用户名: 密码: 验证码:
肾络通对梗阻性肾病大鼠炎性介质表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于先天性或获得性泌尿系梗阻所致的梗阻性肾病是急性或慢性肾功能衰竭的常见原因之一,也是难治性反复发作的尿路感染的常见诱发因素。造成慢性泌尿系梗阻的机制非常复杂,其中包括血液动力学改变、炎性介质、血管活性物质、氧化应激等因素的共同参与,最终导致肾脏损伤及肾功能衰竭。肾脏病的发生与肾素-血管紧张素-醛固酮系统(Renin-angiotensin-aldosterone, RAAS)有密切关系,目前对血管紧张素Ⅱ(angiotensinⅡ, AngⅡ)的研究较多,其通过转化生长因子-β(Transforminggrowth factor-β, TGF-β)途径促进肾间质纤维化(Renal interstitial fibrosis,RIF)的机制已经比较明确,应用血管紧张素转化酶抑制剂(angiotensinconverting enzyme inhibitors, ACEI)及血管紧张素Ⅱ受体阻断剂(angiotensin II receptor blockers, ARB)后可减轻慢性肾脏病患者肾脏结构和功能的损伤,但仍有不少患者,即便足量的ACEI及ARB治疗亦未能有效,说明有其他因素如炎性损伤、氧化应激的参与。已有的研究表明,炎性损伤在慢性疾病持续进展中发挥重要作用,故抗炎治疗对于慢性疾病的预后有重要意义。这种炎性损伤并非单纯由外界感染所致,而是以内源性炎性损伤为主,且与RIF的持续进展密切相关,炎性介质在其中的作用也得以重视。有研究指出炎性介质例如单核细胞趋化蛋白-1(monocytechemotactic protein1, MCP-1)、白介素-1β(Interleukin1β, IL-1β)、肿瘤坏死因子(tumor necrosis factorα, TNF-α)和诱导型一氧化氮合酶(inducednitric oxide synthase,iNOS)是各种慢性肾脏疾病中引起肾脏炎症和纤维化的重要因素。随着对RAAS的深入研究,发现除了AngⅡ外,醛固酮也可通过激活其下游效应介质血清糖皮质激素诱导蛋白激酶1(Serum andglucocorticoid-induced protein kinase1, SGK-1)及核转录因子κB (NuclearfactorκB, NF-κB)、氧化应激等多种途径导致肾脏炎性细胞浸润和细胞外基质(extracellular matrix, ECM)积聚,最终导致RIF的进展,故阻断醛固酮活化造成的炎性损伤对于减缓肾脏病的进展有重要意义。本次实验通过单侧输尿管结扎(unilateral ureteral obstruction, UUO)建立梗阻性肾病间质纤维化实验动物模型,观察盐皮质激素受体阻断剂依普利酮和化瘀涤痰通络方肾络通煎剂对单侧输尿管梗阻大鼠炎性介质表达的影响,利用实时定量荧光聚合酶链式反应(Real-time polymerase Chain Reaction, Real-timePCR)、免疫组化、蛋白质印迹法(Western blot)、酶联免疫吸附法(enzymelinked immunosorbent assay, ELISA)、放射免疫分析法等技术检测血清醛固酮、血清和糖皮质激素诱导蛋白激酶1(Serum and glucocorticoid-inducedprotein kinase1, SGK-1)及MCP-1、TNF-α、iNOS、IL-1β、核转录因子κB (Nuclear factorκB, NF-κB)和α平滑肌激动蛋白(α-smooth muscleprotein, α-SMA)等指标的变化,从组织、分子、基因水平研究肾络通煎剂的作用机制,为中药治疗梗阻性肾病提供理论和实验依据。
     第一部分“毒”、“瘀”伤肾机制及关联
     简述了“毒”和“瘀”的概念、分类、形成机制、两者在肾病中的发病机制,以及毒邪和瘀血的相互影响、毒瘀互结在肾病中的作用、毒瘀相关的分子生物学基础及临床意义等内容。
     大量实验研究表明,肾间质纤维化是各种慢性肾脏疾病的病理表现和共同通路,而炎性损伤在肾间质纤维化的进程中是一种启动和诱发因素。现代医学研究表明,炎性细胞的浸润、炎性介质的释放、促纤维化细胞因子的表达等均可归属于中医“内毒致病”范畴,而细胞外基质在肾脏的积聚是“瘀”的表现,由此可见,以炎性损伤为特征的“毒”为起因,纤维化为表现的“瘀”为结果,二者交互错杂,导致和加重肾间质纤维化,且贯穿于肾脏病的整个病理过程。同时,也总结出“毒”和“瘀”可作为慢性肾脏病的基本病机。
     在临床上,肾脏病的进展与感染有密切关系,或因感染而诱发,或因感染而加重,且肾病患者易于感染,这种感染所致的炎性损伤在肾间质纤维化的进展中发挥着重要的作用,抗炎治疗可能是治疗靶点。“毒”、“瘀”病机学说的提出为临床治疗慢性肾脏疾病提供了理论依据,对于慢性肾病的进展可能有重要意义。
     第二部分肾络通对梗阻性肾病大鼠肾脏组织病理形态学的影响
     方法:48只Wistar大鼠随机分为假手术组(Sham group)、UUO组(UUOgroup)、依普利酮组(EPL group)、肾络通组(SLT group),每组12只。实验动物自由进食和饮水,温度条件控制在(22±2)℃。适应性饲养1WK后,除假手术组(Sham group),其余大鼠按照Iwai T的方法制备单侧输尿管梗阻模型。大鼠给以10%水合氯醛注射后,于左侧中腹部切开皮肤,游离左侧输尿管,分别在输尿管上1/3处和中1/3处用丝线结扎,切断输尿管,逐层缝合皮肤。假手术组仅将输尿管游离但不结扎离断。术后第3天肾脏组织病理显示炎性细胞浸润,第5日后肾间质胶原纤维沉积,术后第10天梗阻侧肾脏明显大于对侧,肾间质大量炎性细胞浸润以及胶原纤维沉积,肾小管上皮细胞变性、浊肿、脱落甚至坏死,肾小管部分萎缩,管腔闭塞或扩张,与文献报道相似,符合肾间质纤维化病理改变,模型复制成功。本次实验成功率为92%,UUO术后大鼠死亡5只,用备用大鼠补足。术后开始给药,依普利酮组给以依普利酮100mg/(kg.d)从饲料中加入,肾络通组给以肾络通煎剂26g/(kg.d)入水瓶饮用,假手术组及UUO组给予等容量生理盐水饮用。均每天1次。连续干预10天。观察一般情况。于实验结束时,称重,断头取血,分离血清,用于指标检测;取左侧(梗阻侧)肾脏称重,计算各组肾重/体重比值,进行肾脏组织HE、MASSON染色,观察组织病理学改变。
     数据资料结果使用SPSS13.0for windows统计软件分析处理。各组数据比较前先进行正态性及方差齐性检验,满足正态性及方差齐性者,采用方差分析,多组比较采用单因素方差分析(One-wayANOVA),组间比较采用LSD检验。数值变量以均数加减标准差(x±s)表示。显著性差异水平以0.05和0.01为标准。
     结果:
     1各组大鼠一般情况比较
     实验中大鼠死亡5只,用备用大鼠补足。整个实验过程中假手术组大鼠一般情况良好:每日饮食、饮水量稳定,体重逐步增长,毛发有光泽,活动敏捷,对外界刺激反应灵敏。UUO术后1天,造模动物的进食量、饮水量、体重均有所下降。术后6天,UUO组大鼠整体状态欠佳:活动较前明显减少,毛发松散无光泽。与假手数组相比,造模动物体重不增反而下降。UUO手术10天后,造模大鼠体重增长缓慢,且与假手术组有显著性差异(P<0.01, P<0.05);与UUO组相比,依普利酮组及肾络通组大鼠梗阻侧肾重,肾重/体重指数明显下降(P<0.01, P<0.05)。UUO手术后,造模大鼠进食量、饮水量、24h尿量均有所下降,但各组之间无明显差异(P>0.05)。
     2各组大鼠肾组织病理形态学改变
     HE染色显示,假手术组肾脏结构基本正常,肾小管上皮细胞排列整齐,无浊肿,间质无水肿,偶见炎性细胞浸润;UUO组肾间质大量炎性细胞浸润,肾小管明显扩张,上皮细胞变性、浊肿、脱落甚至坏死;依普利酮组及肾络通组小管扩张及上皮细胞水肿坏死与UUO组基本相同,但炎性细胞浸润明显减轻。Masson染色显示,假手术组有少量胶原纤维表达,可见于肾小球/肾小管基底膜及肾间质;UUO组结构紊乱,胶原成分显著增多,以肾间质为主;依普利酮组及肾络通组胶原纤维表达较假手术组增多,但与UUO组相比明显减少。
     3各组大鼠肾间质炎性细胞计数比较
     与假手术组比较,UUO组大鼠炎性细胞浸润明显增多(P<0.01)。与UUO组相比,依普利酮组、肾络通组大鼠炎性细胞浸润减少有显著性差异(P<0.01, P<0.05)。与髓质区相比,皮质区炎性细胞浸润明显增多有显著性差异(P<0.01, P<0.05);与皮质区比较,皮髓交界区质区炎性细胞浸润减少,有显著性差异(P<0.01, P<0.05)。
     第三部分肾络通对梗阻性肾病大鼠MCP-1、TNF-α、IL-1β、iNOS等炎性介质表达的影响
     方法:动物分组、模型复制、给药方法同第二部分,共10天。实验结束时留取血清和肾脏标本,采用ELISA测定血清MCP-1含量,放射免疫法测定血清TNF-α、iNOS、IL-1β含量,Real time-PCR、免疫组化、Western blot检测MCP-1、TNF-αmRNA及蛋白的表达。统计学方法同第二部分。
     结果:
     1各组大鼠血清MCP-1、TNF-α、iNOS、IL-1β表达比较
     与假手术组比较,UUO组中血清MCP-1、TNF-α、iNOS、IL-1β含量明显升高,差异有统计学意义(P<0.01, P<0.05)。与UUO组比较,依普利酮组及肾络通组血清MCP-1、TNF-α、iNOS、IL-1β含量均减少,其中以依普利酮组更为明显,差异有统计学意义(P<0.01, P<0.05)。
     2Real-time PCR检测MCP-1mRNA、TNF-αmRNA的表达
     与假手术组比较,UUO组中MCP-1mRNA及TNF-αmRNA表达明显增强(P<0.01)。与UUO组比较,依普利酮组及肾络通组MCP-1mRNA及TNF-α mRNA表达均显著下调,其中以依普利酮组更为明显,差异有统计学意义(P<0.01)。
     3免疫组化检测MCP-1、TNF-α表达
     假手术组MCP-1、TNF-α呈弱表达, UUO组中MCP、TNF-α表达明显增强,主要表达于肾小管上皮细胞胞浆。与UUO组比较,依普利酮及肾络通组其表达范围及强度均显著减弱。
     4Western Blot检测MCP-1及TNF-α蛋白表达
     与假手术组比较,UUO组MCP-1、TNF-α蛋白表达明显上调。与UUO组比较,依普利酮组及肾络通组其表达均被下调,其中以依普利酮组下调更为明显,差异有统计学意义(P<0.01)。
     第四部分肾络通对梗阻性肾病大鼠血清醛固酮及SGK-1表达的影响
     方法:动物分组、模型复制、给药方法同第二部分,共10天。实验结束时留取血清和肾脏标本,采用放射免疫分析法检测血清醛固酮含量,Real-time PCR、Western blot测定肾组织SGK-1mRNA及蛋白表达。统计学方法同第二部分。
     结果:
     1放射免疫法检测各组大鼠血清醛固酮含量
     与假手术组比较,UUO组中血清醛固酮含量明显升高,差异有统计学意义(P<0.01);与UUO组比较,依普利酮组血清醛固酮含量有下降趋势,但无统计学意义(P>0.05),肾络通组血清醛固酮含量明显降低,有统计学差异(P<0.01)。
     2Real-time PCR检测SGK-1mRNA的表达
     与假手术组比较,UUO组中SGK-1mRNA表达明显增强。与UUO组比较,依普利酮及肾络通组SGK-1mRNA表达均显著下调。
     3Western Blot检测SGK-1蛋白表达
     与假手术组比较,UUO组SGK-1蛋白表达明显上调。与UUO组比较,依普利酮组及肾络通组其表达均被下调,其中以依普利酮组下降更为显著。
     第五部分肾络通对梗阻性肾病大鼠及α-SMA及NF-κB表达的影响
     方法:动物分组、模型复制、给药方法同第二部分,共10天。实验结束时留取肾脏标本,采用免疫组化、Western Blot检测α-SMA及NF-кB蛋白表达。统计学方法同第二部分。
     结果:
     1免疫组化检测各组大鼠NF-κB、α-SMA表达
     假手术组NF-κB呈弱表达,主要表达于肾小管上皮细胞;UUO组NF-κB表达明显增强,近曲小管尤为明显;依普利酮组及肾络通组NF-κB表达范围及强度较UUO组均明显减弱。
     假手术组α-SMA仅表达于血管,肾间质及上皮细胞未见表达;UUO组α-SMA表达明显增强,以扩张的肾小管表达为甚,间质亦可见到阳性表达;依普利酮组及肾络通组α-SMA局部呈中度表达,间质可见少量表达。
     2Western Blot检测各组大鼠α-SMA、NF-кB表达
     与假手术组比较,UUO组α-SMA、NF-кB蛋白表达明显上调,差异有统计学意义(P<0.01)。与UUO组比较,依普利酮组及肾络通组其表达均被下调,其中以依普利酮组下调更为明显,差异有统计学意义(P<0.01)。
     结论:
     1“毒”和“瘀”是慢性肾病的基本病机,以炎性损伤为特征的“毒”为起因,以纤维化为表现的“瘀”为结果,二者相互关联、相互促进,导致和加重肾间质纤维化,且贯穿于肾脏病的整个病理过程。
     2结扎单侧输尿管复制肾间质纤维化实验动物模型,肾间质炎性细胞浸润及胶原成分显著增多。肾络通及依普利酮能显著减轻UUO诱导的肾实质损伤,减少炎性细胞浸润,延缓间质纤维化进展。
     3炎性损伤是梗阻性肾病的重要起始因素,炎性介质在其中发挥重要作用。其中,MCP-1、TNF-α、IL-1β及iNOS等炎性介质是慢性肾脏疾病中介导的肾脏炎症和间质纤维化的重要因子。肾络通和依普利酮能下调其表达,从而抑制梗阻性肾病中炎性损伤和炎性细胞浸润,进而延缓间质纤维化的进展。
     4醛固酮可通过激活其下游效应介质SGK-1引起肾脏炎性损伤。肾络通和依普利酮能降低血清醛固酮含量,下调SGK-1mRNA和蛋白表达,从而进一步抑制梗阻性肾病炎性损伤和间质纤维化进展。
     5肾络通和依普利酮可以通过NF-κB通路,下调炎性介质表达,抑制信号传导,从而抑制细胞的表型转化,减轻肾脏炎性损伤,减缓肾间质纤维化的进展。
Obstructive nephropathy due to congenital or acquired urinary tractobstruction is the first primary cause of acute or chronic renal failure(CRF)and also a major induced cause of urinary tract infection. The mechanism ofchronic urinary tract obstruction is very complicated, including hemodynamicchanges, inflammatory mediators, vascular active substances, oxidative stress,which eventually lead to kidney damage and renal function failure. There is aclosed relationship between renal disease and the system ofRenin-angiotensin-aldosterone (RAAS). At present, the study of angiotensinII(Ang Ⅱ) is more, and the mechanism that AngⅡ through transforminggrowth factor-β (TGF-β) pathway to promote renal interstitial fibrosis (RIF)has more clear. Application of angiotensin converting enzyme inhibitors(ACEI)and/or angiotensin Ⅱ blockers (ARB) caninhibit the damage to structure andfunction of chronic renal disease. But there are still many patients, even ifadministration of plenty of ACEI and ARB are not effective, indicating thereare other factors such as inflammation injury, oxidative stress to participatethis process. Existing studies have shown that inflammatory lesions play animportant role in the progress of chronic disease, therefore anti-inflammatorytherapy has important significance for the prognosis of chronic diseases. Thisinflammatory damage is not caused by infection, but it is endogenous, andclosely related to renal interstitial fibrosis. Moreover, inflammatory mediatorsplay an important role in the process of renal interstitial fibrosis. Studies havepointed out that inflammatory mediators such as monocyte chemotacticprotein1(MCP-1), Interleukin1β(IL-1β), tumor necrosis factor α(TNF-α),induced nitric oxide synthase(iNOS) are important factors of inflammationand fibrosis in chronic renal disease. With the study of RAAS, in addition toAng Ⅱ, aldosterone can also be activated by Serum and glucocorticoid-induced protein kinase1(SGK-1), Nuclear factor κB (NF-κB),oxidative stress and so on, further cause infiltration of renal inflammatorycells and accumulation of extracellular matrix (ECM), eventually leading tothe progress of the RIF. Therefore, blocking activated aldosterone to inhibitinflammatory can delay the progress of chronic renal disease. In our study,renal interstitial fibrosis animal model was established by unilateral ureteralobstruction (UUO), and serum aldosterone, SGK-1, MCP-1, TNF-α, iNOS,IL-1β, NF-κB and α-SMA were detected by Real-time PCR,immunohistochenical method, Western blot. The effect of mineralocorticoidreceptor blocker Eplerenone and Chinese herbs was observed, whether caninhibite the expression of inflammatory mediators by blocking aldosteronesecretion, future inhibite cell phenotype transformation, and providetheoretical and experimental basis.
     PartⅠ Mechanism and Relationship of Toxin and Stasis on Renal Injury.
     "Toxin" and "Stasis" were briefly introduced with the concept,classification, formation mechanism, the role in the pathogenesis of kidneydisease, and interaction with stasis and toxin, the role of both in kidneydisease, molecular biology and clinical application.
     Many experimental study showed that renal interstitial fibrosis waspathological change and common pathway of a variety of chronic kidneydiseases, and inflammatory lesions was a original and induced factor in thisprocess. Modern medical studies have shown that infiltration of inflammatorycells and the expression of inflammatory mediators and inducing fibrosiscytokines were attributable to traditional Chinese medicine “endogenoustoxin”, however the accumulation of extracellular matrix in the kidney was aperformance of “stasis”, therefore “toxin” was the cause characterized byinflammation injury,“stasis” was the result characterized by renal interstitialfibrosis, and these two factors were interrelated and they interacted with eachother, caused and aggravated renal interstitial fibrosis, and run through thewhole pathological process of kidney disease. At the same time, we alsosummed up that “toxin and “stasis” can be used as the basic pathogenesis of chronic kidney disease.
     In clinic, there was a closed relationship between the progress of kidneydisease and infection, and kidney diseases were induced or aggravated byinfection, and nephropathy patients proned to infection. Inflammation injurycaused by infection played an important role in the progress of renalinterstitial fibrosis, and anti-inflammatory therapy may be a therapeutic target."Poison","Yu" pathogenesis theory have provided the theory basis for theclinical treatment of chronic kidney disease, and have important significancefor the progress of chronic kidney disease.
     PartⅡ Effect of Shenluotong Decoction on pathomorphology in the Ratswith Obstructive Nephropathy
     Methods:48Wistar rats were randomly divided into the shamgroup(n=12), UUO group (n=12), EPL group(n=12), SLT group(n=12). Ratswere free to eat and drink, and temperature was controled in the condition(22±2)℃. After adaptive feeding1WK, except the Sham group’rats, the otherrats were established model of unilateral ureteral obstruction according to themethod of Iwai T. After anesthesia with10%chloral hydrate, the rats weresliced through the left middle abdominal skin, separated the left ureter, ligatedrespectively on ureteral1/3and middle1/3ligation with silk, cut off the ureter,then sutured in skin by layer to layer. The rats in Sham group were onlyseparated the left ureter, but not ligated and cutted off the ureter. At3daysafter operation, renal pathology of modeling rats showed a significant increasewith infiltration of inflammatory cells, as well as at5days after operation,pathological changes showed renal collagen deposition, therefore this modelwas successfully copied. The success rate of this surgery was92%, and fiverats were died after UUO operation. Rats were supplemented with alternaterats. After operation, the rats were treated with100mg/kg Eplerenone in EPLgroup and26g/kg in SLT group; others in sham and UUO group administeredwith the same volume of saline once a day. At the10day after surgery, allrats were sacrificed and specimens of blood were got to detect index and leftkidney was cut to be measured the index of kidney weight/body weight(KW/BW). Parts of left kidney were prepared respectively for HE andMASSON staining.
     The data were counted by SPSS13.0software. Before comparison of eachgroup, tests of normality and homogeneity of variance were given. If the datacan achieve such criteria, the results were analyzed with One way ANOVA.The data were expressed as mean±SD. All results are considered significantat P<0.05and P<0.01.
     Results:
     1Index of kidney weight, body weight and kidney weight/body weight
     After surgery,5rats were died and rats were supplemented with alternaterats. The general situation of Sham group’s rats were in good condition in thewhole experimental process: daily diet and water were stable, the growth ofweight was gradual, hair was shiny, activity was agile, and response toexternal stimuli was sensitive. At1day after surgery, all rats showed thatwater intake, food intake and weight were down-regulated. At6days aftersurgery, the general situation of UUO group’s rats were not optimal: activitywas decreased significantly, and hair was loose and dull. The weight of UUOmodeling animals were not increased but decreased. At10days after surgery,the weight of modeling animals were increased slowly, and there weresignificant differences compared with Sham group(P<0.01, P<0.05);compared with UUO group, obstructed kidney weight and kidney weight/body weight were also decreased significantly(P<0.01, P<0.05).After UUOoperation, food intake, water intake and urine volume in UUOmodeling ratswere decreased, but there was no significant difference between each group.
     2The Result of Pathomorphology
     HE staining showed that basic structure of kidney was normal, tubularepithelial cells arranged regularly, interstitial edema was almost nought and ithad few inflammation cells in Sham group. There were a large number ofinflammation cells infiltration, and renal tubular epithelial cells weredenatured, shed and turgid in UUO group. There were some inflammation cellinfiltration and renal tubular epithelial cells were turgid in treatment groups, but it was lighter than UUO group. Masson staining showed that a littlecollagen deposition in glomerular/tubular basement membrane and renalinterstitium in Sham group. The structure were disordered and tubularinterstitial collagen were significantly increased in UUO group. There weresome degree of collagen deposition in treatment groups, but it wassignificantly reduced compared with the UUO group.
     3The count of renal interstitial inflammatory cells
     Compared with the Sham group, the number of inflammatory cells wasincreased significantly in the UUO group (P<0.01). After treatment, thenumber of inflammatory cells was significantly lower in both EPL group andSLT group (P<0.01, P<0.05). Compared with Medulla area, the number ofinflammatory cells was significantly heighest in cortical area; Compared withcortical area, the number of inflammatory cells was significantly decreased inboundary area (P<0.01, P<0.05).
     Part Ⅲ Effect of Shenluotong Decoction on Inflammatory Mediators inthe Rats with Obstructive Nephropathy
     Methods: The methods of animal grouping, model establishment,medication and statistics were the same to PartⅡ,10days. The expression ofMCP-1in kidneys were detected by ELISA, and serum content of TNF-α,iNOS and IL-1β were detected by radioimmunoassay. The mRNA and proteinexpression of MCP-1and TNF-α were detected by Real time-PCR,immunohistochemistry and Western Blot respectively.
     Results:
     1Serum content of inflammatory mediators
     Compared of the rats in Sham group, serum content of MCP-1, TNF-α,iNOS and IL-1β were increased significantly (P<0.01, P<0.05). Compared ofthe rats in UUO group, serum content of MCP-1, TNF-α, iNOS and IL-1βwere decreased significantly in both EPL group and SLT group (P<0.01,P<0.05).
     2The results of Real time-PCR
     Compared with the rats in Sham group, the mRNA expression of MCP-1 and TNF-α were enhanced obviously in UUO group(P<0.01). Compared withthe rats in UUO group, the high expression of MCP-1mRNA and TNF-αmRNA was down-regulated respectively in both EPL and SLT group(P<0.01).
     3The results of Immunohistochemistry
     The expression of MCP-1and TNF-α were weaker in Sham group, aswell as both were strengthed, and mainly located in renal tubular epithelialcells cytoplasm in UUO group. Compared with the rats in UUO group, theexpression of MCP-1and TNF-α were decreased in range and terror in twotreatment groups.
     4The results of Western Blot
     Compared with the rats in Sham group, the protein expression of MCP-1and TNF-α were enhanced obviously in UUO group. Compared of the rats inUUO group, the protein expression of MCP-1and TNF-α were decreasedsignificantly in both EPL group and SLT group (P<0.01).
     Part Ⅳ Effect of Shenluotong Decoction on Serum aldosterone andSGK-1in the Rats with Obstructive Nephropathy
     Methods: The methods of animal grouping, model establishment,medication and statistics were the same to PartⅡ,10days. Serum aldosteronewas detected by radioimmunoassay, and the mRNA and protein expression ofSGK-1were detected by Real-time PCR and Western blot respectively.
     Results:
     1The results of Radioimmunoassay
     Compared of the rats in Sham group, the secretion of serum aldosteronewas increased significantly in UUO group(P<0.01). Compared of the rats inUUO group, the content of serum aldosterone was expressed with a downwardtrend, but this reduction wasn't statistically significant in EPL group(P>0.05).Serum aldosterone was reduced in SLT group significantly (P<0.01).
     2The results of Real-time PCR
     Compared of the rats in Sham group, the mRNA expression of SGK-1were enhanced obviously in UUO group(P<0.01). Compared with the rats inUUO group, the mRNA expression of SGK-1were down-regulated significantly (P<0.01).
     3The results of Western Blot
     Compared of the rats in Sham group, the protein expression of SGK-1were enhanced obviously in UUO group(P<0.01). Compared with the rats inUUO group, the protein expression of SGK-1were down-regulatedsignificantly (P<0.01).
     Part Ⅴ Effect of Shenluotong Decoction on α-SMA and NF-κB in theRats with Obstructive Nephropathy
     Methods: The methods of animal grouping, model establishment,medication and statistics were the same to PartⅡ,10days. The proteinexpression of NF-кB and α-SMA were detected by immunohistochemistry andWestern Blot.
     Results:
     1The results of Immunohistochemistry
     In Sham group, there were weak expression of NF-κ B mainly in renaltubular epithelial cells; Compared of the rats in Sham group, the expression ofNF-κ B significantly increased and obviously in the proximal tubule in UUOgroup.In ELP and SLT groups, the expression of NF-κ B were significantlydecreased in range and strength.
     In Sham group, there were a few expressions of α-SMA only in vascularsmooth muscle cells. The expression ofα-SMA were remarkably increased inUUO group than that in corresponding Sham group with the expanding scopeof tubulointerstitium in cortical and corticomedullary area. Compared with therats in UUO group, the expression of α-SMA were reduced obviously in bothEPL group and SLT group.
     2The results of Western Blot
     Compared of the rats in Sham group, the protein expression of α-SMAand NF-кB were enhanced obviously in UUO group(P<0.01). Compared withthe rats in UUO group, the protein expression of α-SMA and NF-кB weredown-regulated significantly (P<0.01).
     Conclusions:
     1“toxin” and “stasis” were the basic pathogenesis of chronic kidneydisease.“toxin” was the cause characterized by inflammation injury,“stasis”was the result characterized by renal interstitial fibrosis, and these two factorswere interrelated and they were interacted with each other, caused andaggravated renal interstitial fibrosis, and run through the whole pathologicalprocess of kidney disease.
     2The animal models of renal interstitial fibrosis were established byunilateral ureteral obstruction. Inflammatory cells infiltration and Collagentissues in the kidney were increased remarkably in UUO modeling rats.Chinese herbs and eplerenone can prevent kidney damage induced by UUO,reduce inflammatory cells infiltration and delay the progress of interstitialfibrosis.
     3Inflammatory is an important original factor of obstructive nephropathy,and inflammatory mediators play an important role in this process.Inflammatory mediators, such as MCP-1, TNF-α, IL-1β and iNOS, areimportant factors in mediating inflammation and interstitial fibrosis of chronickidney disease. Chinese herbs and eplerenone can down-regulate theexpression of MCP-1, TNF-α, IL-1β and iNOS, future inhibit infiltration ofinflammatory cells and inflammatory injury, and delay the progress ofinterstitial fibrosis.
     4In addition to the Ang II, aldosterone may also induce renalinflammatory and infiltration of inflammatory cells through activation ofSGK-1. Chinese herbs and eplerenone can reduce the content of serumaldosterone, down-regulate mRNA and protein expression of SGK-1, futureinhibit inflammatory and interstitial fibrosis of Obstructive Nephropathy.
     5Chinese herbs and eplerenone can down-regulate the expression ofinflammatory mediators by NF-κB pathway, inhibit signal transduction,thereby inhibit cell phenotype transformation, reduce renal inflammatory, anddelay the progress of renal interstitial fibrosis.
引文
1Tabas I, Glass CK. Anti-Inflammatory Therapy in Chronic Disease:Challenges and Opportunities[J]. Science,2013,339(6116):166-172
    2刘玉宁.肾间质纤维化的中医病机和治法探讨[J].新中医,2006,38(11):1-3
    3许庆友,韩琳,秦建国.赵玉庸“肾络瘀阻”病机学说及临床应用[J].中华中医药杂志,2010,25(5):702-704
    4于俊生,王砚琳.痰瘀毒相关论[J].山东中医杂志,2000,19(6):323-325
    5Zheng D, Wang Y, Cao Q, et al. Transfused Macrophages AmelioratePancreatic and renal injury in Murine Diabetes Mellitus[J]. NephronExperimental Nephrology,2011,118(4):87-99
    6Grande MT, Pérez-Barriocanal F, López-Novoa JM. Role of inflammationin tubulo-interstitial damage associated to obstructive nephropathy[J].Journal of Inflammation,2010,4(22):7-19
    7卢玲,梁冰.中医药抗纤维化的研究进展[J].广西中医药,2001,24(6):5-8
    1Grande MT, Perez-Barriocanal F, Lopez-Novoa JM. Role of inflammationin tubulo-interstitial damage associated to obstructive nephropathy[J]. JInflamm(Lond),2010,7(19):1-14
    2Campbell RC, Ruggenenti P, Remuzzi G. Halting the progression ofchronic nephropathy. J Am Soc Nephrol,2002,13(Supp l3): S190-195
    3Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosisemerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol,2008,19(12):2282-2287
    4Iwai T, Kitamoto K, Teramoto K, et al. Cobait protoporphyrin attenuatesrat obstructive nephropathy: role of cellular infiltration[J]. Urology,2008,72(2):432-438
    5Smith JM, Stablein DM, Munoz R, et al. Contributions of the transplantregistry: The2006annual report of the North American Pediatric RenalTrials and Collaborative Studies(NAPRTCS)[J]. Pediatr Transplant,2007,11(4):366-373
    6陈孝文,刘华峰.从肾小管-间质纤维化发病机制探讨其中西医结合防治新策略[J].中国中西医结合肾病杂志,2008,9(1):1-4
    7刘玉宁.肾间质纤维化中医病机和治法探讨[J].新中医,2006,38(11):1-3
    8顾向晨,陈敏,王怡.从瘀论肾间质纤维化的防治[J].中国中西医结合肾病杂志,2009,10(1):82-84
    9申屠进军,晏子友.肾间质纤维化“毒邪”致病病机探讨[J].四川中医,2008,26(7):25-26
    10Giroux L, Smeeesters C, Boury F, et al. Adriamycin and adriamycin-DNAnephrotoxiicity in rats[J]. Lab Invest,1984,50(2):190-196
    11刘洪彦,杨爱华,刘雪梅.腺嘌呤致大鼠慢性肾功能衰竭模型研究[J].中国实验诊断学,2011,15(12):2014-2017
    12高艳丽,谌贻璞,董洪瑞.慢性马兜铃酸肾病肾间质纤维化发病机制探讨[J].中国肾脏病杂志,2005,21(1):31-35
    13Volpini RA, Balbi AP, Costa RS, et al. Increased expression of P38mitogen-activated protein kinase is related to the acute renal lesionsinduced by gentamicin[J]. Braz J Med Biol Res,2006,39(6):817-823
    14Burrell JH, Yong JL, Macdonald GJ. Experimental analgesic nephropathy:changes in renal structure and urinary concentrating ability in Fischer344rats given continuous low doses of aspirin and paracetamol[J]. Pathology,1990,22(1):33-44
    15王霞,孙冬云,王香婷.柴苓汤对慢性环孢素A肾损伤的防护作用及其机制研究[J].中国中西医结合杂志,2012,32(8):1083-1087
    16Gross ML, Hanke W, Koch A, et al. Intraperitoneal protein injection in theaxolotl: the amphibian kidney as a novel model to study tubulointerstitialactivation[J]. Kidney Int,2002,62(1):51-59
    17Hocher B, Thine-Reineke C, Rohmeiss P, et al. Endo-Thelin-1transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renalcysts but nothypertension [J]. J Clin Inves t,1997,99(6):1380-1389
    18Jain S, Blicknell GR, Nicholson ML. Tacrolimus has less fibrogenicprotential than cyclsporin A in a model of renal ischaenis-reperfusioninjury[J]. Br J Surg,2000,87(11):1563-1568
    19Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis [J]. Am JPhysiol Renal Physiol,2002,283(5):861-875
    20Noorafshan A, Karbala-Doust S, Poorshahid M. Stereological survey ofthe ameliorative effects of sulforaphane and quercetin on renal tissue inunilateral ureteral obstruction in rats[J]. Acute Clin Croat,2012,51(4):555-562
    21Schafer A, Fraccarollo D, Widder J, et al. Eplerenone improves vascularfunction and reduces platelet activation in diabetic rats[J]. PhysiolPharmacol,2010,61(1):45-52
    22Bobadilla NA, Gamba G. New insights into the pathophysiology ofcyclosporine nephrotoxicity: a role of aldosterone[J]. Am J Physiol RenalPhysiol,2007,293(1):2-9
    23Samavat S, Ahmadpoor P, Samadian F. Aldosterone, Hypertension, andBeyond[J]. Iranian Journal of Kidney Diseases,2011(5):71-76
    24赵玉庸,陈志强,于春泉,等.肾络通治疗系膜增生性肾小球肾炎的临床观察[J].中国中西医结合杂志,2002,22(12):909-911
    25邓英辉,林琼真,于结,等.黄芪注射液改善肾间质纤维化的作用机制研究[J].中国中西医结合肾病杂志,2008,9(5):393-395
    26魏振衡,韩笑.复方丹参滴丸治疗稳定型心绞痛临床观察[J].中国误诊学杂志,2009,9(7):1563-1564
    27王虹,王建青,崔杰.川芎嗪注射液治疗慢性肾脏病80例分析[J].中国误诊学杂志,2009,9(31):7695-7696
    28丁跃玲,赵玉庸,陈志强,等.肾络通对肾小管间质纤维化大鼠肾素-血管紧张素系统的影响[J].中药药理与临床,2004,20(1):28-29
    29王亚利,赵玉庸,陈志强,等.肾络通对大鼠系膜细胞外基质分泌及转化生长因子表达的影响[J].中国中药杂志,2005,2(3):201-203
    30张磊磊.肾络通调控Smad-7抑制梗阻性肾病实验大鼠TGF-β1表达的实验研究[D].河北,河北医科大学,2009
    31Hunq TW, Liou JH, Yeh KT, et al. Renal expression of hypoxia induciblefactor-1α in patients with chronic kidney disease: a clinicopathologic studyfrom nephrectomized kidneys[J]. Indian J Med Res,2013,137(1):102-110
    32Ning XH, Ge XF, Cui Y, et al. Ulinastatin inhibits unilateral ureteralobstruction induced renal interstitial fibrosis in rats via transforminggrowth factor β(TGF-β)/Smad signalling pathways[J]. Intimmunopharmacol,2013,15(2):406-413
    1Tabas I, Glass CK. Anti-Inflammatory Therapy in Chronic Disease:Challenges and Opportunities[J]. Science,2013,339(6116):166-172
    2Grande MT, Perez-Barriocanal F, Lopez-Novoa JM. Role of inflammationin tubulo-interstitial damage associated to obstructive nephropathy[J]. JInflamm(Lond),2010,7(19):1-14
    3Barnes JL, Glass WF2nd. Renal interstitial fibrosis: a critical evaluationof the origin of myofibroblasts[J].Contrib Nephrol,2011,169:73-93
    4Zhou C, Wu J, Torres L, et al. Blockade of osteopontin inhibitsglomerular fibrosis in a model of anti-glomerular basement membraneglomerulo nephritis[J]. Am J Nephrol,2010,32(4):324-331
    5Hochheiser K, Tittel A, Kurts C. Kidney dendritic cells in acute andchronic renal disease[J]. Int J Exp Pathol,2011,92(3):193-201
    6Miravète M, Dissard R, Klein J, et al. Renal tubular fluid shear stressfacilitates monocyte activation toward inflammatory macrophages[J]. AmJ Physiol Renal Physiol,2012,302(11): F1409-1417
    7Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic targetfor progressive renal injury in diabetic nephropathy[J]. Am J PhysiolRenal Physiol,2008,294(4):697-701
    8Kurth I, Willimann K, Schaerli P, et al. Monocyte selectivity and tissuelocalization suggests a role for breast and kidney-expressed chemokine(BRAK) in macrophage development[J]. J Exp Med,2001,194(6):855-861
    9Palframan RT, Jung S, Cheng G, et al. Inflammatory chemokine transportand presentation in HEV: a remote control mechanism for monocyterecruitment to lymph nodes in inflamed tissues[J]. J Exp Med,2001,194(9):1361-1373
    10Lee SH, Kang HY, Kim KS, et al. The monocyte chemoattractant protein-1(MCP-1)/CCR2system is involved in peritoneal dialysis-relatedepithelial-mesenchymal transition of peritoneal mesothelial cells[J]. LabInvest,2012,92(12):1698-711
    11Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism and therapeuticintervention[J]. J Am Soc Nephrol,2004,15(1):1-12
    12Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediatingtubular epithelial to mesenchymal transition and renal interstitialfibrogenesis[J]. J Chin Invest,2003,112(1):503-516
    13Dai C, Yang J, Liu Y. Transforming growth factor-β potentiates renaltubular epithelial cell death by a mechanism independent of Smadsignaling[J]. J Bio Chem,2003,278(2):12537-12543
    14谭小月,郑法雷,周秋根,等.骨形成蛋白-7对MCP-1诱导人肾小管上皮细胞转分化和TGF-β1-Smad3信号转导的作用[J].中华医学杂志,2005,85(37):2607-2612
    15Speeckaert MM, Speeckaert R, Laute M, et al.Tumor necrosis factorreceptors: biology and therapeutic potential in kidney diseases[J]. Am JNephrol,2012,36(3):261-270
    16Swardfager W, Lanct t K, Rothenburg L, et al. A meta-analysis ofcytokines in Alzheimer's disease[J]. Biol Psychiatry,2010,68(10):930-941
    17Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptorsuperfamilies: integrating mammalian biology[J]. Cell,2001,104(4):487-501
    18Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokinesin major depression[J]. Biol Psychiatry,2010,67(5):446-457
    19Brynskov J, Foegh P, Pedersen G, et al.Tumour necrosis factor alphaconverting enzyme (TACE) activity in the colonic mucosa of patients withinflammatory bowel disease[J]. Gut,2002,51(1):37-43
    20Siragy HM, Awad A, Abadir P, et al. The angiotensin II type1receptormediates renal interstitial content of tumor necrosis factor-alpha in diabeticrats[J]. Endocrinology,2003,144(6):2229-2233
    21Martin MU, Wesche H. Summary and comparison of the signalingmechanisms of the Toll/interleukin-1receptor family[J]. Biochimi BiophysActa,2002,1592(3):265-280
    22Dinarello CA. An IL-1family member requires caspase-1processing andsignals through the ST2receptor [J]. Immunity,2005,23(5):461-462
    23Tamilselvi E, Haripriya D, Hemamalini M, et al. Association of DiseaseSeverity with IL-1levels in Methotrexate-treated Psoriasis Patients[J].Scand J Immunol,2013,78(6):545-53
    24Fan JM, Huang XR, Ng YY, et al. Interleukin-1induces tubularepithelar-myofibroblast transdifferentiation through a transformingfactor-beta1-dependent mechanism in vitro [J]. Am J Kidney Dis,2001,37(4):820-831
    25杨汝春,鲁盈,朱晓玲,等.白介素-1β诱导肾小管上皮细胞向间充质细胞转化的实验研究[J].医学研究杂志,20076,36(17):33-36
    26张梅,唐嘉薇,李晓玫. P38丝裂素活化蛋白激酶信号转录对IL-1B诱导肾小管细胞转分化的影响[J].中华医学杂,2003,83(13):1161-1165
    27Vesey DA, Cheung CW, Cuttle L, et al. Interleukin-1β induces humanproximal tubule cell injury, α-SMA expression and fibronectinproduction[J]. Kidney Int,2002,62(1):31-40
    28Bian K, Ke Y, Kamisaki Y, et al. Proteomic modification by nitric oxide[J].J Pharmacol Sci,2006,101(4):271-279
    29Guzik TJ, Korbut R, Adamek-Guzik T. Nitrie oxide and superoxide ininflammation and immune regulation[J]. J Physiol Pharmacol,2003,54(4):469-487
    30Sarkar D, Saha P, Gamre S, et al. Anti-inflammatory effect ofallylpyrocatechol in LPS-induced macrophages is mediated by suppressionof iNOS and COX-2via the NF-kappaB pathway[J]. IntImmunopharmacol,2008,8(9):1264-1271
    31Ganster RW, Taylor BS, Shao L, et al. Complex regulation of humaninducible nitric oxide synthase gene transcription by Stat l and NF-κB[J].Proc Natl Acad Sci USA,2001,98(15):8638-8643
    32Cvetkovie I, Milikovic D, Vuckovic O, et al. Taxol activates induciblenitric oxide synthase in rat as trocytes: the role of MAP kinases andNF-kappaB[J]. Cell Mol Life Sci2004,61(10):1167-1175
    33Samavat S, Ahmadpoor P, Samadian F. Aldosterone, Hypertension, andBeyond[J]. Iranian Journal of Kidney Diseases,2011,5(2):71-76
    34杨红霞,朱敏怡.黄芪对糖尿病大鼠肾组织的保护作用[J].实用医学杂志,2005,21(17):1964-1965
    35孙林,易著文,虞佩兰.川芎嗪对人胎肾小球系膜细胞增殖的影响及其机理探讨[J].中国中西医结合杂志,1995,15(3):134-136
    36李小波,李均,师晶丽.桃仁对单侧输尿管梗阻大鼠肾组织NF-κB、TNF-α表达的影响[J].中国中医基础医学杂志,2006,12(7):526-527
    37袁继丽,刘成,刘成海.冬虫夏草治疗肾纤维化研究进展[J].中国中西医结合肾病杂志,2004,5(2):121-124
    38唐锦辉,徐钦儒,刘桐林,等.银杏叶防治小鼠肾小球硬化及肾小管间质损害的实验研究[J].中华肾脏病杂志,1998,14(3):174-175
    39陈晨,金玉.氧化苦参碱对阿霉素大鼠肾纤维化组织中核因子κB表达的影响[J].南方医科大学学报,2007,27(3):345-348
    40王聪慧.柴苓汤对慢性环孢素A肾病大鼠炎性介质表达的影响[D].河北,河北医科大学,2012
    41符强,何立群.抗纤灵对5/6肾切除大鼠肾组织核因子κB及肿瘤坏死因子α,白细胞介素6mRNA表达的影响[J].时珍国医国药,2008,19(11):2684-2686
    42余凌,张俊峰,李惊子,等.黄芪当归合剂防治肾病综合征鼠转化生长因子β1的影响[J].中华肾脏病杂志,2000,16(5):282-286
    43马建伟,蔡庆,刘占民,等.滋肾活血解毒方对慢性肾衰竭大鼠肾内皮素基因表达的影响[J].安徽中医学院学报,2001,20(1):40-42
    44孙文才,云浩,石咏军,等.圣达欣抗间质纤维化的实验研究[J].中国中西医结合肾病杂志,2001,2(7):388-389
    45高建东,何立群,侯卫国,等.肾衰冲剂抑制体外肾成纤维细胞增殖及分泌TNF-α的作用[J].北京中医药大学学报,2004,27(1):27-30
    46王军,程晓霞,杨汝春,等.复方积雪草对局灶硬化性肾小球肾炎模型小鼠肾组织细胞因子的调控作用[J].中国临床药理学与治疗学,2003,8(6):638-641
    47王聪慧,王筝,丁英钧,等.赵玉庸治疗IgA肾病经验[J].中医杂志,2012,53(8):645-646
    48王月华,董绍英,丁英钧,等.赵玉庸辨治慢性肾功能衰竭经验[J].中医杂志,2011,52(12):1000-1001
    49王亚利,赵玉庸,陈志强,等.肾络通对大鼠系膜细胞外基质分泌及转化生长因子表达的影响[J].中国中药杂志,2005,2(3):201-203
    1Fukuda S, Horimai C, Harada K, et al. Aldosterone-induced kidney injuryis mediated by NFκB activation[J]. Clin Exp Nephrol,2011,15(1):41-49
    2Rafiq K, Hitomi H, Nakano D, et al. Pathophysiological roles ofaldosterone and mineralocorticoid receptor in the kidney[J]. J PharmacolSci,2011,115(1):1-7
    3Grande MT, Pérez-Barriocanal F, López-Novoa JM. Role of inflammationin túbulo-interstitial damage associated to obstructive nephropathy[J]. JInflamm(Lond),2010,7(19):1-14
    4Terada Y, Kuwana H, Kobayashi T, et al. Aldosterone-stimulated SGK1activity mediates profibrotic signaling in the mesangium[J]. J Am SocNephrol,2008,19(2):298-309
    5Hollenberg NK. Aldosterone in the development and progression of renalinjury[J]. Kidney Int,2004,66(1):1-9
    6孙东云,许庆友,王香婷,等.依普利酮抑制细胞增殖拮抗急性环孢素A肾损伤的研究[J].中国药理学通报,2011,27(12):1678-1682
    7Wagman G, Fudim M, Konmas CE, et al. The Neurohormonal Network inthe RAAS Can Bend Before Breaking[J]. Curr Heart Fail Rep,2012,9(2):81-91
    8Dluhy RG, Williams GH. Aldosterone-villain or bystander[J]. N Engl JMed,2004,351(1):8-10
    9Doulton TWR. ACE inhibitor-angiotensin receptor blocker combinations:a clinician’s perspective[J]. Mini Rev Med Chem,2006,6(5):491-497
    10Hostetter TH, Rosenberg ME, Ibrahim HN, et al. Aldosterone in renaldisease[J]. Curr Opin Nephrol Hypertens,2001,10(1):105-110
    11李晓东,陈孝文,唐德,等.醛固酮对肾小球系膜细胞合成分泌现为连接蛋白和TGF-B1表达的影响[J].细胞与分子免疫学杂志,2007,23(2):140-142
    12Huang W, Xu C, Kahng KW, et al. Aldosterone and TGF-β1synergistically increase PAI-1and decrease matrix degradation in rat renalmesangial and fibroblast cells [J]. Am J Physiol Renal Physiol,2008,294(6):1287-1295
    13Nagai Y, Miyata K, Sun GP, et al. Aldosterone stimulates collagen geneexpression and synthesis via activation of ERK1/2in rat renalfibroblasts[J]. Hypertension,2005,46(4):1039-1045
    14Juknevicius I, Segal Y, Kren S, et al. Effect of aldosterone on renaltransforming growth factor-β[J]. Am J Physiol Renal Physiol,2004,286(6):1059-1062
    15Ma LJ, Yang H, Gaspert A, et al. Transforming growth factor-β dependentand independent pathways of induction of tubulo intersitial fibrosis in beta
    6(-/-)mice[J]. Am J Pathol,2003,163(4):1261-1273
    16孙广萍,张锦,刘东. Rho激酶和转化因子β通路在醛固酮/盐诱导的单肾切除SD大鼠肾脏损伤中的作用[J].中国现代医学杂志,2008(10):1388-1393
    17Cortinovis M, Perico N, Cattaneo D, et al. Aldosterone and progression ofkidney disease[J]. Ther Adv Cardiovasc Dis,2009,3(2):133-143
    18Kuramochi D, Unoki H, Bujo H, et al. Matrix metalloproteinase2improves the transplanted adipocyte survical in mice[J]. Eur J Clin Invest,2008,38(10):752-759
    19Sun GP, Kohno M, Guo P, et al. Involvements of Rho-kinase and TGF-βpathways in aldosterone-induced renal injury[J]. J Am Soc Nephrol,2006,17(8):2193-2201
    20邹军.醛固酮与慢性肾脏疾病的关系[J].上海交通大学学报,2006,2(2):213-215
    21Hirono Y, Yoshimoto T, Suzuki N, et al. Angiotensin Ⅱ receptortype1-mediated vascular oxidative stress and proinflammatory gene expressionin aldosterone-induced hypertension: the possible role of localrenin-angiotensin system [J]. Endocrinolgy,2007,148(4):1688-1696
    22Wolf G, Wenzel U, Burns KD, et al. Angiotensin Ⅱactivates nucleartranscription factor-kappaB though AT1and AT2receptor [J]. Kidney Int,2002,61(6):1986-1995
    23Ruiz-Ortega M, Esteban V, Ruperez M, et al. Renal and vascularhypertension-induced inflammation: role of angiotensin II [J]. Curr OpinNephrol Hypertens,2006,15(2):159-166
    24Blasi ER, Rocha R, Rudolph AE, et al. Aldosterone/salt induces renalinflammation and fibrosis in hypertensive rats[J]. Kidney Int,2003,63(5):1791-1800
    25Siragy HM, Xue C. Local renal aldosterone production inducesinflammation and matrix formation in kidneys of diabetic rats[J]. ExpPhysiol,2008,93(7):817-824
    26Wada T, Sakai N, Sakai Y, et al. Involvement of bone-marrowderived cellsin kidney fibrosis[J]. Clin Exp Nephrol,2010,15(1):8-13
    27Fujisawa G, Okada K, Muto S, et al. Spironolactone prevents early renalinjury in Streptozotocin-induced diabetic rats[J]. Kidney Int,2004,66(4):
    1493-1502
    28张彬,王全胜,朱锐,等.血清和糖皮质激素诱导的蛋白激酶1在梗阻性肾病肾小球中的表达及姜黄素对其的影响[J].医学研究生学报,2008,21(3):245-248
    29Fillon S, Klingel K, Warntges S, et al. Expression of the serine/threoninekinase hSGK1inchronic viral hepatitis[J]. Cell Physiol Biochem,2002,12(1):47-54
    30Feng Y, Wang Y, Xiong J, et al. Enhanced expression of serum andglucocorticoid-inducible kinase-1in kidneys of L-NAME-treated rats[J].Kidney Blood Press Res,2006,29(2):94-99
    31王全胜,刘建国,易继飞.血清和糖皮质激素诱导蛋白激酶1在梗阻性肾病肾间质中的表达和血竭素高氯酸盐对其的干预作用[J].中西医结合研究,2009,1(4):169-176
    32Fillon S, Klingel K,Warntges S, et al. Expression of the serine/threoninekinase hSGK1in chronic viral hepatitis[J]. Cell Physiol Biochem,2002,
    12(1):47-54
    33Waerntges S, Klingel K, Weigert C, et al. Excessive transcription of thehuman serum and glucocorticoid dependent kinase hSGK1in lungfibrosis[J].Cell Physiol Biochem,2002,12(2-3):135-142
    34McCormick JA, Bhalla V, Pao AC, et al. SGK1: a rapidaldosterone-induced regulator of renal sodium reabsorption[J]. Physiology,2005,4(20):134-139
    35Cheng J, Truong LD, Wu X, et al. Serum and glucocorticoid regulatedkinase1is upregulated following unilateral ureteral obstruction causingepithelial-mesenchymal transition[J]. Kidney Int,2010,14(78):668-678
    36Terada Y, Kuwana H, Kobayashi T, et al. Aldosterone-stimulated SGK1activity mediates profibrotic signaling in the mesangium[J]. J Am SocNephrol,2008,19(2):298-309
    37Sun GP, Kohno M, Guo P, et al. Involvements of Rho-kinase and TGF-βpathways in aldosterone-induced renal injury[J]. J Am Soc Nephrol,2006,17(8):2193-2201
    38Rafiq K, Hitomi H, Nakano D, et al. Pathophysiological roles ofaldosterone and mineralocorticoid receptor in the kidney[J]. J PharmacolSci,2011,115(1):1-7
    39Fukuda S, Horimai C, Harada K, et al. Aldosterone-induced kidney injuryis mediated by NF-κB activation[J]. Clin Exp Nephrol,2011,15(1):41-49
    40Terada Y, Kuwana H, Kobayashi T, et al. Aldosterone-stimulated SGK1activity mediates profibrotic signaling in the mesangium[J]. J Am SocNephrol,2008,19(2):298-309
    41付文成,彭文,王浩,等.姜黄素对醛固酮诱导肾间质纤维化的保护作用[J].现代中西医结合杂志,2013,22(2):133-138
    42Ring AM, Leng Q, Rinehart J, et al. An SGK1site in WNK4regulates Na+channel and K+channel activity and has implications for aldosteronesignaling and K+homeostasis[J]. Proc Natl Acad Sci USA,2007,104(10):4025-4029
    43Shibata S, Nagase M, Yoshida S, et al. Podocyte as the target foraldosterone: roles of oxidative stress and SGK-1[J]. Hypertension,2007,
    49(2):355-364
    44Soetikno V, Sari FR, Veeraveedu PT, et al. Curcumin amelioratesmacrophage infiltration by inhibiting NF-κB activation andproinflammatory cytokines in streptozotocin induced-diabeticnephropathy[J]. Nutr Metab (Lond),2011,8(1):35
    45Samavat S, Ahmadpoor P, Samadian F. Aldosterone, Hypertension, andBeyond[J]. Iran J Kidney Dis,2011,5(2):71-76
    46王学彬,王芳芳,张晓敏,等.大黄酸通过抑制SGK1信号通路防治糖尿病大鼠肾纤维化[J].滨州医学院学报,2013,36(4):249-252
    47陈清江,杨丽,王辉,等.黄芪对人肾间质成纤维细胞增殖和转化生长因子-β1mRNA表达的影响[J].郑州大学学报(医学版),2005,40(5):871-873
    48陈美芳.抗肾间质纤维化在肾脏病研究中的新进展[J].辽宁中医药大学学报,2008,6(10):49-50
    49李航,熊璟,周全荣.肾小管-间质纤维化的中医药防治机制研究概况[J].中医杂志,2008,49(1):80-83
    50王筝.柴苓汤对环孢素A慢性肾毒性大鼠RAS系统的作用[D].河北,河北医科大学,2011
    51晏子友,皮持衡.化瘀解毒汤对转化生长因子β及血管紧张素作用的研究[J].江西中医学院学报,2002,14(2):13-14
    52胡家才,夏明珠,万青松,等.参芪口服液抗大鼠肾间质纤维化的实验研究[J].武汉大学学报(医学版),2005,26(4):491-493
    53王筝,梁丽娟,王聪慧,等.肾络通对梗阻性肾病大鼠炎性介质及血清糖皮质激素诱导蛋白激酶1表达的影响[J].中医杂志,2014,55(1):53-56
    1Qin D, Morita H, Inui K, et al. Aldosterone mediates glomerularinflammation in experimental mesangial proliferative glomerulonephritis[J].J Nephrol,2013,26(1):199-206
    2Han SY, Kim CH, Jee YH, et al. Spionlactone prevents diabeticnephropathy through an anti-inflammatory mechanism in type2diabeticrats[J]. J Am Soc Nephrol,2006,17(5):1362-1372
    3Keller ET, Fu Z, Yeung K, et al. Raf kinase inhibitor protein: a prostatecancer metastasis suppressor gene[J]. Cancer Lett,2004,207(2):131-137
    4梁丽娟,王筝,王蕊,等.依普利酮下调TNF-α、NF-κB抑制细胞表型转化的研究[J].中国药理学通报,2013,29(11):1553-1557
    5Palanisamy N, Kannappan S, Anuradha CV. Genistein modulatesNF-κB-associated renal inflammation, fibrosis and podocyte abnormalitiesin fructose-fed rats[J]. Eur J Pharmacol,2011,667(1-3):355-364
    6Omori M, Ogino T, Than TA, et al. Monochioamine inhibits the expressionof E-selectin and intercellular adhesion molecule-1induced by TNF-alphathrough the suppression of NF-κB activation in human endothelial cells[J].Free Radic, Res,2002,36(8):842-852
    7姜立新,郭宋远,吴荣德,等.细胞间和血管细胞粘附分子-1在先天性肾积水肾组织中的表达[J].中华小儿外科杂志,2005,26(2):71-74
    8尉延锋,郑树森,徐世国,等.抑制核因子-κB的活性减少内皮细胞与T淋巴细胞粘附[J].中华器官移植杂志,2005,26(1):36-39
    9Strutz F, Carone RL, Tomaszewski JE, et a1. Transdifferentiation:a newconcept in lenal fibrogenesis[J]. Am J Soc Nephrol,1994,5(10):819-826.
    10Eyden B. Electron microscopy in the study of myofibroblastic lesions[J].Serain Diagn Pathol,2003,20(1):13-24
    11Badid C, Vincent M, Fouque D, et al. Myofibroblast: a prognostic markerand target cell in progressive renal disease[J]. Ren Fail,2001,23:543-549
    12Fan JM, Huang XR, Ng YY, et al. Interleukin-1induces tubularepithelial-myofibroblast transdifferentiation through a transforming growthfactor-beta1-dependent mechanism in vitro[J]. Am J Kidney Dis,2001,37(4):820-831
    13Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end productscause epithelial-myofibroblast transdifferentiation via the receptor foradvanced glycation end products(RAGE)[J]. J Clin Invest,2001,108(12):1853-1863
    14文晓彦,郑法雷,高瑞通,等.马兜铃酸1诱导人肾小管上皮细胞转分化的作用及机制[J].肾脏病与透析肾移植杂志,2000,9(3):206-209
    15张海燕,李幼姬,叶任高,等.结缔组织生长因子介导转化生长因子促肾小管上皮细胞转分化[J].中华肾脏病杂志,2003,19(6):360-364
    16杜春燕,舒惠荃. UUO肾间质纤维化动物模型的制作及研究进展[J].辽宁医学杂志,2008,22(6):313-317
    17Picard N, Baum O, Vogetseder A, et al. Origin of renal myofibroblasts inthe model of unilateral ureter obstruction in the rat[J]. Histochem Cell Biol,2008,130(1):141-155
    18Jinde K, Nikolic-Paterson DJ, Huang XR, et al. Tubular phenotypic changein progressive tubulointerstitial fibrosis in human glomerulonephritis[J].Am J Kidney Dis,2001,38(4):761-769
    19Fan JM, Ng YY, Hill PA, et al. Transforming growth factor-beta regulatestubular epithelial-myofibroblast transdifferentiation in vitro[J]. Kidney Int,1999,56(4):1455-1467
    20Yang J, Liu Y. Dissection of key events in tubular epithelial tomyofibroblast transition and its implications in renal interstitial fibrosis[J].Am J Pathol,2001,159(4):1465-1475
    21Zeisberg M, Bonner G, Maeshima Y, et al. Renal Fibrosis: CollagenComposition and Assembly Regulates Epithelial MesenchymalTransdifferentiation[J]. Am J Pathol,2001,159(4):1313-1321
    22Qin D, Morita H, Inui K, et al. Aldosterone mediates glomerularinflammation in experimental mesangial proliferative glomerulonephritis[J].J Nephrol,2013,26(1):199-206
    23Zheng D, Wolfe M, Cowley BD, et al. Urinary excretion of monocytechemoattractant protein-1in autosomal dominal polycystic kidneydisease[J]. J Am Soc Nephrol,2003,14(10):2588-2595
    24Furuichi K, Wada T, Iwata Y, et al. CCR2signaling contributes toischemia-reperfusion injury in kidney[J]. J Am Soc Nephrol,2003,14(10):2503-2515
    25Giunti S, Barutta F, Perin PC, et al. Targeting the MCP-1/CCR2system inthe diabetic kidney disease[J]. Curr Vasc Pharmacol,2010,8(6):849-860
    26Ohshima K, Mogi M, Nakaoka H, et al. Inhibition of MCP-1/CCR2signaling pathway is involved in synergistic inhibitory effects of irbesartanwith rosuvastatin on vascular remodeling [J]. J Am Soc Hypertens,2012,6(6):375-384
    27Park JS, Jo CH, Kim S, et al. Acute and chronic effects of dietary sodiumrestriction on renal tubulointerstitial fibrosis in cisplatin-treated rats [J].Nephrol Dial Transplant,2013,28(3):592-602
    28Wehbe M, Souddja SM, Mas A, et al. Epithelial mesenchymal transitionlike and TGF-β pathways associated with autochthonous inflammatorymelanoma development in mice[J]. PloS One,2012,7(11):457-467
    29Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediatingtubular epithelial to mesenchymal transition and renal interstitialfibrogenesis[J]. J Chin Invest,2003,112(1):503-516
    30Dai C, Yang J, Liu Y. Transforming growth factor-β potentiates renaltubular epithelial cell death by a mechanism independent of Smadsignaling[J]. J Biol Chem,2003,278(2):12537-12545
    31谭小月,郑法雷,周秋根,等.骨形成蛋白-7对MCP-1诱导人肾小管上皮细胞转分化和TGF-β1-Smad3信号转导的作用[J].中华医学杂志,2005,85(37):2607-2612
    32丁跃玲,李增明,徐华洲.柴苓汤对UUO模型大鼠肾小管间质α-SMA、MCP-1的影响研究[J].中药药理与临床,2007,23(5):9-10
    33Han SY, Kim CH, Jee YH, et al. Spionlactone prevents diabeticnephropathy through an anti-inflammatory mechanism in type2diabeticrats[J]. J Am Soc Nephrol,2006,17(5):1362-1372
    34Zhu W, Pang M, Dong L, et al. Anti-inflammatory and immunomodulatoryeffects of iridoid glycosides from Paederia scandens (LOUR) MERRILL(Rubiaceae) on uric acid nephropathy rats[J]. Life Sci,2012,91(11-12):369-376
    35Grande MT, Perez-Barriocanal F, Lopez-Novoa JM. Role of inflammationin tubulo-interstitial damage associated to obstructive nephropathy[J]. JInflamm(Lond),2010,7(19):1-14
    36Kobayashi S, Moriya H, Nakabayashi I, et al. Angiotensin II and IGF-Imay interact to regμlate tubμlointerstitial cell kinetics and phenotypicchanges in hypertensive rats[J]. Hypertens Res,2002,25(2):257-269
    37赵雪莲.通络益肾温阳方对DM大鼠肾组织α-SMA、TNF-α表达影响的实验研究[D].陕西,陕西中医学院,2010
    38Meldrum KK, Misseri R, Metcalfe P, et al. TNF-α neutralizationameliorates obstruction-induced renal fibrosis and dysfunction[J]. Am JPhysiol Renal Physiol,2007,292(4):1456-1464
    39Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling[J].Cell Death Differ,2010,5(1):45-65
    40雷向宏,涂卫平. NF-κB与肾脏疾病的研究进展[J].实用临床医学,2007,12(8):130-133
    41李小波,李均,师晶丽.桃仁对单侧输尿管梗阻大鼠肾组织NF-κB、TNF-α表达的影响[J].中国中医基础医学杂志,2006,12(7):526-527
    42William BL, Eun SK, James ML, et al. Aldosterone antagonism or synthaseinhibition reduces end-organ damage induced by treatment withangiotensin and high salt[J]. Kidney Int,2009,75(9):936-944
    43许庆友,贾晓明,丁英钧,等.依普利酮对环孢素A急性肾损伤小管上皮细胞坏死及再生的作用[J].中国药理学通报,2010,26(7):906-909
    44孙东云,许庆友,王香婷,等.依普利酮抑制细胞增殖拮抗急性环孢素A肾损伤的研究[J].中国药理学通报,2011,27(12):1678-1682
    45许庆友,潘莉,王月华,等.红花对肾间质纤维化实验大鼠肾小管上皮细胞表型转化的抑制作用[J].中国老年医学杂,2009,29(11):1344-1346
    46苏白海,李孜,樊均明,等.三七总皂甙对单侧输尿管梗阻大鼠肾间质纤维化的防治作用[J].四川大学学报(医学版),2005,36(3):368-371
    47宁英远,王剑勤,屈燧林.大黄素对人肾成纤维细胞增殖的影响[J].中国中西医结合杂志,2000,20(2):105-106
    48杨汝春,王永钧,林京莲,等.青藤碱对肾小管上皮细胞转分化相关基因表达的影响[J].中国中西医结合肾病杂志,2006,7(1):10-12
    49张丽芬,黄文政,朱小棣,等.肾小球硬化中肾小管间质细胞表型转化及肾疏宁的干预作用[J].中国中西医结合肾病杂志,2005,6(1):13-16
    50王霞,孙东云,王香婷,等.柴苓汤对慢性环孢素A肾损伤的防护作用及其机制研究[J].中国中西医结合杂,2012,32(8):1083-1087
    51秦建国,韩琳,王亚红,等.通脉益肾方拮抗肾问质纤维化的作用机制[J].北京中医药大学学报,2012,35(11):739-742
    52栾仲秋.地龙组分对UUO大鼠p38MAPK、NF-κB影响的研究[D].黑龙江,黑龙江中医药大学,2012
    53刘迟,郭刚,胡仲仪.莪术对单侧输尿管梗阻大鼠肾间质纤维化的影响[J].上海中医药杂志,2006,40(12):71-73
    54宋业旭.真武汤调控肾间质纤维化NF-κB信号通路的实验研究[D].黑龙江,黑龙江中医药大学,2012
    55谷海瑛.复方鳖甲软肝方防治肾间质纤维化作用机理的实验研究[D].北京,北京中医药大学,2005
    56赵玉庸,陈志强,于春泉.肾络通治疗系膜增生性肾小球肾炎临床观察[J].中国中西医结合杂志,2002,22(12):909-911
    57宁英远,王俭勤,屈燧林.大黄素对人肾成纤维细胞增殖的影响[J].中国中西医结合杂志,2000,20(2):105-107
    58王月华,陈志强,檀金川,等.肾络通对肾间质纤维化实验大鼠肾小管上皮细胞转分化的影响[J].河北中医,2007,29(12):1125-1127
    1Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-κBpathway[J]. Trends Biochem Sci,2004,29(2):72-79
    2Chen D, Nie M, Fan MW, et al. Anti-inflammatory activity of curcumin inmacrophages stimulated by lipopolysaccharides from Porphyromonasgingivalis[J]. Pharmacology,2008,82(4):264-269
    3Idel S, Dansky HM, Breslow JL. A20, a regulator of NF-κB, maps to anatherosclerosis locus and differs between parental sensitive C57BL/6J andresistant FVB/N strains[J]. Proc Natl Acad Sci USA,2003,100(24):14235-14240
    4Baugé C, Beauchef G, Leclercq S, et al. NF kappaB mediatesIL-1beta-induced down-regulation of TbetaRII through the modulation ofSp3expression[J]. J Cell Mol Med,2008,12(5):1754-1766
    5Grande MT, Pérez-Barriocanal F, López-Novoa JM. Role of inflammationin túbulo-interstitial damage associated to obstructive nephropathy[J]. JInflamm(Loud),2010,7(19):1-14
    6Esteban V, Lorenzo O, Ruperez M, et al. Angiotensin II, via AT1and AT2receptors and NF-kappaB pathway, regulates the inflammatory response inunilateral ureteral obstruction[J]. J Am Soc Nephrol,2004,15(6):1514-1529
    7Tashiro K, Tamada S, Kuwabara N, et al. Attenuation of renal fibrosis byproteasome inhibition in rat obstructive nephropathy: possible role ofnuclear factor kappaB[J]. Int J Mol Med,2003,12(4):587-592
    8Ricardo SD, Lerinson ME, DeJoseph MR, et al. Expression of adhesionmolecules in rat renal cortex during experimental hydronephrosis[J].kidney Int,1996,50(6):2002-2010
    9Kuncio GS, Neilson EG, Haverty T. Mechanisms of tubulo interstitialfibrosis[J]. Kindey Int,1991,39(3):550-556
    10Heidland A, Sebekova K, Schinzel R. Advanced glycation end productsand the progressive course of renal disease[J]. Am J Kidney Dis,2001,38:100-106
    11Klahr S. Urinary tract obstruction[J]. Semin Nephrol,2001,21:133-145
    12Manucha W, Vallés PG. Cytoprotective role of nitric oxide associated withHsp70expression in neonatal obstructive nephropathy[J]. Nitric Oxide,2008,18(3):204-215
    13Asami J, Odani H, Ishii A, et al. Suppression of AGE precursor formationfollowing unilateral ureteral obstruction in mouse kidneys by transgenicexpression of alpha-dicarbonyl/L-xylulose reductase[J]. Biosci BiotechnolBiochem,2006,70(12):2899-2905
    14Saborio P, Krieg RJ Jr, Kuemmerle NB, et al. Alpha-tocopherol modulateslipoprotein cytotoxicity in obstructive nephropathy [J]. Pediart Nephrol,2000,14(8-9):740-746
    15Schaier M, Jocks T, Grone HJ, et al. Retinoid agonist isotretinoinameliorates obstructive renal injury[J]. J Urol,2003,170(4pt1):1398-1402
    16Singh D, Kaur R, Chander V, et al. Antioxidants in the prevention of renaldisease[J]. J Med Food,2006,9(4):443-450
    17Chan W, Krieg RJ Jr, Ward K, et al. Progression after release ofobstructive nephropathy[J]. Pediatr Nephrol,2001,16(3):238-244
    18Radisky DC, Levy DD, Littlepage LE, et al. Rac1b and reactive oxygenspecies mediate MMP-3-induced EMT and genomic instability[J]. Nature,2005,436(7047):123-127
    19Siddesha JM, Valente AJ, Sakamuri SS, et al. Angiotensin II stimulatescardiac fibroblast migration via the differential regulation of matrixins andRECK[J]. J Mol Cell Cardiol,2013,65:9-18
    20Bae EH, Kim IJ, Park JW, et al. Altered regulation of renin-angiotensin,endothelin and natriuretic peptide systems in rat kidney with chronicunilateral ureteral obstruction[J]. Urol Int,2007,79(2):170-176
    21Liu Z, Huang XR, Chen HY, et al. Loss of angiotensin-converting enzyme
    2enhances TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renalinflammation in a mouse model of obstructive nephropathy[J]. Lab Invest,2012,92(5):650-661
    22Esteban V, Lorenzo O, Rupérez M, et al. Angiotensin II, via AT1and AT2receptors and NF-kappaB pathway, regulates the inflammatory response inunilateral ureteral obstruction[J]. J Am Soc Nephrol,2004,15(6):1514-1529
    23Satoh M, Kashihara N, Yamasaki Y, et al. Renal interstitial fibrosis isreduced in angiotensin II type1a receptor-deficient mice[J]. J Am SocNephrol,2001,12(2):317-325
    24Wolf G. Renal injury due to renin-angiotensin-aldosterone systemactivation of the transforming growth factor-beta pathway[J]. Kidney Int,2006,70(11):1914-1919
    25Nishida M, Fujinaka H, Matsusaka T, et al. Absence of angiotensin II type
    1receptor in bone marrow-derived cells is detrimental in the evolution ofrenal fibrosis[J]. J Clin Invest,2002,110(12):1859-1868
    26Turan T, van Harten JG, de Water R, et al. Is enalapril adequate for theprevention of renal tissue damage caused by unilateral ureteral obstructionand/or hyperoxaluria?[J]. Urol Res,2003,31(3):212-217
    27Nagatoya K, Moriyama T, Kawada N, et al. Y-27632preventstubulointerstitial fibrosis in mouse kidneys with unilateral ureteralobstruction[J]. Kidney Int,2002,61(5):1684-1695
    28Hashem RM, Soliman HM, Shaapan SF. Turmeric-based diet can delayapoptosis without modulating NF-kappaB in unilateral ureteral obstructionin rats[J]. J Pharm Pharmacol,2008,60(1):83-89
    29Metcalfe PD, Leslie JA, Campbell MT, et al. Testosterone exacerbatesobstructive renal injury by stimulating TNF-alpha production andincreasing proapoptotic and profibrotic signaling[J]. Am J PhysiolEndocrinol Metab,2008,294(2):435-443
    30Misseri R, Meldrum DR, Dinarello CA, et al. TNF-alpha mediatesobstruction-induced renal tubular cell apoptosis and proapoptoticsignaling[J]. Am J Physiol Renal Physiol,2005,288(2):406-411
    31Dong X, Bachman LA, Miller MN, et al. Dendritic cells facilitateaccumulation of IL-17T cells in the kidney following acute renalobstruction[J]. Kidney Int,2008,74(10):1294-1309
    32Fukuyama S, Yoshino I, Yamaquchi M, et al. Blockage of the macrophagemigration inhibitory factor expression by short interference RNA inhibitedthe rejection of an allogeneic tracheal graft[J]. Transpl Int,2005,18(10):1203-1209
    33Chevalier RL. Pathogenesis of renal injury in obstructive uropathy[J]. CurrOpin Pediatr,2006,18(2):153-160
    34Demirbilek S, Emre MH, Aydin EN, et al. Sulfasalazine reducesinflammatory renal injury in unilateral ureteral obstruction[J]. PediatrNephrol,2007,22(6):804-812
    35Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3expression and secretion links macrophages to the promotion of renalfibrosis[J]. Am J Pathol,2008,172(2):288-298
    36Lin SL, Casta o AP, Nowlin BT, et al. Bone marrow Ly6Chigh monocytesare selectively recruited to injured kidney and differentiate intofunctionally distinct populations[J]. J Immunol,2009,183(10):6733-6743
    37Nishida M, Hamaoka K. Macrophage phenotype and renal fibrosis inobstructive nephropathy[J]. Nephron Exp Nephrol,2008,110(1):31-36
    38Kim DH, Moon SO, Jung YJ, et al. Mast cells decrease renal fibrosis inunilateral ureteral obstruction[J]. Kidney Int,2009,75(10):1031-1038
    39Lange-Sperandio B, Trautmann A, Eickelberg O, et al. Leukocytes induceepithelial to mesenchymal transition after unilateral ureteral obstruction inneonatal mice[J]. Am J Pathol,2007,171(3):861-871
    40Ogawa D, Shikata K, Honke K, et al. Cerebroside sulfotransferasedeficiency ameliorates L-selectin-dependent monocyte infiltration in thekidney after ureteral obstruction[J]. J Biol Chem,2004,279(3):2085-2090
    41Naruse T, Yuzawa Y, Akahori T, et al. P-selectin-dependent macrophagemigration into the tubulointerstitium in unilateral ureteral obstruction[J].Kidney Int,2002,62(1):94-105
    42Lange-Sperandio B, Cachat F, Thornhill BA, et al. Selectins mediatemacrophage infiltration in obstructive nephropathy in newborn mice[J].Kidney Int,2002,61(2):516-524
    43Ogawa D, Shikata K, Honke K, et al. Cerebroside sulfotransferasedeficiency ameliorates L-selectin-dependent monocyte infiltration in thekidney after ureteral obstruction[J]. J Biol Chem,2004,279(3):2085-2090
    44Shappell SB, Mendoza LH, Gurpinar T, et al. Expression of adhesionmolecules in kidney with experimental chronic obstructive uropathy: thepathogenic role of ICAM-1and VCAM-1[J]. Nephron,2000,85(2):156-166
    45Takeda A, Fukuzaki A, Kaneto H, et al. Role of leukocyte adhesionmolecules in monocyte/macrophage infiltration in weanling rats withunilateral ureteral obstruction[J]. Int J Urol,2000,7(11):415-420
    46Cheng QL, Chen XM, Li F, et al. Effects of ICAM-1antisenseoligonucleotide on the tubulointerstitium in mice with unilateral ureteralobstruction[J]. Kidney Int,2000,57(1):183-190
    47Yamagishi H, Yokoo T, Imasawa T, et al. Genetically modified bonemarrow-derived vehicle cells site specifically deliver an anti-inflammatorycytokine to inflamed interstitium of obstructive nephropathy[J]. J Immunol2001,166(1):609-616
    48Hu K, Wu C, Mars WM, et al.Tissue-type plasminogen activator promotesmurine myofibroblast activation through LDL receptor-related protein1-mediated integrin signaling[J]. J Clin Invest,2007,117(12):3821-3832
    49Lange-Sperandio B, Schimpgen K, Rodenbeck B, et al. Distinct roles ofMac-1and its counter-receptors in neonatal obstructive nephropathy[J].Kidney Int,2006,69(1):81-88
    50Vielhauer V, Anders HJ, Mack M, et al. Obstructive nephropathy in themouse: progressive fibrosis correlates with tubulointerstitial chemokineexpression and accumulation of CC chemokine receptor2-and5-positiveleukocytes[J]. J Am Soc Nephrol,2001,12(6):1173-1187
    51Kaneto H, Fukuzaki A, Ishidoya S, et al. mRNA expression of chemokinesin rat kidneys with ureteral obstruction[J]. Nippon Hinyokika GakkaiZasshi,2000,91(2):69-74
    52Wada T, Furuichi K, Sakai N, et al. Gene therapy via blockade ofmonocyte chemoattractant protein-1for renal fibrosis[J]. J Am SocNephrol,2004,15(4):940-948
    53Eis V, Luckow B, Vielhauer V, et al. Chemokine receptor CCR1but notCCR5mediates leukocyte recruitment and subsequent renal fibrosis afterunilateral ureteral obstruction[J]. J Am Soc Nephrol,2004,15(2):337-347
    54Anders HJ, Vielhauer V, Frink M, et al. A chemokine receptor CCR-1antagonist reduces renal fibrosis after unilateral ureter ligation[J]. J ClinInvest,2002,109(2):251-259
    55Kitagawa K, Wada T, Furuichi K, et al. Blockade of CCR2amelioratesprogressive fibrosis in kidney[J]. Am J Pathol,2004,165(1):237-246
    56Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation bypromoting vitamin D receptor-mediated sequestration of NF-kappaBsignaling[J]. J Am Soc Nephrol,2008,19(9):1741-1752
    57Crisman JM, Richards LL, Valach DP, et al. Chemokine expression in theobstructed kidney[J]. Exp Nephrol,2001,9(4):241-248
    58Nakaya I, Wada T, Furuichi K,et al. Blockade of IP-10/CXCR3promotesprogressive renal fibrosis[J]. Nephron Exp Nephrol,2007,107(1):12-21
    59Galichon P, Finianos S, Hertig A. EMT-MET in renal disease: should wecurb our enthusiasm?[J]. Cancer Lett,2013,341(1):24-29
    60Boutet A, De Frutos CA, Maxwell PH, et al. Snail activation disruptstissue homeostasis and induces fibrosis in the adult kidney[J]. EMBO J,2006,25(23):5603-5613
    61Ma LJ, Yang H, Gaspert A, et al. Transforming growth factor betadependent and independent pathways of induction of tubulointerstitialfibrosis in beta6(-/-) mice[J]. Am J Pathol,2003,163(4):1261-1273
    62Fukuda K, Yoshitomi K, Yanagida T, et al. Quantification of TGF-beta1mRNA along rat nephron in obstructive nephropathy[J]. Am J PhysiolRenal Physiol,2001,281(3):513-521
    63Wang W, Huang XR, Li AG, et al. Signaling mechanism of TGF-beta1inprevention of renal inflammation: role of Smad7[J]. J Am Soc Nephrol,2005,16(5):1371-1383
    64Kümpers P, Gueler F, Rong S, et al. Leptin is a coactivator of TGF-beta inunilateral ureteral obstructive kidney disease[J]. Am J Physiol RenalPhysiol,2007,293(4):1355-1362
    65Zhang Z, Wang G, Ma J, et al. Effect of herba centellae on the expressionof HGF and MCP-1[J]. Exp Ther Med,2013,6(2):427-434
    66Giannopoulou M, Dai C, Tan X, et al. Hepatocyte growth factor exerts itsanti-inflammatory action by disrupting nuclear factor-kappaB signaling[J].Am J Pathol,2008,173(1):30-41
    67Ruspi G, Schmidt EM, McCann F, et al. TNFR2increases the sensitivity ofligand-induced activation of the p38MAPK and NF-κB pathways andsignals TRAF2protein degradation in macrophages[J]. Cell Signal,2013,26(4):683-690
    68Tian S, Ding G, Jia R, et al. Tubulointerstitial macrophage accumulation isregulated by sequentially expressed osteopontin and macrophagecolony-stimulating factor: implication for the role of atorvastatin[J].Mediators Inflamm,2006,2006(2):12-19
    69Lenda DM, Kikawada E, Stanley ER, et al. Reduced macrophagerecruitment, proliferation, and activation in colony-stimulatingfactor-1-deficient mice results in decreased tubular apoptosis during renalinflammation[J]. J Immunol,2003,170(6):3254-3262
    70Ayoub C, Nozza A, Denault A, et al. Pulmonary production of osteopontinin humans: effects of left ventricular systolic dysfunction andcardiopulmonary bypass[J]. J Card Fail,2013,19(12):816-820
    71Persy VP, Verhulst A, Ysebaert DK, et al. Reduced postischemicmacrophage infiltration and interstitial fibrosis in osteopontin knockoutmice[J]. Kidney Int,2003,63(2):543-553
    72Tan TK, Zheng G, Hsu TT, et al. Matrix metalloproteinase-9of tubular andmacrophage origin contributes to the pathogenesis of renal fibrosis viamacrophage recruitment through osteopontin cleavage[J]. Lab Invest,2013,93(4):434-449
    73Kaneto H, Morrissey J, McCracken R, et al. Osteopontin expression in thekidney during unilateral ureteral obstruction[J]. Miner Electrolyte Metab,1998,24(4):227-237
    74Rouschop KM, Sewnath ME, Claessen N, et al. CD44deficiency increasestubular damage but reduces renal fibrosis in obstructive nephropathy[J]. JAm Soc Nephrol,2004,15(3):674-686
    75Qiu ZB, Xu H, Duan C, et al. Osteopontin is required for angiotensinII-induced migration of vascular smooth muscle cells[J]. Pharmazie,2012,67(6):553-558
    76Cvetkovie I, Milikovic D, Vuckovic O, et al. Taxol activates induciblenitric oxide synthase in rat as trocytes: the role of MAP kinases andNF-kappaB[J]. Cell Mol Life Sci,2004,61(10):1167-1175
    77Sarkar D, Saha P, Gamre S, et al. Anti-inflammatory effect ofallylpyrocatechol in LPS-induced macrophages is mediated by suppressionof iNOS and COX-2via the NF-kappaB pathway[J]. Immunopharmacol,2008,8(9):1264-1271
    78Ozbek E, Llbey YO, Ozbek M, et al. Melatonin attenuates unilateral
    ureteral obstruction-induced renal injury by reducing oxidative stress,
    iNOS, MAPK, and NF-kB expression[J]. J Endourol,2009,23(7):
    1165-1173
    1刘蒙,宋恩峰,骆小娟.杜仲对单侧输尿管梗阻大鼠肾组织CTGF表达的影响[J].中华中医药学刊,2009,27(5):1028-1030
    2丁庆余,宋恩峰,贾汝汉.杜仲对单侧输尿管梗阻大鼠肾间质纤维化的影响[J].中国中西医结合肾病杂志,2010,11(2):109-111
    3刘玉宁,陈以平,赵宗江,等.蝉花菌丝抗单侧输尿管结扎大鼠肾小管间质纤维化的研究.中华医学会肾脏病学分会“第二届全国中青年肾脏病学术会议”论文汇编,2004:321
    4王学珍,郑红光.黄葵对慢性肾功能不全大鼠保护机制的研究[J].中国老年学杂志,2009,29(11):1342-1344
    5Xu Y, Wan J, Jiang D, et al. BMP-7counteracts TGFβinduced epithelial-to-mesenchymal transition in human renal proximal tubular epithelialcells[J]. J Nephrol,2009,22(3):403-410
    6Geuking P, Nar asimamurthy R, Lemaitre B, et al. Anon-redundant role forDrosophila Mkk4and hemipterous/Mkk7in TAK1-mediated activation ofJNK[J]. PLoS One,2009,4(11): e7709
    7Kim JY, Kajino-Sakamoto R, Omori E, et al. Intestinal epithelial-derivedTAK1signaling is essential for cytoprotection against chemical-inducedcolitis[J]. PLoS One,2009,4(2): e4561
    8刘明龙,卢守燕,梁昭红,等.黄葵胶囊对单侧输尿管梗阻大鼠肾间质纤维化的保护作用[J].中国中西医结合肾病杂志,2010,11(8):706-708
    9冯媛,刘敏,张苗,等.黄蜀葵花总黄酮对单侧输尿管梗阻大鼠肾间质纤维化的影响.中国中西医结合学会肾脏疾病专业委员会2011年学术年会暨2011年国际中西医结合肾脏病学术会议论文汇编,2011
    10陈小辉.黄葵胶囊对单侧输尿管梗阻小鼠肾间质纤维化的影响[D].南昌,南昌大学,2012
    11杜刚军,张硕,林海红,等.灯盏花素对博来霉素诱导小鼠肺纤维化的保护作用[J].中国药理学通报,2009,25(2):160-164
    12任亮,张印坡,徐华,等.灯盏花素对小鼠顺铂肾损害的防治作用[J].中国实验方剂学杂志,2012,18(1):142
    13赵锦欢,张丽梅,李洋.灯盏花素对糖尿病肾病的防治作用简介[J].中国药业,2010,19(12):86-87
    14任亮,马菲,李晓莉,等.灯盏花素增强马利兰抑制HL-60细胞作用的实验研究[J].中国药房,2010,21(19):1749-1751
    15杨海,张岩,陈必成,等.灯盏花素对单侧输尿管大鼠肾间质纤维化的保护作用[J].解放军医学杂志,2009,34(10):1206-1210
    16彭海东,涂晋文,田俊,等.灯盏花素对大鼠脑缺血再灌注后血管活性物质的影响[J].中国中医急症,2006,15(2):172-173
    17任亮,张志国,李德恒,等.灯盏花素对梗阻性肾病大鼠局部肾组织血管活性物质的影响中[J].国实验方剂学杂志,2013,19(10):221-224
    18董敬远,任亮,陶志敏,等.灯盏花素对梗阻性肾病大鼠肾间质及血管活性物质的影响[J].中国现代应用药学,2012,29(2):109-112
    19黄群荣,马哲.甘草酸的药理作用研究进展[J].药物评价研究,2011,34(5):384-387
    20李开龙,贾昆霞,张建国,等.甘草酸对实验性梗阻性肾病大鼠的保护作用[J].第三军医大学学报,2001,23(5):573-575
    21李开龙,张建国,王慧民,等.甘草酸18α体调节梗阻性肾病大鼠肾间质中CTGF和TGF-β1表达的实验研究[J].第三军医大学学报,2005,27(4):323-326
    22马立彬,邓刚,王鸣,等.甘草酸二铵抗大鼠肾间质纤维化作用及其机制[J].华中科技大学学报,医学版,2007,38(6):756-759
    23李开龙,张建国,王慧民,等.甘草酸18α体对梗阻性肾病大鼠肾间质中NF-κB表达的影响[J].细胞与分子免疫学杂志,2004,21(1):31-33
    24张明发,沈雅琴,张艳霞.甘草酸对肾损伤的保护作用和临床应用研究进展[J].现代药物与临床,2012,27(6):655-659
    25Gupta S, Clarkson MR, Duggan J, et al. Connective tissue growth factor:potential role in gomeruloselerosis and tubulointerstitial fibrosis[J]. KidneyInt,2000,58(4):1389-1399
    26张永,丁国华,张建鄂,等.绞股蓝总皂苷防治单侧输尿管结扎大鼠肾间质纤维化的实验研究[J].中国中西医结合肾病杂志,2005,6(7):382-385
    27杨汝春,王永钧,周大为,等.雷公藤多苷对单侧输尿管结扎小鼠肾小管间质纤维化和炎性损伤的影响中[J].国免疫学杂志,2007,23:322-325
    28Zhang JJ, Wang YL, Feng XB, et al. Rosmarinic acid inhibits proliferationand induces apoptosis ofhepatic stellate cells[J]. Biol Pharm Bull,2011,34(3):343-348
    29Karthikkumar V, Sivagami G, Vinothkumar R, et al. Modulatory efficacy ofrosmarinic acid on premaligant lesions and antioxidant status in1,2-dimethylhydrazine induced rat colon carcinogenesis[J]. EnvironToxicol Pharmacol,2012,34(3):949-958
    30尚雁君,黄才国,蒋三好,等.迷迭香酸对黄嘌呤氧化酶的抑制作用[J].第二军医大学学报,2006,27(2):189-191
    31丁巍,黄松明.迷迭香酸对单侧输尿管梗阻小鼠肾脏的抗氧化保护作用[J].南京医科大学学报(自然科学版),2008,28(3):350-355
    32车丽双.迷迭香酸对单侧输尿管梗阻大鼠肾间质纤维化的影响[D].福建,福建医科大学,2013
    33张翠薇,谢茂,张旭,等.威灵仙对单侧输尿管梗阻模型大鼠血液流变学及肾间质纤维化的影响[J].实用医学杂志,2012,28(18):3022-3024
    34李春树,于健.乌司他丁对重症急性胰腺炎肾脏保护作用的研究[J].实用药物与临床,2012,15(2):80-81
    35蒲含林,姜华,陈蓉蓉.金银花和干姜对小鼠的毒性研究[J].实用药物与临床,2011,14(4):277-278
    36赵春利,蔡文清,马涛,等.复方丹参注射液对梗阻肾功能可恢复性的影响[J].广东医学,2010(15):63-64
    37丁红,毕莹,王宗谦,等.丹参酮Ⅱ A磺酸钠对TGF-β1诱导肾小管上皮细胞PAI-1表达的影响[J].中国医学工程,2011(4):41-43
    38王昭辉,白遵光,杨海峰.丹参注射液对梗阻性肾病梗阻解除后肾间质纤维化的影响[J].暨南大学学报(医学版),2012,33(6):565-568
    39桂泽红,代睿欣,邓时贵,等.丹参注射液对梗阻性肾病大鼠肾功能及TGF-β1表达的影响[J].浙江中医药大学学报(实验研究论著),2009,33(6):318-320
    40栾仲秋.地龙组分对UUO大鼠p38MAPK、NF-κB影响的研究[D].黑龙江,黑龙江中医药大学,2012
    41张戈,郭美丽,李颖,等.不同品种红花黄酮类成分的HPLC含量测定及其遗传稳定性研究[J].中草药,2004,35(12):1411
    42罗嘉,方治平,周黎明,等.红花注射液对大鼠局灶性脑缺血后梗死体积和神经元凋亡相关蛋白blc-2, caspase-3表达的影响[J].中国中药杂志,2004,29(10):977-980
    43陈铎葆,郑为超,赵辉,等.红花总黄素对心肌缺血再灌注损伤大鼠心功能的影响[J].中国中医药科技,2003,10(5):290-292
    44罗嘉,周黎明,方治平,等.红花注射液对大鼠局灶性脑缺血后细胞凋亡的影响[J].四川中医,2004,22(2):27-28
    45周伟进,蒋晓松,朱思平.红花注射液对梗阻性肾病解除梗阻后肾功能恢复的机制研究[J].海南医学院学报,2009,15(3):207-210
    46陈清江,杨丽,王辉,等.黄芪对人肾间质成纤维细胞增殖和TGF-β表达的影响[J].郑州大学学报(医学版),2005,40(5):871
    47杨红霞,朱敏怡.黄芪对糖尿病大鼠肾组织的保护作用[J].实用医学杂志,2005,21(17):1964-1965
    48左川,谢席胜,邓尧,等.黄芪对单侧输尿管梗阻大鼠肾组织转化生长因子β表达的影响[J].中国中药杂志,2009,34(2):193-198
    49邓英辉,林琼真,于洁,等.黄芪注射液改善肾间质纤维化的作用机制研究[J].中国中西医结合肾病杂志,2008,9(5):393-397
    50马晓鹏,宋立群,于思明,等.虫草肾茶颗粒对单侧输尿管结扎致肾间质纤维化大鼠肾脏影响的研究[J].中国临床保健杂志,2010,13(4):385-388
    51杜治锋.救肾合剂对单侧输尿管梗阻大鼠肾间质纤维化作用机制的实验研究[D]湖南,湖南中医药大学,2012
    52孔繁明,雷文鑫.六味地黄丸的药效学研究进展[J].中国疗养医学,2005,14(6):405-406
    53于洪峨.六味地黄丸的临床应用[J].中华临床医学研究杂志,2007,13(18):2713
    54谢谋华,王建军.六味地黄汤在肾脏病治疗上的应用[J].辽宁中医杂志,2007,34(9):1138-1139
    55薛蜻,白君伟,梁苹茂.六味地黄汤治疗早期糖尿病肾病36例临床观察[J].实用中医内科杂志,2008,22(2):31
    56张继波.六味地黄汤对单侧输尿管结扎肾间质纤维化大鼠肾小管上皮细胞Fas及FasL表达的影响[D].湖南,湖南中医药大学,2009
    57葛美娜.大黄蛰虫丸对UUO大鼠肾小管间质血管内皮生长因子及血管生成素1/2表达的影响[D].河北,河北医科大学,2012
    58石世华.大鼠输尿管部分梗阻模型的建立及益气活血中药对梗阻肾的干预作用[D].北京,中国中医科学院,2004
    59宋锦华.加味真武汤治疗肾病综合征76例[J].中国当代医药,2011,18(8):95-96
    60李莎莎,韩凌,肖雪,等.真武汤对单侧肾梗阻大鼠的治疗作用研究[J].江西中医药,2011,29(14):39-40
    61韩凌,冯森玲,李莎莎,等.真武汤对单侧输尿管梗阻模型大鼠尿KIM-1、clusterin、OPN含量的影响[J].中药药理与临床,2012,28(1):13-16
    62宋业旭.真武汤调控肾间质纤维化NF-kB信号通路的实验研究[D].黑龙江,黑龙江中医药大学,2012
    63田晓,王广增.通心络对单侧输尿管梗阻大鼠肾间质纤维化的影响[J].华北煤炭医学院学报,2007,9(4):476-478
    64何立群,王怡,曹和欣.抗纤灵冲剂对慢性肾衰模型肾组织TNF-mRNA、PDGF-mRNA的影响[J].中国实验方剂学杂志,2003,9(5):29-31
    65刘煜敏,张悦,何立群,等.抗纤灵方对单侧输尿管梗阻大鼠TGF-β1-Smad通路的影响[J].中国病理生理杂志,2008,24(12):2423-2427
    66张悦,刘煌敏,陆海英,等.抗纤灵方对单侧输尿管梗阻大鼠肾组织肝细胞生长因子mRNA及细胞外信号调控蛋白激酶1/2和P38磷酸化的影响[J].中西医结合学报,2007,5(6):656-660
    67张新志,吴锋,黄迪,等.抗纤灵冲剂对单侧输尿管梗阻模型大鼠肾功能的影响[J].时珍国医国药,2010,21(10):2451-2453
    68陆敏,周娟,陆海英,等.血府逐瘀胶囊对单侧输尿管梗阻大鼠Smad信号通路分子的影响[J].时珍国医国药,2008,19(11):2691-2694
    69叶婷婷,沈建明,邓妍妍,等.肾炎康复片对大鼠肾间质纤维化的保护作用[J].郧阳医学院学报,2008,27(5):401-405
    70陈文莉,黄艳霞,郑宇明,等.参附注射液对单侧输尿管梗阻大鼠肾脏肝细胞生长因子表达的影响[J].中国中西医结合肾病杂志,2007,8(10):
    580-582
    71邓英辉,于洁,林琼真,等.灯盏细辛注射液对大鼠肾间质纤维化的影响[J].中国中西医结合杂志,2008,28(2):142-145
    72赵雪莹,李冀.桃核承气汤及其拆方对单侧输尿管梗阻大TNF-α、IL-6影响的实验研究[J].辽宁中医杂志,2007,34(5):678-680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700