用户名: 密码: 验证码:
芪味理肺汤调控转录因子活化蛋白-1(AP-1)治疗支气管哮喘的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芪味理肺汤调控转录因子活化蛋白-1(AP-1)治疗支气管哮喘的机制研究
     目的:
     1.通过稳定复制的SD大鼠支气管哮喘模型进行给药动物实验,证实AP-1是支气管哮喘发病的关键环节,验证芪味理肺汤治疗支气管哮喘的疗效并获取该方疗效的模式动物学证据。
     2.通过分子生物学方法等手段检测AP-1上下游因子的含量,完善芪味理肺汤治疗支气管哮喘的作用机理,探索该方调控AP-1治疗支气管哮喘的具体作用环节。
     方法:
     70只SPF级SD大鼠适应性喂养7d无异常后,随机分为空白对照组、模型对照组、阻断剂组、中药低、中、高剂量组、西药组7组。阻断剂组先经AP-1的抑制剂姜黄素预处理3d (100mg. kg-1. d-1,50mg/ml×0.2mlBid腹腔注射给药),而后与模型对照组、中药低、中、高剂量组和西药组一起,于d1、d8以五点(腹腔、左右后脚趾、左右腹股沟皮下)注射10%OVA/Al (OH)3+0.0023‰百日咳类毒素混合液共lml(每处0.2m1)致敏;从d15开始用1%OVA生理盐水雾化吸入激发,每天一次,30min/次,共激发7d。空白对照组予等量生理盐水五点注射及雾化激发。
     于d9(即末次五点注射完成后)开始进行灌胃,给药组动物每日灌胃一次,共灌胃14d。其中,中药低、中、高剂量组每日分别予以浓度为0.182g/ml、0.363g/ml、0.727g/ml的浸膏水溶液3ml灌胃(即低剂量组每日灌药量为中剂量组的1/2,高剂量组每日灌药量为中剂量组的2倍);西药组每日予以地塞米松溶液50μg/ml3ml灌胃。空白对照组、模型对照组和阻断剂组每日给予等量生理盐水。
     给药结束后各组大鼠行麻醉下肺功能检测,而后采取支气管肺泡灌洗液、动脉血及肺组织标本。分别用于嗜酸性粒细胞计数;血清IgE、IL-4、IL-5、IL-13检测;组织切片HE染色及免疫组化染色法检测AP-1核蛋白;组织匀浆液RT-PCR法及Western blot法分别检测AP-1核蛋白和mRNA.
     采用SPSS17.0统计软件:计量资料以均数±标准差(x±s)表示,计数资料如符合正态分布则也以均数±标准差(x±s)表示,如果不符合正态分布,则用中位数±四分位间距(Md±QR)来表示。多组间比较首先采用非参数检验的单样本K-S拟合优度检验(1-Sample K-S Test)进行正态性检验,如符合或近似符合正态分布,使用单因素方差分析(One-way ANOVA),方差齐使用LSD法进行多重比较,方差不齐使用Tamhane'sT2法进行多重比较分析;如果不符合正态分布,则进行数据转化如对数转换等,如数据转换后仍不符合正态分布,采用非参数检验Kruskal-Wallis法进行多重比较,以P<0.05为有统计学差异,P<0.01为有显著统计学差异。
     结果:
     1.模型判定及疗效指标的观察与检测结果:
     一般情况:造模操作后,模型对照组、中药低、中、高剂量组、西药组出现哮喘阳性症状,正常对照组和阻断剂组无阳性表现。
     肺功能检测结果:与空白对照组相比,模型对照组气道高反应性(I)、组织迟滞(H)、组织阻尼(G)、动态顺应性(Cr s)较高,但P>0.05,差异无统计学意义;其余各组各组气道高反应性(Ⅰ)、组织迟滞(H)均高,其中阻断剂阻气道高反应性值最低,但P均>0.05,差异无统计学意义,余深吸气量(IC)、中心气道阻力(Rn)、组织阻尼(G)、动态顺应性(Crs)、静态顺应性(Cst)等指标,各组间趋势不一,P均>0.05,差异无统计学意义。
     支气管肺泡灌洗液(BALF)涂片镜下可见嗜酸性粒细胞(EOS),初步观察其数量从高到低依次为模型对照组、中药低剂量组、中药中剂量组、中药高剂量组、西药组、阻断剂组、空白对照组。对其进行计数,结果为:与空白对照组相比,模型对照组BALF涂片EOS计数显著升高(P<0.01);阻断剂组EOS计数稍高,但P>0.05,差异无统计学意义;中药低、中、高剂量组EOS计数升高(P<0.01),且显示出量效关系;西药组EOS计数升高(P<0.01)。与模型对照组相比,阻断剂组EOS计数较低(P<0.01),中药低、中、高剂量组EOS计数也低,但中药低剂量组P>0.05,差异无统计学意义,中药中、高剂量组P<0.01;西药组EOS计数较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组EOS计数较高(P<0.01);西药组EOS计数也高但P>0.05,差异无统计学意义。与西药组相比,中药低、中、高剂量组EOS计数均高,但中药高剂量组P>0.05,差异无统计学意义,中药低、中剂量组P<0.01。
     肺组织切片HE染色镜下观察可见空白对照组未见炎性细胞浸润,且肺泡、支气管黏膜上皮结构完整清晰,支气管无痉挛;阻断剂组可见少量炎性细胞浸润,肺内结构尚完整清晰,未见支气管痉挛;余模型对照组、中药低、中、高剂量组和西药组均可见肺组织炎性细胞浸润,支气管黏膜上皮细胞排列紊乱、成片脱落,肺泡间隔增厚,支气管痉挛等典型支气管哮喘病理表现,但病理损害轻重程度不同。对其进行组织损伤及炎症病理学评分示:在项目炎性细胞浸润方面,得分从高到低依次是模型对照组=中药低剂量组>中药中剂量组=中药高剂量组>西药组>阻断剂组=空白对照组;在项目支气管上皮细胞脱落方面,得分从高到低依次是模型对照组>中药低剂量组=中药中剂量组>中药高剂量组=西药组>阻断剂组=空白对照组;在项目肺泡间隔增厚方面,得分从高到低依次是模型对照组=中药低剂量组>中药中剂量组>中药高剂量组=西药组>阻断剂组=空白对照;在项目支气管痉挛方面,得分从高到低依次是模型对照组=中药低剂量组>中药中剂量组=中药高剂量组>西药组>阻断剂组=空白对照;总分得分从高到低依次是模型对照组>中药低剂量组>中药中剂量组>中药高剂量组>西药组>阻断剂组>空白对照组。以上P值均     血清IgE检测结果:与空白对照组相比,各组血清IgE均升高(P<0.01),中药低、中、高剂量显示出量效关系。与模型对照组相比,阻断剂组血清IgE较低(P<0.01),中药低、中、高剂量组血清IgE也低,但中药低剂量组P>0.05,差异无统计学意义,中药中、高剂量组P<0.05;西药组血清IgE较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组血清IgE较高(其中中药低剂量组P<0.05,中药中、高剂量组P<0.01);西药组血清IgE也高但P>0.05,差异无统计学意义。与西药组相比,中药低、中、高剂量组血清IgE均高,但中药高剂量组P>0.05,差异无统计学意义,中药低剂量组P<0.05、中药中剂量组P<0.01。
     2.AP-1实时荧光定量RT-PCR检测AP-1mRNA表达量结果:
     c-jun mRNA表达量:与空白对照组相比,各组c-jun的表达量均较高,其中模型对照组及中药低、中剂量组P<0.05,余组P值均>0.05,差异无统计学意义。与模型对照组相比,中药低剂量组c-jun的表达量略高,其余各组均低,其中,阻断剂组P<0.05,余组P值均>0.05,差异无统计学意义。与阻断剂组相比,中药低、中、高剂量组及西药组c-jun的表达量均较高,其中西药低、中剂量组P<0.05,余组P值均>0.05,差异无统计学意义。与西药组相比,中药低、中、高剂量组c-jun的表达量均高,但P>0.05,差异无统计学意义。
     c-fos mRNA表达量:与空白对照组相比,各组c-fos的表达量均较高,但P值均>0.05,差异无统计学意义。与模型对照组相比,各组c-fos的表达量均较低,但P值均>0.05,差异无统计学意义。与阻断剂组相比,中药低、中、高剂量组及西药组c-fos的表达量均低,但P值均>0.05,差异无统计学意义。与西药组相比,中药低、中剂量组c-fos的表达量均高,但P>0.05,差异无统计学意义。
     3.AP-1组成成分含量及活性变化的检测结果:
     ①肺组织病理切片免疫组织化学染色检测AP-1核蛋白c-Jun和c-Fos结果:
     镜下初步观察各组间c-Jun蛋白阳性表现强度从高到低依次为:模型对照组、中药低、中、高剂量组、西药组、阻断剂组、空白对照组,c-Fos蛋白阳性表现强度从高到低依次为:模型对照组、阻断剂组、中药低、中、高剂量组、西药组、空白对照组。阳性表现主要分布于支气管上皮细胞,肺泡间隔中也可见。
     各组c-Jun积分光密度均较空白对照组高且P<0.01,其中,中药低、中、高剂量组显示出量效关系。与模型对照组相比,阻断剂组c-Jun积分光密度较低(P<0.01);中药低、中、高剂量组c-Jun积分光密度也低,其中中药低剂量组P<0.05,中药中、高剂量组P<0.01;西药组c-Jun积分光密度较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组及西药组c-Jun积分光密度较高(P<0.01)。与西药组相比,中药低、中、高剂量组c-Jun积分光密度均高,但P>0.05,差异无统计学意义。
     各组c-Fos积分光密度均较空白对照组高且P<0.01,其中,中药低、中、高剂量组显示出量效关系。与模型对照组相比,各组积分光密度较低,其中阻断剂组略低但P>0.05,差异无统计学意义,中药低剂量组P<0.05,其余组P<0.01。与阻断剂组相比,中药低、中、高剂量组及西药组c-Fos积分光密度较低,其中西药组P<0.05,其余组P>0.05,差异无统计学意义。与西药组相比,中药低、中、高剂量组c-Fos积分光密度均高,但P>0.05,差异无统计学意义。
     ②组织匀浆Western blot检测肺组织中AP-1核蛋白c-Jun与c-Fos结果:
     初步观察β-actin表达基本一致,c-Jun蛋白各组间表达从高到低依次为模型对照组、中药低、中、高剂量组、西药组、阻断剂组、空白对照组,c-Fos蛋白各组间表达从高到低依次为模型对照组、阻断剂组、中药低、中、高剂量组、西药组、空白对照组。
     各组c-Jun平均灰度值均较空白对照组高且P均<0.01,其中,中药低、中、高剂量组显示出量效关系。与模型对照组相比,阻断剂组c-Jun平均灰度较低(P<0.01),中药低、中、高剂量组c-Jun平均灰度也低,但中药中、低剂量组P>0.05,差异无统计学意义,中药高剂量组P<0.01;西药组c-Jun平均灰度较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组及西药组c-Jun平均灰度较高(P<0.01)。与西药组相比,中药低、中、高剂量组c-Jun平均灰度均高,但中药高剂量组P>0.05,差异无统计学意义,中药低、中剂量组P<0.01。
     各组c-Fos平均灰度值均较空白对照组高且P均<0.01,其中,中药低、中、高剂量组显示出量效关系。与模型对照组相比,阻断剂组、中药低、中、高剂量组及西药组c-Fos平均灰度均较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组及西药组c-Fos平均灰度较高(P<0.01)。与西药组相比,中药低、中、高剂量组c-Fos平均灰度均高,但中药高剂量组P>0.05,差异无统计学意义,中药低、中剂量组P<0.01。
     4.相关细胞因子IL-4、IL-5、IL-13的测定结果:
     与空白对照组相比,各组血清IL-4含量均高,中药低、中、高剂量显示出量效关系,其中,阻断剂组P>0.05,差异无统计学意义,其余组P<0.01。与模型对照组相比,各组血清IL-4较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组及西药组血清IL-4较高(P<0.01)。与西药组相比,中药低、中、高剂量组血清IL-4均高,P<0.01。
     与空白对照组相比,各组血清IL-5含量均高,中药低、中、高剂量显示出量效关系,但仅有中药低、中剂量组P<0.01,其余各组P>0.05,差异无统计学意义。与模型对照组相比,各组血清IL-5较低(P<0.01)。与阻断剂组相比,中药低、中、高剂量组血清IL-5较高,但中药高剂量组P>0.05,差异无统计学意义,中药中、低剂量组P<0.01;西药组血清IL-5也高但P>0.05,差异无统计学意义。与西药组相比,中药低、中、高剂量组血清IL-5均高,但中药高剂量组P>0.05,差异无统计学意义,中药低、中剂量组P<0.01。
     与空白对照组相比,各组血清IL-13含量均高,中药低、中、高剂量显示出量效关系,其中阻断剂组和中药高剂量组P<0.05,其余各组P<0.01。与模型对照组相比,各组血清IL-13较低,其中中药低剂量组P<0.05,其余各组P<0.01。与阻断剂组相比,中药低、中、高剂量组血清IL-13较高,但中药高剂量组P>0.05,差异无统计学意义,中药中、低剂量组P<0.01;西药组血清IL-13也高(P<0.05)。与西药组相比,中药低、中剂量组较高(P>0.05),差异无统计学意义,中药高剂量组则略低且P<0.01
     结论:
     1.本实验中建立的支气管哮喘大鼠模型是成功的,AP-1是支气管哮喘发病的关键环节。
     ①SD大鼠支气管哮喘模型复制成功。
     采用五点(腹腔、左右后脚趾、左右腹股沟皮下)注射10%OVA/A1(OH)3+0.0023‰百日咳类毒素混合液致敏SD大鼠再行1%OVA生理盐水雾化吸入激发的方法可成功复制大鼠支气管哮喘模型。
     ②姜黄素对支气管哮喘大鼠肺组织AP-1的表达阻断成功。
     各种实验手段检测AP-1基因表达产物mRNA和核蛋白含量及Th2细胞下游因子IL-4、 IL-5和IL-13含量:阻断剂组大鼠的c-jun mRNA和核蛋白含量以及IL-4、IL-5和IL-13表达情况接近于空白对照组而远低于模型对照组,c-fos mRNA和核蛋白含量接近于模型对照组而远高于空白对照组,该组大鼠AP-1表达阻断总体而言是成功的。
     ③AP-1是支气管哮喘发病的关键环节。
     阻断剂组大鼠未呈现典型哮喘症状和体征,肺功能、BALF涂片EOS计数、肺组织病理切片HE染色、血清IgE值等实验室检查指标也无典型哮喘模型阳性表现。可以认为该组大鼠未成功复制支气管哮喘模型,提示AP-1是哮喘发病的关键环节,对其进行阻断可在一定程度阻止哮喘发病。
     2.芪味理肺汤通过对AP-1的表达及活性的调控,影响其下游细胞因子(IL-4、IL-5、 IL-13)的表达及活性,对支气管哮喘大鼠治疗显著有效。
     ①芪味理肺汤治疗支气管哮喘大鼠有效。
     芪味理肺汤低、中、高剂量组大鼠BALF涂片EOS计数、肺组织病理切片HE染色、血清IgE值等实验室检查指标低于模型对照组而略高于西药组,其中高剂量组接近于西药组、低剂量组则接近于模型对照组。表明芪味理肺汤治疗支气管哮喘大鼠有效,且高剂量灌胃效果接近于西药激素地塞米松灌胃,而低剂量灌胃治疗可认为无效。
     OAP-1表达及活性受调情况。
     各实验手段检测AP-1基因表达产物mRNA和核蛋白含量,芪味理肺汤低、中、高剂量组三组间呈现量效差异,三组大鼠AP-1mRNA含量与模型对照组、西药组差异均无统计学意义,中药高剂量组大鼠的AP-1核蛋白含量接近于西药组,而中药低剂量组则近似于模型对照组。表明本实验结果尚不能明确芪味理肺汤对支气管大鼠肺组织内AP-1mRNA表达的影响,但可以降低AP-1核蛋白的含量,减少AP-1的合成。
     ③AP-1下游细胞因子(IL-4、IL-5、IL-13)的表达情况。
     芪味理肺汤低、中、高剂量组的Th2细胞下游因子IL-4、IL-5和IL-13含量,三组间呈现量效差异,低剂量组大鼠情况接近于模型对照组而高剂量组则近似于西药组。初步推测芪味理肺汤可能是阻断了AP-1以mRNA为模板合成蛋白这一过程,使大鼠肺组织内的AP-1核蛋白(c-Jun、c-Fos)含量减少,AP-1总量减少,Th2细胞下游因子IL-4、IL-5和IL-13的合成因此受限,表现为IL-4、IL-5和IL-13含量降低。
Objective
     1. Using the animal experiments of stable bronchial asthma SD rat model for medicine, to confirm the AP-1is a key link for the pathogenesis of bronchial asthma,and to verify the efficacy of Qiweilifei Decoction and get its evidence.2. Through using the methods of molecular biology to test the upstream and downstream factors of AP-1, to improve the mechanism of bronchial asthma treatment by Qiweilifei Decoction,and to explore the details in regulating AP-1.
     Methods
     After7days to feed adaptively,70SPF SD rats were randomly divided into7groups: the blank control group, the model control group,the blocker control group, the Chinese medicine low-dose group,the Chinese medicine middle-dose group, the Chinese medicine high-dose group and the western medicine group. Before the model-making of the blocker control group rats, used curcumin to precondition them for3days (100mg. kg-1. d-1,50mg/ml×0.2mlBid, intraperitoneal injection). Then, ea-ch rat except the blank control group sensitized by injecting the mixture with10%OVA/Al (OH)3+0.0023%o Pertussis toxin from Bordetella pertussis lml into five point(intraperitoneal, subcutaneous of the left/right rear toe and the left/right groin,0.2ml each point)in day1and day8to make model. After sensitization,used1%OVA+normal saline to stimulate immunoreaction by inhaled(30min Qd,7days). The blank control group used normal saline to do all above treatment.
     Intragastric administration began in day9(finished the last injection), lasted14days,Qd. The Chinese medicine low-dose, middle-dose and high-dose groups were given by Chinese medical extractum normal saline solution0.182g/ml,0.363g/ml and0.727g/ml (dosage:low-dose group=1/2middle-dose group, middle-dose group=1/2high-dose group)3ml. The western medicine group was given by dexamethasone normal saline solution50μg/ml3ml. And the blank control group, the model control group and the blocker control group were given by normal saline3ml.
     After administration,all rats were evaluated pulmonary function under anesthesia. Then taken the samples of bronchoalveolar lavage fluid,arterial blood and the lung tissue to do eosinophil cell count, serum IgE/IL-4/IL-5/IL-13content test,lung tissue sections stained by HE (to observe the morphological alternation) and immumohistochemical (to test the AP-1nucleoprotein),and lung tissue homogenate AP-1mRNA/nucleoprotein content test (by RT-PCR/Western blot).
     All statistical analysis was performed using SPSS17.0software package. Calculated data:mean±standard deviation(χ±s).Enumeration data:mean±standard deviation(χ±s)(normal distribution), or median±interquartile range (Md±QR)(abnormal distribution).First, used1-Sample K-S Test of non-parametric test to do normality test.Then, if the data fit normal distribution, used One-Way ANOVA to do the homogeneity test of variances, and used LSD(equal variance) or Tamhane'sT2(unequal variance) to do the multiple comparisons; if the data doesn't fit normal distribution, transformed the data (such as logarithmic transformation) and repeat the above steps,or still doesn't fit normal distribution,used Kruskal-Wallis to do the multiple comparisons. Regarded P<0.05as statistically difference, and P<0.01as statistically significant difference.
     Results
     1.Observation and test results of the model assessment index and the therapeutic effect index.
     General conditions:After the injection for model-making, rats of the model control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group developed asthma symptoms, when rats of the blank control group and the blocker control group did not.
     Pulmonary function results:Compared with the blank control group, the results of the model control group's airway hyperresponsiveness (I), tissue sluggish (H), tissue damping (G) and dynamic lung compliance (Crs) were higher (P>0.05, no statistically significant). When the results of the other groups' hyperresponsiveness (I) and tissue sluggish (H) were both higher.Among all the other groups, the airway hyperresponsiveness (I) of the blocker control group was the lowest (P>0.05, no statistically significant). The rest of results such as inspiratory capacity (IC).Central airway resistance (Rn), tissue damping (G), dynamic lung compliance (Crs) and static lung compliance (Cst) had different trends between every group (P>0.05, no statistically significant).
     The bronchoalveolar lavage fluid (BALF) smear can recognize some Bosinophil cells (EOS) under the microscope. Preliminary observation the number of them from high to low was the model control group,the Chinese medicine low-dose group, the Chinese medicine middle-dose group, the Chinese medicine high-dose group,the western medicine group,the blocker control group,the blank control group. Count results showed that:Compared with the blank control group,the result of the model control group's BALF smear EOS count was significant elevated(P<0.01); the blocker control group's was a little higher(P>0.05,no statistically significant);the Chinese medicine low-dose, middle-dose and high-dose groups'were higher (P<0.01) and showed the concentration-response relationship; and the western medicine group's was higher too(P<0.01). Compared with the model control group, the blocker control group's was lower (P<0.01); the Chinese medicine low-dose, middle-dose and high-dose groups'were lower too, but the low-dose group's P>0.05(no statistically significant), when the middle-dose and high-dose groups'P<0.01; and the western medicine group's was lower (P<0.01). Compared with the blocker control group,the Chinese medicine low-dose, middle-dose and high-dose groups'were higher (P<0.01); and the western medicine group's was higher too, but P>0.05(no statistically significant). Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups'were higher, but the high-dose group's P>0.05(no statistically significant), and the low-dose, middle-dose groups' P<0.01.
     Under the microscope view to observe the morphological alternation from lung tissue sections stained by HE:The blank control group had not showed any change and inflammatory cellular infiltration, when he blocker control group had a little, and the other groups all had inflammatory cellular infiltration in the lung tissue, bronchial epithelial cells irregular arrangement and desquamation, thic-kened alveoli septum and bronchiolar spasm, but the pathological damage severity were different. Results of the score by using tissue injury and inflammation pathological scoring criteria showed that:On the item of the inflammatory cellular infiltration, the score from high to low was the model control group=the Chinese medicine low-dose group> the Chinese medicine middle-dose group=the Chinese medicine high-dose group> the western medicine group> the blocker control group=the blank control group. On the item of the bronchial epithelial cells desquamation, the score from high to low was the model control group> the Chinese medicine low-dose group=the Chinese medicine middle-dose group>the Chinese medicine high-dose group=the western medicine group> the blocker control group=the blank control group. On the item of the thickened alveoli septum, the score from high to low was the model control group=the Chinese medicine low-dose group> the Chinese medicine middle-dose group> the Chinese medicine high-dose group=the western medicine group> the blocker control group=the blank control group. On the item of the bronchiolar spasm, the score from high to low was the model control group=the Chinese medicine low-dose group> the Chinese medicine middle-dose group=the Chinese medicine high-dose group> the western medicine group> the blocker control group=the blank control group. And the total points from high to low was the model control group=the Chinese medicine low-dose group> the Chinese medicine middle-dose group>the Chinese medicine high-dose group> the western medicine group> the blocker control group> the blank control group, all above P<0.01.
     Results of the serum IgE content test showed:Compared with the blank control group, every group's serum IgE content increased (P<0.01), and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship. Compared with the model control group, the blocker control group's was lower (P<0.01); the Chinese medicine low-dose, middle-dose and high-dose groups'were lower too,but the low-dose group's P>0.05(no statistically significant), when the middle-dose and high-dose groups'P<0.05;and the western medicine group's was lower (P<0.01). Compared with the blocker control group, the Chinese medicine low-dose,middle-dose and high-dose groups' were higher(the low-dose group's P<0.05, while the middle-dose and high-dose groups' P<0.01); and the western medicine group's was higher too, but P>0.05(no statistically significant). Compared with the western medicine group,the Chinese medicine low-dose, middle-dose and high-dose groups' were higher, but the high-dose group's P>0.05(no statistically significant), and the low-dose group's P<0.01, the middle-dose group's P<0.05.
     2. Results of AP-1mRNA expression quantities by Real-time RT-PCR.
     c-jun mRNA expression quantities:Compared with the blank control group,every group's c-jun mRNA expression quantities increased, among them, the model control group and the Chinese medicine low-dose, middle-dose groups' P<0.05, the others P>0.05(no statistically significant). Compared with the model control group, the Chinese medicine low-dose group's was a little higher, and the other groups' were lower,but only the blocker control group's P<0.05, all of the rest groups' P>0.05(no statistically significant). Compared with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher, when the the western medicine group and the middle-dose group's P<0.05, the others P>0.05(no statistically significant). Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups'were higher,but P>0.05(no statistically significant).
     c-fos mRNA expression quantities:Compared with the blank control group, every group's c-fos mRNA expression quantities increase.Compared with the model control group, every group's was lower. Compared with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was lower.Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups' were higher,but all above P>0.05(no statistically significant).
     3. Results of AP-1component content and activity test.
     ①Result of observing the positive expression of AP-1.
     Under the microscope view, the intensity of positive expression from high to low was the model control group, the Chinese medicine low-dose group, the Chinese medicine middle-dose group, the Chinese medicine high-dose group,the western medicine group, the blocker control group, the blank control group. The positive expression mainly located in bronchial epithelial cells, sometimes in alveolar interval.
     Compared with the blank control group, every group's c-Jun nucleoprotein integral optical density(IOD) increased and P<0.01,and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship. Compared with the model control group, the blocker control group's was lower (P<0.01);the Chinese medicine low-dose, middle-dose and high-dose groups'were lower too, and the low-dose groups' P<0.05, the middle-dose and high-dose groups'P<0.01; the western medicine group's was lower (P<0.01).Compared with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher(P<0.01).Compared with the western medicine group,the Chinese medicine low-dose, middle-dose and high-dose groups'were higher,but P>0.05(no statistically significant).
     Compared with the blank control group, every group's c-Fos nucleoprotein integral optical density (IOD) increased and P<0.01,and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship. Compared with the model control group, every group's was lower; among them, the blocker control group's P>0.05(no statistically significant), the Chinese medicine low-dose groups'P<0.05, all of the rest P<0.01. Compared with the blocker control group,the Chinese medicine low-dose,middle-dose, high-dose groups and the western medicine group's was lower, the western medicine group's P<0.05, the others P>0.05(no statistically significant). Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups'were higher, but P>0.05(no statistically significant).
     ②Result of AP-1nucleoprotein (c-Jun and c-Fos) expression quantities by Western blot:
     Preliminary observation:All of the β-actin expressed almost the same, while c-Jun nucleoprotein expression quantities from high to low was the model control group,the Chinese medicine low-dose group, middle-dose, high-dose group, the western medicine group, the blocker control group, the blank control group, and c-Fos nucleoprotein expression quantities from high to low was the model control group, the blank control group, the Chinese medicine low-dose group, middle-dose, high-dose group, the western medicine group, the blocker control group.
     Compared with the blank control group, every group's c-Jun nucleoprotein mean gray value increased and P<0.01,and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship. Compared with the model control group, the blocker control group's was lower(P<0.01); the Chinese medicine low-dose, middle-dose and high-dose groups'were lower too, and the low-dose and middle-dose groups' P>0.05(no statistically significant), the high-dose group's P<0.01; the western medicine group's was lower (P<0.01). Compar-ed with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher (P<0.01). Compared with the western medicine group,the Chinese medicine low-dose, middle-dose and high-dose groups'were higher,but the high-dose group's P>0.05(no statistically significant), whlie the low-dose and middle-dose groups'P<0.01.
     Compared with the blank control group, every group's c-Fos nucleoprotein mean gray value increased and P<0.01,and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship. Compared with the model control group,the blocker control group,the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was lower(P<0.01).Compared with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher(P<0.01).Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups'were higher, but the high-dose group's P>0.05(no statistically significant), whlie the low-dose and middle-dose groups' P<0.01.
     4.Results of serum IL-4, IL-5, IL-13content test.
     Compared with the blank control group,every group's serum IL-4content increased,and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship, among them, the blocker control group's P>0.05(no statistically significant) and all of the rest P<0.01. Compared with the model control group, every group's was lower (P<0.01). Compared with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher (P<0.01).Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups' were higher (P<0.01).
     Compared with the blank control group, every group's serum IL-5content increased,and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship,but only the Chinese medicine low-dose and middle-dose groups'P<0.01, the others P>0.05(no statistically significant). Compared with the model control group, every group's was lower (P <0.01).Compared with the blocker control group,the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher, among them, the high-dose group and the western medicine group's P>0.05(no statistically significant), while the low-dose and middle-dose groups'P <0.01. Compared with the western medicine group, the Chinese medicine low-dose, middle-dose and high-dose groups'were higher,but the high-dose groups' P>0.05(no statistically significant), and the low-dose and middle-dose groups' P<0.01.
     Compared with the blank control group,every group's serum IL-13content increased, and the Chinese medicine low-dose, middle-dose and high-dose groups showed the concentration-response relationship, among them, the blocker control group and the Chinese medicine high-dose groups'P<0.05, while the others P<0.01. Compared with the model control group,every group's was lower,and the low-dose group's P<0.05, the others P<0.01.Compared with the blocker control group, the Chinese medicine low-dose, middle-dose, high-dose groups and the western medicine group's was higher,but the high-dose group's P>0.05(no statistically significant), and the low-dose and middle-dose groups'P<0.01,the western medicine group's P<0.05. Compared with the western medicine group,the Chinese medicine low-dose and middle-dose groups'were higher but P>0.05(no statistically significant), while the high-dose group's was a little higher (P<0.01).
     Conclusion
     1.The bronchial asthma rat model which was established in this experimient had been successful, and AP-1is a key link for the pathogenesis of bronchial asthma.
     ①The bronchial asthma SD rat model had been successfully duplicated.
     The method of sensitized by injecting the mixture with10%OVA/Al (OH)3+0.0023%o Pertussis toxin from Bordetella pertussis into five point (intraperitoneal, subcut-aneous of the left/right rear toe and the left/right groin) to make model,and uses1%OVA+normal saline to stimulate immunoreaction by inhaled can successfully duplicat the bronchial asthma rat model.
     ②Curcumin had successful blocked the AP-1expression in the lung tissue of bronchial asthma rat.
     Through various experimental methods to test the content of AP-1gene expression product (mRNA and nucleoprotein) and downstream factors of Th2cells (IL-4, IL-5and IL-13),we found that the blocker control group's content of c-jun mRNA and nucleoprotein, IL-4,IL-5and IL-13were close to the blank control group but far below the model control group,while the content of c-fos mRNA and nucleoprotein were close to the model control group but far above the blank control group, thus this blocker group had been blocked successful in general.
     ③AP-1is a key link for the pathogenesis of bronchial asthma.
     The blocker control group rats did not present with typical symptoms and physical signs of asthma. Results of pulmonary function,BLAF smear EOS count, lung tissue sections stained by HE and serum IgE did not have positive performance of typical asthma. We can consider that this blocker group failed to copy the bronchus asthma model. All above suggest that AP-1is a key link for the pathogenesis of bronchial asthma, and to block it can prevent asthma pathogenesis to some extent.2. By regulating the expression and activity of AP-1, and affecting its expression and activity of downstream factors (IL-4、IL-5and IL-13), Qiweilifei Decoction is effective in the treatment of asthma.
     ①Qiweilifei Decoction is effective in the treatment of asthma.
     Compare the results of BLAF smear EOS count,lung tissue sections stained by HE and serum IgE had positive performance of typical asthma, the Qiweilifei Decoction low-dose, middle-dose and high-dose groups rats were lower than the model control group but a little higher than the western medicine group. Among them, the high-dose group can be considered equal to the western medicine group,while the low-dose group can be considered close to the model control group. All above indicate that Qiweilifei Decoction is effective in the treatment of asthma, and high-dose gavage can be considered as Dexamethasone, whlie low-dose gavage is ineffective.
     ②The expression and activity of AP-1were regulated by Qiweilifei Decoction.
     Through various experimental methods to test the content of AP-1gene expression product (mRNA and nucleoprotein), the Qiweilifei Decoction low-dose, middle-dose and high-dose groups showed the concentration-response relationship. The content of AP-1mRNA:Compare with the model control group and the western medicine group, three Chinese medicine groups'differences had no statistical significance. The content of AP-1nucleoprotein:The high-dose group can be considered equal to the western medicine group, while the low-dose group can be considered close to the model control group. The results showed that the effect of the AP-1mRNA regulation by Qiweilifei Decoction is not yet clear from this experiment. However, Qiweilifei Decoction can reduce the content of AP-1nucleoprotein and reduce the synthesis of AP-1.
     ③The expression of downstream factors of AP-1(IL-4, IL-5and IL-13) were affected by Qiweilifei Decoction.
     The Qiweilifei Decoction low-dose, middle-dose and high-dose groups'content of Th2downstream factors(IL-4, IL-5and IL-13)showed the concentration-response relationship. The low-dose group can be considered equal to the model control group while the high-dose group can be considered close to the western medicine group. We preliminary presumption that Qiweilifei Decoction possibly be block the process of AP-1mRNA served as a template to compound a proteins, then reduce content of AP-1nucleoprotein (c-Jun and c-Fos) in the lung tissue of rats. At last, AP-1itself and the Th2downstream factors (IL-4, IL-5and IL-13) also be reduced.
引文
[1]周仲英,金实,李明富,等.中医内科学[M].第6版.北京:中国中医药出版社,2003:82.
    [2]Braman SS. The global burden of asthma [J]. Chest,2006,130 (1 Suppl):4S-12S.
    [3]陈育智.儿童哮喘流行病情况简介[J].中国医疗信息,2004,19(3):13.
    [4]田德禄主编.中医内科学[M].北京:人民卫生出版社,2002:69-72.
    [5]杨道银,阎逆修.小青龙汤加味治疗支气管哮喘急性发作68例分析[J].中国误诊学杂志,2008,8(24):59-58.
    [6]黎俊英.射干麻黄汤治疗小儿寒饮咳喘48例[J.天津中医药,2003.20(1):74.
    [7]王国杰,陈雁雁,张楠.射干麻黄散治疗小儿哮喘急性期寒哮证的临床研究[J].中医药信息,2010,27(3):100-101.
    [8]白桦,惠振亮.麻蝉鱼龙汤治疗支气管哮喘46例[J].陕西中医,2006,27(8):909-910.
    [9]肖顺琼.射麻解痉汤治疗支气管哮喘临床观察[J].实用中医药杂志,2007,23(5):289.
    [10]黎同明,刘小虹,孙志佳,等.定喘汤治疗热哮型哮喘31例[J].陕西中医2005,26(4):293-294.
    [11]杨丽荣.定喘汤治疗小儿支气管哮喘临床观察[J].医药论坛杂志,2003,24(20):48.
    [12]郭素芳.定喘方1号治疗支气管哮喘热哮证临床研究[J].中医学报,2013,28(1):28-29.
    [13]张永平,邓璇,李琴.不同剂量石膏配伍的麻杏石甘汤治疗哮喘34例临床观察[J].云南中医中药杂志,2012,33(12):28-30.
    [14]陈馨馨,李友林.风哮病机及风哮方分析[J].山东中医药大学学报,2010,34(1): 26-27.
    [15]张招英,赵明晶,邵成文.中西医结合治疗支气管哮喘60例[J].中医药信息,2012,29(3):79-80.
    [16]唐传锋,高树迎.理饮补虚、宣肺定喘法治疗小儿哮喘缓解期60例临床研究[J].山东中医杂志,2012,31(12):867-868.
    [17]夏永良,王彩霞,李德新.哮喘缓解期从脾论治机理的研究[J].中医药学刊,2003,21(7):91-94.
    [18]王翠其.补肾防哮丸治疗支气管哮喘缓解期36例[J].中国民间疗法,2004,12(11):44-46.
    [19]张文江,苗青,樊长征,等.辨证治疗支气管哮喘缓解期(肺脾气虚、肺肾两虚证)临床研究[J].中国中医急症,2012,21(1):14-16.
    [20]张燕萍,张文江,苗青.辨证治疗支气管哮喘缓解期的临床研究[A].中国中西医结合呼吸病专业委员会.第十次全国中西医结合防治呼吸系统疾病学术研讨会论文集[C].中国中西医结合呼吸病专业委员会:2009:4.
    [21]李明星.参术汤治疗支气管哮喘缓解期45例临床研究[J].吉林中医药,2006,03:19-21.
    [22]鲍志坚,徐俭朴,楼景英,等.黄芪复方对哮喘患者气道高反应性的影响[J].浙江中西医结合杂志,2002,12(2):96
    [23]丁强.王志英.支气管哮喘缓解期单纯中医辨证治疗进展[J].甘肃中医,2009,22(7):71-73.
    [24]何晓春,聂世来,朱丽芳.首乌喘息胶囊治疗哮喘的临床观察[J].铁道医学,1997,01:58.
    [25]曹伟云,王大海,罗秋生,等.补肾温肺胶囊治疗支气管哮喘46例疗效观察[A].中国中西医结合学会.全国中西医结合变态反应第二次学术会议暨中国中西医结合学会变态反应专业委员会成立大会论文汇编[C]中国中西医结合学会:2004:4.
    [26]栾字.蛤蚧定喘胶囊治疗慢支及哮喘206例临床观察[J].中国实用医药,2009,16:170.
    [27]刘小凡,郭蓉晓,孟晓露,等.哮宁口服液治疗小儿哮喘的临床与实验研究[J].上海中医药杂志,2001,09:24-26.
    [28]赵金泉.止喘灵佐治儿童哮喘临床分析[J].山西医药杂志(下半月刊),2011,40(1):52.
    [29]李向东,蒋雅萍.健脾益肺口服液治疗小儿哮喘缓解期50例[J].陕西中医,2003,24(6):499-500.
    [30]刘恩顺,孙增涛,王玉珍,等.麻芩合剂治疗哮喘的疗效评价及抗炎机理研究[A].中国中西医结合学会.首届国际中西医结合变态反应学术会议暨全国中西医结合变态反应第三次学术会议资料汇编[C].中国中西医结合学会:2007:5.
    [31]冯兆才,任勤,李新民,等.小儿肺热咳喘合剂治疗小儿痰热证哮喘临床观察[J].中国中医急症,2006,15(6):577-578.
    [32]史锁芳,曹世宏,郝月琴,等.平哮合剂治疗支气管哮喘发作期的临床研究[J].中国中医药科技,2005,12(1):6-8.
    [33]刘南萍.清肺化痰糖浆治疗肺炎支原体感染所致小儿哮喘70例临床观察[J].中国中西医结合儿科学,2010,2(2):129-131.
    [34]高兴亮,魏东,杨祖旺等.平喘糖浆治疗支气管哮喘224例临床观察[J].内蒙古中医药,2006,03:5-6.
    [35]应延风,王永兴,严啸等.益肺平喘糖浆治疗支气管哮喘效果研究[J].现代中西医结合志,2000,24:2455-2456.
    [36]邢向晖,陈鲁,曲晓红,等.防哮颗粒防治儿童哮喘缓解期的临床研究[J].中医儿科杂志,2008,05:16-20.
    [37]张颖,张瑞明,常静,等.益气平喘颗粒治疗气虚寒哮证支气管哮喘急性发作的随机对照试验[J].中西医结合学报,2007,01:23-27.
    [38]王真,杨珺超,宫晓燕,等.清肺平喘补肾颗粒治疗144例哮喘轻度持续患者疗效观察[J].中华中医药杂志,2013,02:351-353.
    [39]陈太中,王保奇.痰热清注射液治疗支气管哮喘急性发作期临床研究[J].中医学报,2013,07:943-944.
    [40]熊素琼,郭亚平,熊希.参麦注射液治疗支气管哮喘急性发作临床研究[J].当代医学,2012,29:84-86.
    [41]张洁,孙秀珍,李雅莉.黄芪注射液治疗支气管哮喘急性发作62例[J].陕西中医,2002,10:868-869.
    [42]赵立宇.辛芩雾化剂对支气管哮喘患者肺功能、EOS及IgE的影响[J].实用临床医药杂志,2013,11:25-27.
    [43]姜静,尚宁,范欣生.中药辛夷雾化吸入治疗支气管哮喘[J].临床肺科杂志,2001, 02:17.
    [44]李霞,索钢,陈秀惠,等.复方杏芩雾化剂治疗哮喘临床观察[J].中国中医急症,1998,04:159-160.
    [45]李丽萍.穴位贴敷防治支气管哮喘临床观察[J].上海针灸杂志,2013,02:96-98.
    [46]张金科,刘仲玮.咳喘糊贴敷联合西药治疗儿童支气管哮喘27例临床观察[J].天津中医药,2013,08:509.
    [47]任伟,张建玲.穴位贴敷治疗支气管哮喘缓解期的临床观察[J].中国医药指南,2013,33:496-497.
    [48]刘明清,刘俐,黄启嵩.隔姜灸加穴位注射治疗支气管哮喘临床观察[J].上海针灸杂志,2007,07:8-9.
    [49]王祺.穴位注射喘可治治疗支气管哮喘31例临床观察[J].实用中医内科杂志,2010,05:102-103.
    [50]区燕云.经络注血疗法治疗支气管哮喘100例效果观察[J].中医临床研究,2013,10:46-47.
    [51]郭泽楷.自血穴位注射对成人哮喘的临床疗效及治疗费用的影响[D].广州中医药大学,2012.
    [52]Schott CR, Martin E, Controlled trial of acupuncture in the treatment of bronchial asthma[J], J Altern Complement Med,2001,6:91-92.
    [53]Mc Carney RW, Brinkhaus B, Lasserson TJ, et al. Acupuncture for chronic asthma[J]. Cochrane Database Syst Rev,2004, (1):CD000008.
    [54]姚亮,杨佩兰,宋文宝.穴位埋线对支气管哮喘慢性持续期患者的疗效观察[J].上海医药,2011,03:137-140.
    [55]孙文善,王余民,赵晓冬,陆伟珍.微创埋线治疗缓解期支气管哮喘30例[J].上海针灸杂志,2013,07:614.
    [56]宋南昌,何金保,徐涵斌,吴吉锋.热敏灸与舒利迭治疗支气管哮喘慢性持续期的比较研究[J].中国针灸,2012,07:593-596.
    [57]梁超,张唐法,杨坤.腧穴热敏灸与西药治疗慢性持续期支气管哮喘疗效对照观察[J].中国针灸,2010,11:886-890.
    [58]孙明.支气管哮喘临床药物治疗进展[J].河北医药,2004,26:581-582.
    [59]黄彩英,黄爱萍,黄斌学,等.老年哮喘患者发作期免疫功能状况研究[J].现代中 西医结合杂志,2006,15(1):61.
    [60]张明,冯树坤,薛莲英.治疗支气管哮喘药物的重新评价[J].医学理论与实践,2004,17(8):891-892.
    [61]卜校山.支气管哮喘的治疗进展研究[J].临床和实验医学杂志,2006,06:838-839.
    [62]邱利梅,黄美杏.中西医结合治疗支气管哮喘新进展[J].现代中医药,2013,03:120-122.
    [63]林耀广.茶碱临床应用的研究进展[J].中华结核和呼吸杂志,1998,21(4):196.
    [64]Kanniess F,Richter K,Janicki S et al. Does reduction of inhaled corticosteroids under concomitant medication with montelukast in patients with asthma[J]. Eur R espir J,2002,20(5):1080-1087.
    [65]李明华,宫茹明.支气管哮喘的抗白三烯治疗[J].国外医学·内科学分册,1999,26:121.
    [66]黄少光.肺内科新进展[M].北京:人民卫生出版社,2000:94-101.
    [67]尚云飞,朱立成,朱文娟,等.中西医结合治疗支气管哮喘急性发作疗效及全性的Meta分析[J].辽宁中医杂志,2010,37(11):2204-2208.
    [68]王凯军.中西医结合治疗寒性哮喘急性发作期肺功能观察46例[J].中医研究,2005,18(2):24-25.
    [69]唐百冬,屈娅婷.定喘汤化裁方配合西药治疗支气管哮喘(热哮)35例临床观察[J].中国医药指南,2008,24:188-189.
    [70]何媛.中西医结合治疗支气管哮喘急性发作期热证疗效观察[J].现代中西医结合杂志,2012,21(28):3128-3129.
    [71]朱佳,张业清,沈小玥,等.中西医结合治疗中度支气管哮喘慢性持续期临床观察[J].临床肺科杂志,2010,11:1567-1568.
    [72]张弘,陈芳,何薇,等.中西医结合治疗支气管哮喘缓解期临床观察[J].浙江中医药大学学报,2013,02:158-160.
    [73]梁春,伦新.穴位埋线治疗支气管哮喘疗效观察[J].辽宁中医杂志,2009,02:264-266.
    [74]袁玲,丁洁莹.核酪穴位注射对支气管哮喘患者肺功能的影响[J].光明中医,2011,09:1854-1855.
    [75]武维屏.激素依赖性哮喘的中医治疗浅述[J].北京中医药大学学报,1997,20(1):58.
    [76]许德金,叶丽红.活血化疲药防治支气管哮喘的研究进展[J].微循环技术杂志,1996, 3:163.
    [77]方文贤.医用中药药理学[M].北京:人民卫生出版社,1998,18.
    [1]AhnJ H, Kim CH, Kim Y, et al. Inflammatory and remodeling events in asthma with chronic exposure to house dust mites:a murine model[J]. J Korean Med Sci,2007, 22:1026-1033.
    [2]Johnson J R, Wiley RE, Fattouh R, et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling [J]. Am J Respir Crit Care Med,2004,169:378-385.
    [3]Narala VR, Ranga R, Smith MR, et al. Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma[J].Respir Res,2007, 8:90.
    [4]蒋雄斌,朱毅,殷凯生.重度哮喘小鼠模型的建立.中国危重病急救医学[J],2006,18:733-736.
    [5]Chung YJ, Farra jA, Coates NH, et al. Increased neurotrophin production in a Penicillium chrysogenum-induced allergic asthma model in mice[J].J Toxicol Environ Health A,2007,70:1020-1026.
    [6]Conejero L, Higaki Y, Baeza ML, et al. Pollen-induced airway inflammation, hyper-responsiveness and apoptosis in amurine model of allergy [J]. Clin Exp Allergy, 2007,37:331-338.
    [7]陈晓红,钟南山,张卫东,等.布地奈德对哮喘小鼠气道重塑及JAK1/STAT6表达的影响[J].中华医学杂志,2007,87:1627-1632.
    [8]Wegmann M, Animal models of chronic experimental asthma-strategies for the identification of new therapeutic targets [J]. J Occup Med Toxicol,2008,3 (Suppl 1):S4.
    [9]Nakae S, Ho L H, Yu M, et al.Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokineproduction in an asthma model in mice[J].J Allergy Clin Immunol,2007,120:48-55.
    [10]Pabst R. Animal models for as thma:controversial aspects and unsolved problems[J]. Pathobiology,2002-2003,70:252-254.
    [11]Waserman S, Olivenstein R, Renzi P M. The Relationship between Late Asthmatic Responses and Antigen-Specific Immunoglobulin[J].J Allergy Clin Immunol,1992, 90:661-669.
    [12]施焕中.正确认识和合理应用支气管哮喘的动物模型[J].中华结核和呼吸杂志,2005,28(11):749-750.
    [13]Bellofiore S, Martin J G. Antigen Challenge of Sensitized Rats Increases Airway Respo-nsiveness to Methacholine[J]. J Appl Physiol,1988,65:1642-1646.
    [14]Ceyhan B B, Sungur M, Celikel C A, et al. Effect of Inhaled Cyclosporine on the Rat Airway:Histologic and Bronchoalveolar Lavage Assessment [J]. Respiration, 1998,65:71-78.
    [15]Richerson, H B Acute. Experimental Hypersensitivity Pneumonia in the Guinea Pigs[J].Clin Med,1972,79 (5):745-757.
    [16]Lewis C A, Johnson A, Broadley K J. Early and Late Phase Bronchoconstrictions in Conscious Sensitized Guinea Pigs after Macroand Microshock Inhalation of Allergen and Associtated Airway Accumulation of Leukocytes [J]. Int J Immunopharm, 1996,18:415-422.
    [17]Karol MH. The Development of an Animal Model for TDI Asthma[J]. Bull Eur Physiopathol Respir,1987,23:571-576.
    [18]El-Hashim AZ, Jacques C A, Herd C M, et al. The Effect of R,15.7/HO, an Anti-CD18 Antibody in the Late Airway Response and Airway Hyperresponsiveness in an A-llergic Rabbit Model[J]. Br J Pharmacol,1997,121:671-678.
    [19]何会霞,李自红.支气管哮喘实验动物模型的研究进展[J].中国老年学杂志,2008,20:2074-2076.
    [20]Secor ER, Carson WF, Singh A, et al. Oral Bromelain Attenuates Inflammation in an Ovalbumin-induced murine Model of Asthma[J].Evid Based Complement Alternat Med,2008,5:61-69
    [21]陶莉莉,司本挥,黄以哲,等.实验性哮喘致敏小鼠模型的建立[J].武警医学[J],2003,14(12):741-2.
    [22]吉宁飞,符晓苏,陈力.过敏性因素在老龄大鼠支气管哮喘模型中的实验研究[J].实用老年医学,2006,20(4):250-2.
    [23]Ngoc PL, Gold DR, Tzanabos AO, et al. Cytokines, allergy, and asthma [J]. Curr Opin Allergy Chin Imunlo,2005,5 (2):161-166.
    [24]刘仁慧,郭忻.培本方拆方调节哮喘大鼠内源性糖皮质激素作用途径的实验研究[J].时珍国医国药,2007,18(11):2765-2767.
    [25]董竞成,赵福东,谢瑾玉,等.黄芪对哮喘大鼠神经内分泌免疫网络相关指标的影响[J].中国中西医结合杂志,2007,27(7):619-622.
    [26]张玲丽,王晓敏,杜恒等.补肺健脾方对哮喘大鼠血、肺泡灌洗液中IL-4、IFN-γ及嗜酸粒细胞计数的影响[J].湖北中医学院学报,2010,12(1):9-11.
    [27]虞坚尔,李立清,张晓峰,等.平喘方干预支气管哮喘模型大鼠Thl/Th2平衡的研究[J].中医儿科杂志,2006,2(1):23-26.
    [28]张在其,梁仁,黄建明,等.小青龙汤对哮喘小鼠肺组织Thl/Th2作用的实验研究[J].中国中西医结合急救杂志,2004,11(6)368-371.
    [29]兰智慧,洪广祥,付向春,等.益气护卫汤对哮喘小鼠气道炎症及细胞因子水平影响的研究[J].中医药学刊,2004,22(12):2297-2298.
    [30]Ngoc PL, Gold DR, Tzanabos AO, et al. Cytokines, allergy, and asthma [J]. Curr Opin Allergy Chin Imunlo,2005,5(2):161-166.
    [31]潘俊辉,王峰,杨辉,等.天龙组方抑制哮喘模型小鼠气道炎性细胞聚集和炎症反应的实验研究[J].新中医,2007,39(1):102-103.
    [32]李祥华,张德新,许甲凤,等.地龙汤对实验性哮喘豚鼠气道炎症的影响[J].中国中药杂志,2007,32(14):1445-1448.
    [33]陈梁,朱锦善,辜树蓉等.畅肺防哮方对哮喘模型大鼠外周血白细胞、嗜酸粒细胞及血清IgE的影响[J].湖北中医杂志,2008,30(1):7-8.
    [34]Sutcliffe AM, Clarke DL, Bradbury DA, et al. Transcriptional regula-tion of monocyte chemotactic protein-1 release by endothelin-1 inhuman airway smooth muscle cells involves NF- kappaB and AP-1 [J]. Br J Pharmacol,2009,157 (3): 36-450.
    [35]Hesslinger C, Strub A, Boer R, et al. Inhibition of inducible nitric ox-ide synthase in respiratory diseases [J]. Biochem Soc Trans,2009,37(4):886-891.
    [36]蒋蕊,杜永成,张新日.雷公藤多苷对哮喘大鼠肺组织诱导型一氧化氮合酶和一氧化氮的影响[J].山西中医药杂志,2008,37(2):99-100.
    [37]侯仙明,徐树楠,杨洪霞,等.肉桂对豚鼠哮喘模型血清中ET、NO和IL-5含量的影响[J].四川中医,2009,27(8):22-24.
    [38]王媛,孔微.中药穿山龙对哮喘豚鼠嗜酸性粒细胞影响的实验研究[J].中华中医药学刊,2009,27(9):1898-1902.
    [39]Dziedziczko A, Palgan K. Eosinophil apoptosis and asthma [J]. PolMerkur Lekarski.2004,17(97):73-75.
    [40]林永廉,林求诚.射于麻黄汤对实验性哮喘豚鼠嗜酸性粒细胞凋亡的影响[J].实用中医药杂志,2007,23(1):3-5.
    [41]杨牧祥,于文涛,徐华洲,等.咳喘宁对支气管哮喘大鼠肺组织嗜酸粒细胞凋亡的影响[J].中医研究,2008,21(7):6-9.
    [42]廖文生,柯新桥,朱金凤,等.防喘胶囊对哮喘豚鼠气道T淋巴细胞凋亡影响的研究[J].中国中医药科技,2008,15(4):267-268.
    [43]Garcia G, Godot V, Humbert M, et al. New chemokine targets for asthmatheray [J]. Current Allergy and Asthma Reports,2005,5(2):155-160.
    [44]方向明,王军.平喘宁对哮喘豚鼠肺组织中嗜酸性粒细胞趋化因子mRNA表达的影响[J].中华中医药杂志,2007,22(1):55-57.
    [45]侯敏,马秀敏,丁剑冰,等.维药神香草对哮喘大鼠血清嗜酸性粒细胞趋化因子和可溶性P选择素的影响[J].科技导报,2009,27(19):90-93.
    [46]Bijanzadeh M, Ramachandra NB, Mahesh PA, et al. Soluble intercellular adhesion molecule-1 and E-selectin in patients with asthma exacerbation [J]. Lung,2009, 187 (5):315-320.
    [47]陈梁,朱锦善,辜树荣,等.畅肺防喘方对哮喘模型大鼠支气管肺泡灌洗液Eotaxin、ICAM-1的影响[J].中国中医急症,2009,18(6):942-945.
    [48]贺明,扬建民,张静.祛瘀化痰法对哮喘大鼠血管内皮细胞黏附分子及白介素12表达的影响[J].中国实用医药,2009,4(9):3-4.
    [49]Park JA, Tshumperlin DJ. Chronic intermittent mechanical stress increases MUC5AC protein expression [J]. Am J Respir Cell Mol Biol,2009,41 (4):459-466.
    [50]赵玮,宋康,骆仙芳,等.椒枝软胶囊对哮喘小鼠气道黏蛋白影响的实验研究[J].中华中医药学刊,2009,27(12):2561-2564.
    [51]宋立强,马战平,吴昌归,等.易喘平胶囊对哮喘模型小鼠气道黏液高分泌的抑制作用[J].中西医结合急救杂志,2006,13(2):86-88.
    [52]Ngoc PL, Gold DR, Tzanabos AO, et al. Cytokines, allergy, and asthma [J]. Curr Opin Allergy Chin Imunlo,2005,5 (2):161-166.
    [53]陈径,杨莉,金蕊,等.川芎嗪对哮喘大鼠NF-κB表达及气道炎症的影响[J].现代医学,2005,33(6):351-353.
    [54]黄艳,刘鑫,戴爱国,等.柴朴汤对卵蛋白诱导豚鼠哮喘的干预作用与对核因子-κB的影响[J].中医药导报,2007,13(6):1-3.
    [55]黄映红,张耿闻,扬宇.加味升降散对哮喘小鼠肺组织NF-κB表达的影响[J].福 建中医药,2007,38(3):37-39.
    [56]Erlewyn-Lajeunesse MD, Hunt LP, Pohunek P, et al. Bronchoalveolar lavage MMP-9 and TIMP-1 in preschool wheezers and their relationship to persistent wheeze[J]. Pediatr Res,2008,64 (2):194-199.
    [57]曲政海,刘小梅,谢宁,等.人参五味子汤预防哮喘小鼠的作用机制研究[J],中国中西医结合急救杂志,2008,15(4):201-204.
    [58]王晓岩,迟宝荣,陈漉.喘息康对支气管哮喘豚鼠肺泡灌洗液IFN-r、IL-5水平及肺组织MMP-9、TIM1-1的影响[J].中国免疫学杂志,2008,24(12):1091-1093.
    [59]张强,王强.补肺方对缓解期哮喘豚鼠气道重塑作用机制的研究[J].江西中医学院学报,2009,4,21(2):57-58.
    [60]王丽新,刘芳,吴银银.止喘胶囊对哮喘模型大鼠气道壁胶原和平滑肌影响的实验究[J].江苏中医药,2007,39(8):71-73.
    [61]莫万勇,刘鑫.柴朴汤下调哮喘大鼠血管内皮生长因子表达抑制气道的重塑[J].社区医学杂志,2010,8(1):16-17.
    [62]张燕萍,张元元,苗青,等.益肾平喘活血合剂对哮喘气道重塑大鼠血清及气道上皮炎性因子的影响[J].时珍国医国药,2010,01:114-116.
    [63]美浓,健治.气道高反应的发生机制[J].日本医学介绍,1998,19(12):2.
    [64]支艳,赵宏,曹璐.滋阴清热法治疗咳嗽变异性哮喘临床研究[J].中国中医急症,2009,18(12):1956.
    [65]张建军,王莲芸,阳志晖,等.双龙胶囊对哮喘大鼠肺功能的影响及其作用机制[J].中国中药杂志,2007,32(2):126.
    [66]唐小乐.补脾益气方对脾虚哮喘大鼠IKK α表达影响的实验研究[D].大连:辽宁中医药大学,2010.
    [67]林光常.冷哮丸对哮喘豚鼠模型作用机制的实验研究[D].长沙:湖南中医药大学,2010.
    [68]WagnerEF. AP-1 Introductory remarks[J]. Oncogene,2001,20(19):2333-2497.
    [69]季国忠,王学浩.转化生长因子β-Smad信号转导通路在肿瘤发生中的作用[J].医学研究生学报,2005,18(6):542-545.
    [70]何迎春,田道法.爱泼斯坦-巴尔病毒潜伏膜蛋白1的结构和信号转导[J].医学研究生学报,2005,18(9):837-840.
    [71]Agarwal S, Rao A. Modulation of chroma tin structure regulates cytokine gene expression during T cell differentiation [J]. Immunity,1998,9(6):765-775.
    [72]张亚敏,刘立思.激活蛋白-1与变应性疾病的研究进展[J].医学研究生学报,2007,02:199-202.
    [73]Nakamura Y, Hoshino M. TH2 cytokines and associated transcription factors as therapeutic targets in asthma[J]. Curr Drug Targets Inflamm Allergy,2005, 4:267-270.
    [74]Li-Weber M, Salgame P, Hu C, et al. Th2-specific protein/DNA interactions at the proximal nuclear factor-AT site contribute to the functional activity of the human IL-4 promoter[J].J Immunol,1998,161:1380-1389.
    [75]Li B, Tournier C, Davis RJ, et al.Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation[J]. EMBO J,1999, 18:420-432.
    [76]BurkeTF, Casolaro V, Georas SN. Character ization of P5, a novel NFAT/AP-1 si te in the human IL-4 promoter[J]. Biochem Biophys Res Commun,2000,270:1016-1023.
    [77]Wang J, Young IG. Eosinophilic inflammation:mechanisms regulating IL-5 transcription in human T lymphocytes[J]. Allergy,2007,62:1131-1138.
    [78]Wang J, Shannon MF, Young IG. A role for Etsl, synergizing with AP-1 and GATA-3 in the regulation of IL-5 transcription in mouse Th2 lymphocytes [J]. Int Immunol, 2006,18:313-323.
    [79]Ogawa K, Kaminuma 0, Okudaira H, etal. Transcriptional regulation of the IL-5 gene in peripheralT cells of asthmatic patients [J]. Clin Exp Immuno,2002,130(3): 475-483.
    [80]Faith A, Richards DF, Verhoef A, et al. Impaired secretion of interleukin-4 and interleukin-13 by allergenspecific T cells correlates with defective nuclear expression of NF-AT2 and jun B:relevance to immunotherapy[J]. Clin Exp Allergy, 2003,33:1209-1215.
    [81]Loke TK, Mallett KH, Ratoff J, et al. Systemic glucocorticoid reduces bronchial mucosal activation of activator protein 1 components in Glucocorticoid-sensitive but not glucocorticoid-resistant asthmatic patients[J].J Allergy Clin Immunol, 2006,118:368-375.
    [82]Huang TJ, Adcock IM, Chung KF. A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat[J].Br J Pharmacol, 2001,134:1029-1036.
    [83]Henderson WR Jr, Chi EY, Teo JL, et al.A small molecule inhibitor of redox-regulated NF-kappa B and activator protein-1 transcription blocks allergic airway inflammation in a mouse asthma model[J].J Immunol,2002,169:5294-5299.
    [84]Nguyen C, Teo JL, Matsuda A, et al. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma [J]. Proc Natl Acad Sci USA,2003,100:1169-1173.
    [85]Desmet C, Gosset P, Henry E, et al. Treatment of experimental asthma by decoy-mediated local inhibition of activator protein-1[J]. Am J Respir Crit Care Med,2005,172:671-678.
    [86]郭琦,徐永健,张珍祥.蛋白激酶C和激活蛋白-1信号级联对哮喘大鼠IL-5基因转录的调控作用[J].中华微生物学和免疫学杂志,2005,25:388-392.
    [87]Guo Q, Xu Y, Zhang Z. Role of activator protein-1 in the transcription of interleukin-5 gene regulated by protein kinase C signal in asthmatic human T lymphocytes[J]. J Huazhong Univ Sci Technology Med Sci,2005,25:147-150.
    [88]牛瑞.中医联合治疗发作期激素抵抗型哮喘的临床观察及对血浆NF-κB、AP-1表达水平的影响[D].山东中医药大学,2011.
    [1]Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation[J]. Immunity,1998,9(6):765-775.
    [2]Hess J, Angel P, Schorpp-Kismer M. AP-1 subunits:quarrel and harmonyamong siblings[J]. J Cell Sci,2004,117 (25):5965-73.
    [3]Dorai T, Gehani N, Katz A. Therapeutic potential of curcumin in human prostate cancer [J].Mol Urol,2000,4(1):1-6.
    [4]Wunderink R, Leeper K, Jr, Schein R, et al. Filgrastim in patients with pneumonia and severe sepsis or septic shock. Chest[J].2001; 119:523-529.
    [5]肖雪飞.姜黄素对脓毒症急性肺损伤大鼠的保护作用及分子机制研究[D].中南大学,2012.
    [6]Underwood S, Foster M,Raeburn D, et al. Time -course of antigen-induced airway inflammation in the guinea-pig and its relationship to airway hyper-responsiveness[J].Eur Respir J,1995,8 (12):2104-2113.
    [7]陈灏珠主编.内科学[M].北京:人民卫生出版社,1996:32.
    [8]杨季国,叶万敏,应华忠.平喘Ⅰ号对哮喘小鼠肺组织病理的影响[J].浙江中医学院学报,2005,02:58-61.
    [9]Shaulian E, Karin M. AP-1 as a regulator of cell life and death[J].Nat Cell Biol,2002,4(5):E131-136.
    [10]Hsuuw Y D, Chang C K, Chan W H, et al. Curcumin prevents methylglyoxa-1 induced oxidative stress and apoptosis in mouse embryonia stem cells and blastocysts [J]. J Cell Physiol,2005,205(3):379-386.
    [11]曹红,李军,李广明,等.姜黄素对沙土鼠脑缺血/再灌注损伤的海马CA1区细胞凋亡和即早基因c-fos、c-jun、NF-κB表达变化的关系[J].中国应用生理学杂志,2007,02:184-188.
    [12]Shen F, Fan X, Liu B, et al. Overexpression of cyclin D1-CDK4 in silica-induced transformed cells is due to activation of ERKs,JNKs-AP-1 pathway[J]. Toxicol Lett,2006,160(3):185-189.
    [13]Vesely PW, Staber PB, Hoefler G, et al. Translational regulation mechanisms of AP-1 proteins [J].Mutat Res,2009,682 (1):7-12.
    [14]Shin S, Asano T,Yao Y,et al.Activator protein-1 has an essential role in pancreatic cancer cells and is regulated by a novel Akt-mediated mechanism[J]. Mol cancer Res,2009,7 (5):745-754.
    [15]Osna N, Elliott K, ChaikaO, etal. Histamine utilizes JAK-STAT pathway in regulating cytokine preduction[J]. Int Immunopharmacol,2001 (1):759-762.
    [16]Karin M, The Regulation of AP-1 Activity by Mitogen-activated Protein Kinases[J]. J Biol Chem,1995,270:16483-16486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700