquid chromatography and massspectrometry [J]. Mol Cell Proteomics,2009,8(9):2170-2185.
    [73] Larsen MR, Hojrup P, Roepstorff P, et al. Characterization of gel-separatedglycoproteins using two-step proteolytic digestion combined with sequentialmicrocolumns and mass spectrometry [J]. Mol Cell Proteomics,2005,4(2):107-119.
    [74] Kvaratskhelia M, Clark PK, Hess S, et al. Identification of glycosylation sites in the SUcomponent of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A)by mass spectrometry [J]. Virology,2004,326(1):171-181.
    [75] Chalkley RJ, Burlingame AL. Identification of novel sites of O-N-acetylglucosaminemodification of serum response factor using quadrupole time-of-flight massspectrometry [J]. Mol Cell Proteomics,2003,2(3):182-190.
    [76] Seipert RR, Dodds ED, Lebrilla CB, et al. Exploiting differential dissociationchemistries of O-linked glycopeptide ions for the localization of mucin-type proteinglycosylation [J]. J Proteome Res,2009,8(2):493-501.
    [77] Tie JK, Zheng MY, Pope RM, et al. Identification of the A-linked glycosylation sites ofvitamin K-dependent carboxylase and effect of glycosylation on carboxylase function[J]. Biochemistry,2006,45(49):14755-14763.
    [78] Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry oflarge biomolecules [J]. Science,1989,246(4926):64-71.
    [79] Song W, Yang HB, Chen P, et al. Apoptosis of human gastric carcinoma SGC-7901induced by deoxycholic acid via the mitochondrial-dependent pathway [J]. ApplBiochem Biotechnol,2013,171(4):1061-71.
    [80] Aebersold R, Goodlett DR. Mass spectrometry in proteomics [J]. Chem Rev2001,101(2):269-295.
    [81] Aebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature,2003,422(6928):198-207.
    [82] Domon B, Aebersold R. Mass spectrometry and protein analysis [J]. Science,2006,312(5771):212-217.
    [83] Wells JM, McLuckey SA. Collision-induced dissociation (CID) of peptides andproteins [J]. Methods Enzymol,2005,402:148-85.
    [84] Syka JE, Coon JJ, Schroeder MJ et al. Peptide and protein sequence analysis byelectron transfer dissociation mass spectrometry [J]. Proc Natl Acad Sci USA,2004,101(26):9528-9533.
    [85] Zubarev RA, Zubarev AR, Savitski MM, et al. Electron capture/transfer versuscollisionally activated/induced dissociations; solo or duet [J]. J Am Soc Mass Spectrom,2008,19(6):753-761.
    [86] Wang YF, Ao XP, Vuong H et al. Membrane glycoproteins associated with breast tumorcell progression identified by a lectin affinity approach [J]. J Proteome Res2008,7(10):4313-25.
    [87] Julenius K, Molgaard A, Gupta R, et al. Prediction, conservation analysis, andstructural characterization of mammalian mucin-type O-glycosylation sites [J].Glycobiology,2005,15(2):153-64.
    [88] Bari R, Zhang YH, Zhang F, et al. Transmembrane interactions are needed forKAI1/CD82-mediated suppression of cancer invasion and metastasis [J]. Am J Pathol,2009,174(2):647-660.
    [89] Zhang Y, Lu Q, Cai X, et al. MicroRNA-106a induces multidrug resistance in gastriccancer by targeting RUNX3[J]. FEBS Lett,2013,587(18):3069-3075.
    [90] Xia B, Feasley CL, Sachdev G et al. Glycan reductive isotope labeling for quantitativeglycomics [J]. Anal Biochem,2009,387(2):162-70.
    [91] Vercoutter-Edouart AS, Slomianny MC, Dekeyzer-Beseme O, et al. Glycoproteomicsand glycomics investigation of membrane iV-glycosylproteins from human coloncarcinoma cells [J]. Proteomics,2008,8(16):3236-3256.
    [92] Li X, Zhang Z, Yu M, et al. Involvement of miR-20a in promoting gastric cancerprogression by targeting early growth response2(EGR2)[J]. Int J Mol Sci,2013,14(8):16226-16239.
    [93] Royle L, Campbell MP, Radcliffe CM, et al. HPLC-based analysis of serum glycans ona96-wellplate platform with dedicated database software [J]. Anal Biochem,2008,376(1):1-12.
    [94] Anumula KR. Advances in fluorescence derivatization methods for high-performanceliquid chromatographic analysis of glycoprotein carbohydrates [J]. Anal Biochem,2006,350(1):1-23.
    [95] Pabst M, Kolarich D, Poltl G, et al. Comparison of fluorescent labels foroligosaccharides and introduction of a new postlabeling purification method [J]. AnalBiochem,2009,384(2):263-273.
    [96] Zhao J, Patwa TH, Pal M, et al. Analysis of protein glycosylation and phosphorylationusing liquid phase separation, protein microarray technology, and mass spectrometry[J]. Methods Mol Biol,2009,492:321-325.
    [97] Mechref Y, Novotny MV. Glycomic analysis by capillary electrophoresis-massspectrometry [J]. Mass Spectrom Rev,2009,28(2):207-222.
    [98] Bereman S, Williams TI, Muddiman DC, et al. Development of a nano LCLTQ orbitrapmass spectrometric method for profiling glycans derived from plasma from healthy,benign tumor control, and epithelial ovarian cancer patients [J]. Anal Chem,2009,81,(3):1130-1136.
    [99] Barroso B, Dijkstra R, Geerts M, et al. On-line high-performance liquidchromatography/mass spectrometric characterization of native oligosaccharides fromglycoproteins [J]. Rapid Commun Mass Spectrom,2002,16(13):1320-1329.
    [100] Hardy MR, Townsend RR, Lee YC, et al. Monosaccharide analysis of glycoconjugatesby anion exchange chromatography with pulsed amperometric detection [J]. AnalBiochem,1988,170(1):54-62.
    [101] Ruhaak LR, Deelder AM, Wuhrer M, et al. Oligosaccharide analysis by graphitizedcarbon liquid chromatography-mass spectrometry [J]. Anal Bioanal Chem,2009,394(1):163-74.
    [102] Chu CS, Ninonuevo MR, Clowers BH, et al. Profile of native AMinked glycanstructures from human serum using high performance liquid chromatography on amicrofluidic chip and time-of-flight mass spectrometry [J]. Proteomics,2009,9(7):1939-1951.
    [103] Royle L, Radcliffe CM, Dwek RA, et al. Detailed structural analysis of glycansreleased from glycoproteins in SDS-PAGE gel bands using HPLC combined withexoglycosidase array digestions [J]. Methods Mol Biol,2006,347:25-43.
    [104] Barrabes S, Pages-Pons L, Radcliffe CM, et al. Glycosylation of serum ribonuclease1indicates a major endothelial origin and reveals an increase in core fUcosylation inpancreatic cancer [J]. Glycobiology,2007,17(4):388-400.
    [105] Hamid Abd, Royle L, Saldova R, et al. A strategy to reveal potential glycan markersfrom serum glycoproteins associated with breast cancer progression [J]. Glycobiology,2008,18(12):1105-1118.
    [106] Irungu J, Go EP, Zhang Y, et al. Comparison of HPLC/ESI-FTICR MS versusMALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIVenvelope glycoproteinv [J]. J Am Soc Mass Spectrom,2008,19(8):1209-1920.
    [107] Wakatsuki T, Labonte MJ, Bohanes PO, et al. Prognostic role of lemur tyrosinekinase-3germline polymorphisms in adjuvant gastric cancer in Japan and the UnitedStates [J]. Mol Cancer Ther,2013,12(10):2261-2272.
    [108] Zaia J. Mass spectrometry and the emerging field of glycomics [J]. Chem Biol,2008,15(9):881-92.
    [109] Tousi R, Hancock WS, Hincapie M, et al. Technologies and strategies forglycoproteomics and glycomics and their application to clinical biomarker research [J].Anal Methods,2011,3:20-32.
    [110] Love KR, Seeberger PH. Carbohydrate arrays as tools for glycomics [J]. Angew ChemInt Ed Engl,2002,41(19):3583-35866.
    [111] Almhanna K, Cubitt CL, Zhang S, et al. MK-2206, an Akt inhibitor, enhancescarboplatinum/paclitaxel efficacy in gastric cancer cell lines [J]. Cancer Biol Ther,2013,14(10):932-936.
    [112]孙永莲,马树俊,温原津等.美洲商陆对人胎儿胸腺细胞表型的影响[J].中华微生物学与免疫学杂志,1995,15(5):297-300.
    [113] Chergui F, Chretien AS, Bouali S, et al. Validation of a phosphoprotein array assay forcharacterization of human tyrosine kinase receptor downstream signaling in breastcancer [J]. Clin Chem,2009,55(7):1327-1336.
    [114] Yamamoto K, asukawa F, Ito S, et al. Measurement of the sugar-binding specificity oflectins using multiplexed bead-based suspension arrays [J]. Methods Mol Biol,2007,381:401-409.
    [115] Yamamoto K, Ito S, Yasukawa F, et al. Measurement of the carbohydrate-bindingspecificity of lectins by a multiplexed bead-based flow cytometric assay [J]. AnalBiochem,2005,336(1):28-38.
    [116] Takaits Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambientconditions with desorption electrospray ionization [J]. Science,2004,306(5695):471-473.
    [117] Layke JC, Lopez PP. Gastric cancer: diagnosis and treatment options [J]. Am FamPhysician,2004,69(5):1133-1140.
    [118]霰爱兰,高志星,季万胜等.幽门螺杆菌与胃癌研究进展[J].临床荟萃,2006,21(8):598-601.
    [119]林三仁,张莉.胃癌研究的回顾与展望[J].胃肠病学,2002,7(3):133-135.
    [120] Kida M, Kobaysashi K, Saigenji K, et al. Routine chromoendoscopy forgastrointestinal diseases: indications [J]. Endoscopy,2003,35:590-596.
    [121] Dinis-Ribeiro M. Chromoendoscopy for early diagnosis of gastric cancer [J]. Eur JGastroenterol Hepatol,2006,18:831-838.
    [122] Kiesslich R, Canto MI. Confocal laser endomicroscopy [J]. Gastrointest Endosc Clin NAm,2009,19:261-272.
    [123]邵志滨.组织芯片技术及其在胃癌研究中的应用[J].国际病理科学与临床杂,2007,27(3):235-238.
    [124] Makoto. The Expression Pattern of UDP-N-Acetyl-a-D-Galactosamine: PolypeptideN-Acetylgalactosaminyl Transferase-3in Early Gastric Carcinoma [J]. J surg oncol,2004,86:28-33.
    [125]赵彤,朱梅刚,黄宗义等.肺癌癌基因蛋白产物同步检测的对比分析[J].癌症1995,14(1):13-15.
    [126] Bertozzi CR. Glycomics In Essentials of Glycobiology (Second Edition)[M]. NY: ColdSpring Harbor Laboratory Press,2009,357-398.
    [127] Larsen MR. Characterization of Gel-separated Glycoproteins Using Two-stepProteolytic Digestion Combined with Sequential109Microcolumns and MassSpectrometry [J]. Mol Cell Proteomics,2005,4(2):107-119.
    [128] Furmanek A, Hofsteenge J. Protein C-mannosylation: Facts and Questions [J]. ActaBiochim Pol,2000,47(3):781-789.
    [129] Varki A, Cummings RD, Esko JD, et al. Essentials of Glycobiology (Second Edition)[M]. NY: Cold Spring Harbor Laboratory Press,2009:415-459.
    [130] Hinton C, Antony H, Hashimi SM, et al. Significance of prion and prion-like proteinsin cancer development, progression and multi-drug resistance [J]. Curr Cancer DrugTargets,2013,13(8):895-904.
    [131] Dennis JW, Granovsky M, Warren CE, et al. Protein glycosylation in development anddisease [J]. Bioessay,1999,21(5):412-421.
    [132] Guo Y, Yin J, Wang Z, et al. Overexpression of platelet-derived growth factor-Bincreases the growth, invasion, and angiogenesis of gastric carcinoma cells throughprotein kinase B [J]. Neoplasma,2013,60(6):605-612.
    [133] Smaldone G, Falanga A, Capasso D, et al. gH625is a viral derived peptide for effectivedelivery of intrinsically disordered proteins [J]. Int J Nanomedicine,2013,8:2555-1565.
    [134] Ferguson MA, Williams AF. Cell Surface Anchoring of Proteins viaGlycosyl-phosphatidylinositol Structures [J]. Ann Rev Biochem,1988,57:285-320.
    [135] Lajoie P, Goetz JG, Denis JW, et al. Lattices, Rafts, and Scaffolds: Domain Regulationof Receptor Signaling at The Plasma Membrane [J]. J Cell Biol,2009,185(3):381-385.
    [136] Ohtsubo K, Marth JD, et al. Glycosylation in cellular mechanisms of health and disease[J]. Cell,2006,126(5):855-867.
    [137] Taylor AD, Hancock WS, Hincapie M, et al. Towards an Integrated Proteomic andGlycomic Approach to Finding Cancer Biomaxkers [J]. Genome Med,2009,1(6):57-67
    [138] Sehdev A, Catenacci DV. Gastroesophageal cancer: focus on epidemiology,classification, and staging [J]. Discov Med,2013,16(87):103-111.
    [139] Kim MY, Jeong BC, Lee JH, et al. A repressor complex,AP4transcription factor andgeminin,negatively regulates expression of target genes in nonneuronal cells [J]. ProcNatl Acad Sci USA,2006,103(35):13074-13079.
    [140] Guo HB, Nairn A, Harris K, et al., Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins[J]. FEBS Lett,2012,582:527-35.
    [141] Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer [J]. Caneer Cell,2008,13(3):272-286.
    [142] Katada T, Ishiguro H, Kuwabara Y, et al. microRNA expression profile inundifferentiated gastric cancer [J].Int J Oneol,2009,34(2):537-542.
    [143] Guo J, MiaoY, Xiao B, et al. Differential expression of microRNA species in humangastric cancer versus non-tumorous tissues [J]. J Gastroenterol HePatol,2009,24(4):652-657.
    [144] Zheng B, Liang L, Wang C, et al. MicroRNA-148a suppresses tumor cell invasion andmetastasis by down regulating ROCKI in gastric cancer [J]. Clin Caneer Res,2011,17(24):7574-7583.
    [145] Kogo R, Mimori K, Tanaka F, et al. Clinical significance of miR-146a in gastric cancereases [J]. Clin Cancer Res,2011,17(13):4277-4284.
    [146] Xu Y, zhao F, Wang Z, et al., MicroRNA-355acts as a metastasis suppressor in gastriccancer by targeting Bcl-w and specificity Protein [J]. Oncogene,2012,31(11):1398-1407.
    [147] Ryu JW, Kim HJ, Lee YS, et al. The proteomics approach to find biomarkers in gastriccancer [J]. J Korean Med Sci,2003,18(4):505-509.
    [148] Hamid UMA, Royle L, Saldova R, et al. A strategy to reveal potential glycan markersfrom serum glycoproteins associated with breast cancer progression [J].Glycobiology,2008,18(12):1105-1118.
    [149] Addison A. International Human Genome Sequencing Consortium Initial sequencingand analysis of the human genome [J]. Nature,2001,409(15):860-921.
    [150] Fuster MM, Esko JD, et al. The sweet and sour of cancer: glycans as novel therapeutictargets [J]. Nat Rev Cancer,2005,5(7):526-542.
    [151] Zhang XJ, Xiao Z, Yu HL, et al. Short-term glucose metabolism and gut hormonemodulations after Billroth II gastrojejunostomy in nonobese gastric cancer patients withtype2diabetes mellitus, impaired glucose tolerance and normal glucose tolerance [J].Arch Med Res,2013,44(6):437-443.
    [152] Poon. Quantification and utility of monosialylated alpha-fetoprotein in the diagnosisof hepatocellular carcinoma with nondiagnostic serum total alpha-fetoprotein [J].Clin Chem,2002,48(7):1021-1027.
    [153] Van NT, Danielle HD, et al. Glycans in pathogenic bacteria-potential for targetedcovalent therapeutics and imaging agents [J]. Chem Commun,2014,50:4659-4673.
    [154] Yu JY, Li L, Ma H, et al. Tumor necrosis factor-α238G/A polymorphism and gastriccancer risk: a meta-analysis [J]. Tumour Biol,2013,34(6):3859-3863.
    [155] Binbin T, Atsushi M, Yan Z, et al. Multilectin-assisted fractionation for improvedsingle-dot tissue glycome profiling in clinical glycoproteomics [J]. Mol BioSyst,2014,10:201-205.
    [156]王克夷.糖生物学和糖组学[J].生命的化学,2009,29(3):299-305.
    [157] Cavazzini A, Pasti L, Massi A, et al. Recent applications in chiral high performanceliquid chromatography; a review [J]. Anal Chim Acta,2011,706(2):205-222.
    [158] Cho SJ, Choi IJ, Kim SJ, et al. Clinical significance of intraperitoneal air on computedtomography scan after endoscopic submucosal dissection in patients with gastricneoplasms [J]. Surg Endosc,2014,28(1):307-313.
    [159] Tian Y, Gurley K, Meany DL, et al. N-Linked glycoproteomic analysis offormalin-fixed and paraffin-embedded tissues [J]. J Proteome Res,2009,8(4):1657-1662.
    [160] Zhou C, Ji J, Cai Q, et al. MTA2promotes gastric cancer cells invasion and istranscriptionally regulated by Sp1[J]. Mol Cancer,2013,12(1):102-109.
    [161] Putoczki TL, Thiem S, Loving A, et al. Interleukin-11is the dominant IL-6familycytokine during gastrointestinal tumorigenesis and can be targeted therapeutically [J].Cancer Cell,2013,24(2):257-271.
    [162] Shi L, Luo W, Huang W, et al. Downregulation of L-type amino acid transporter1expression inhibits the growth, migration and invasion of gastric cancer cells [J]. OncolLett,2013,6(1):106-112.
    [163] Miyoshi E, Moriwaki K, Nakagawa T, et al. Biological Function of Fucosylation inCancer Biology [J]. J Biochem,2008,143(6):725-729.
    [164] Cartei F, Cartei M, Enea M, et al. The impact of radiotherapy on survival in resectablegastric carcinoma: a meta-analysis of literature data [J]. Cancer Treat Rev,2007,33(8):729-740.
    [165] Yue T, Goldstein,IJ, Hollingsworth MA, et al., The Prevalence and Nature of GlycanAlterations on Specific Proteins in Pancreatic Cancer Patients Revealed UsingAntibody-Lectin Sandwich Arrays [J]. Mol Cell Proteomics,2009,8(7):1697-1707.
    [166] Lee HW, Lee EH, Kim SH, et al. Heat shock protein70(HSP70) expression isassociated with poor prognosis in intestinal type gastric cancer [J]. Virchows Arch.2013,463(4):489-95.
    [167]陈良冬,李雁,袁宏银等.量子点在肿瘤研究中的应[J].癌症,2006,25(5):651-654.
    [168] Kuno A, Kato Y, Matsuda A, et al. Focused Differential Glycan Analysis with thePlatform Antibody-assisted Lectin Profiling for Glycan-related Biomarker Verification[J]. Mol Cell Proteomics,2009,8(1):99-108.
    [169] Liu Z, Cao J, He Y, et al. Tandem stable isotope labeling for quantification ofglycoproteome [J]. J Proteome Res,2009,9(1):227-36.
    [170] Xu Q, Chen MY, He CY, et al. Promoter polymorphisms in trefoil factor2and trefoilfactor3genes and susceptibility to gastric cancer and atrophic gastritis among Chinesepopulation [J]. Gene,2013,529(1):104-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700