用户名: 密码: 验证码:
降糖消渴颗粒对DM大鼠的作用及AMPK信号通路的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     糖尿病是一个多因素参与的胰岛素相对不足和/或绝对不足导致的以高血糖为基本病生理改变的糖、脂肪、蛋白质代谢紊乱综合征,目前尚无特效疗法。中医药对糖尿病的防治具有独特的优势,可以在降低血糖的同时调整机体阴阳失衡状态,对糖尿病的慢性并发症亦有较好的预防和治疗作用。导师高思华教授依据多年临床经验,以中西医结合理论为指导,提出了立足肝脾肾三脏同治辨证治疗2型糖尿病的脏腑辨证新模式和系列方药。降糖消渴颗粒便是其中的最常用的方剂之一,系针对2型糖尿病最常见的“肝脾肾气阴两虚,挟热挟瘀”的证型而立,经多年临床证实安全有效,前期临床观察及文献分析均证实其组方的合理性。该方被列入国家重大新药创制专项中的治疗糖尿病的备选药物立题研究。本论文就是该课题研究的内容之一。
     研究目的:
     本课题组采用2型糖尿病大鼠模型,通过观察降糖消渴颗粒对糖尿病(DM)大鼠的糖脂代谢的一般指标(血糖、血脂、糖化血红蛋白、血清胰岛素、糖耐量、胰岛素耐量)、氧化应激指标、肝脏与胰腺组织病理,及腺苷酸活化蛋白激酶(AMPK)信号通路中相关成分的mRNA及蛋白表达的影响,探讨降糖消渴颗粒对糖尿病大鼠的降糖降脂作用,并初步探讨其作用的机制,为中医药治疗糖尿病提供实验依据。研究方法:
     将50只体重180-200g的雄性SD大鼠,按体重大小编号,随机抽取10只作为正常对照组,予普通饲料喂养。其余40只大鼠高脂饲料喂养4周后,腹腔注射链脲佐菌素(STZ)30mg/kg BW.3天后检测禁食16h后血糖水平,以空腹血糖>16.7mmol/L为糖尿病造模成功标准。
     造模成功后按血糖值随机分为糖尿病模型组11只,降糖消渴颗粒组11只,吡格列酮组10只。给药组分别给予降糖消渴颗粒(9g生药/kg BW),吡格列酮片(1.5mg/kgBW),模型组及正常组等量纯净水灌胃。药物干预4周。
     每周记录大鼠体重,观察一般症状、记录饮水量、摄食量、尿量,以及给药前后大鼠空腹血糖(FBG)、随机血糖(RBG),实验结束前各组进行口服葡萄糖耐量试验((OGTT)及胰岛素耐量试验(ITT)实验。实验结束时,腹主动脉采血,取血清测定各组大鼠血清总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、肌酐(Cr)、尿素氮(BUN)、糖化血红蛋白(HbAlc)、FINS(空腹胰岛素),超氧化物歧化酶(SOD)、丙二醛(MDA)、一氧化氮(NO)水平,计算胰岛素敏感指数(ISI)。并取出大鼠胰腺、肝脏组织固定进行切片观测其病理改变。
     检测大鼠肌肉组织AMPK a、葡萄糖转运子4(GLUT4)、胰岛素受体底物1(IRS-1) mRNA表达,以及AMPK a、p-AMPKα、GLUT4、IRS-1蛋白表达;肝脏组织AMPK a mRNA表达,以及AMPKα、 p-AMPKα、磷酸化乙酰辅酶A羧化酶(p-ACC)蛋白表达;脂肪组织瘦素mRNA表达。
     研究结果:
     一般症状:降糖消渴颗粒能缓解DM大鼠多饮、多食、多尿、消瘦的症状。
     糖代谢指标:降糖消渴颗粒组大鼠FBC、RBG水平均明显低于模型组大鼠(P<0.05),且降低FBG效果存在时-效关系。降糖消渴颗粒对DM大鼠HbAlc、血清INS水平无显著影响(P>0.05),但能显著提高DM大鼠ISI(P<0.05),改善DM大鼠糖耐量及胰岛素耐量。
     血脂指标:降糖消渴颗粒能够使DM大鼠血清TC、TG、LDL-C水平分别下降33%、57%、44%,同时使HDL-C水平提高69%,与模型组比较差异具有统计学意义(P<0.05)。
     肝肾功能:降糖消渴颗粒能够使DM大鼠ALT降低50%(P<0.05),但对AST、 BUN、Cr的水平未见显著改变(P>0.05)。
     病理改变:降糖消渴颗粒能够保护DM大鼠胰腺组织、肝脏组织的病理改变。
     氧化应激指标:与模型组比较,降糖消渴颗粒能够明显增加DM大鼠SOD活性(提高60%),降低血清MDA和NO水平(分别降低34%、52%),组间差异具有统计学意义(P<0.01)。
     AMPK信号通路:降糖消渴颗粒能上调DM大鼠肝脏、骨骼肌组织AMPK a mRNA及蛋白表达,且p-AMPK蛋白量亦明显增加(P<0.01)。降糖消渴颗粒能够提高DM大鼠骨骼肌组织GLUT4、IRS-1mRNA及蛋白表达量(P<0.01)。降糖消渴颗粒显著增加DM大鼠肝组织p-ACC蛋白表达(P<0.01),显著提高DM大鼠脂肪组织瘦素mRNA的表达(P<0.01)。
     结论:
     1.降糖消渴颗粒能降低DM大鼠血糖水平,调节糖代谢,改善胰岛素抵抗,维持体内葡萄糖稳态。
     2.降糖消渴颗粒可以降低DM大鼠血脂水平,纠正脂代谢紊乱。
     3.降糖消渴颗粒能够提高大鼠抗氧化应激能力,调整DM大鼠氧化应激状态。
     4.降糖消渴能够调节AMPK-GLUT4和AMPK-IRS1-GLUT4信号通路,改善DM大鼠骨骼肌胰岛素抵抗,可能为其抗糖尿病的机制之一。
     5.降糖消渴能够调节肝脏AMPK-ACC信号通路,促进脂肪酸氧化,调节脂肪代谢,可能为其抗糖尿病的机制之一。
     6.立足肝脾肾三脏同治辨证治疗糖尿病的理论是有实验数据支持的。
     本论文的创新之处在于首次将中医脏腑相关理论与AMPK能量代谢通路联系起来,应用高脂饮食联合STZ诱导的DM大鼠模型,观察肝脾肾三脏同调之组方“降糖消渴颗粒”在糖脂代谢等方面的药学作用,及其对机体氧化应激状态的影响。并在此基础上,通过研究降糖消渴颗粒对能量代谢关键分子AMPK及其上下游元件的基因及蛋白的影响,探讨降糖消渴颗粒对AMPK信号转导通路的影响,从而揭示其可能的作用机制,并为立足肝脾肾三脏同治辨证治疗糖尿病的理论提供新的实验数据支持。
Background
     Diabetes mellitus (DM) is a multi-factorial metabolic disorder characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and/or insulin action. Far from now, there is not an effective method for diabetes control. Traditional Chinese medicine (TCM) has played a significant role in treatment of diabetes for centuries. It acts on reducing blood glucose, as well as adjusting the balance between Yin and Yang, so it can also prevent and control the chronic complications besides DM. Based on the ample clinical experience and comprehensive understanding of TCM and western medicine theories, we proposed the novel theory based on zang-fu differentiation for treatment of DM. The root of the theory is diabetes should be treated based on regulating the function of liver, spleen and kidneys. And we also constructed a series of formula according to the above theory, of which Jiang Tang Xiao Ke Granule (JTXKG) was one of them. Function of JTXKG is to deal with the qi and yin deficiency of liver, spleen and kidney, as well as excessive heat and blood stasis. JTXKG has been proved to be effect and safe in clinic, so that it has been chosen as the important drugs for diabetes treatment for study by New Drug Development Program. This researches in this dissertation is part of the above program.
     Objectives:
     In the present study, we intended to study the pharmacological action of JTXKG in experimental diabetic rats. The observed indictors includes blood glucose, serum lipid profiles, serum glycosylated hemoglobin, fasting serum insulin, glucose tolerance and insulin tolerance, oxidative stress, liver and pancreatic pathological changes, and AMPK signal pathway. So that to investigate the hypoglycemic effect of JTXKG and the related mechanisms, and to provide experimental proofs for treatment of diabetes with TCM methods.
     Methods:
     50male Sprague Dawley rats, weighing180-200g, were numbered according to the body weight.10of them were randomly selected as the normal control rats, which were fed with normal diet. The other40rats were fed with high fat diet for4weeks, and then a single intraperitoneal injection of a prepared solution of STZ (30mg/kg suspended in0.1mol/L citrate buffer at pH4.5) was applied to induce diabetic models. If volume of fasting blood glucose (FBG) was not less than16.7mmol/L after72hours of STZ injection, the diabetic models were successful. The32diabetic rats were randomly divided into three groups.(1) drug-untreated diabetic rats;(2) and (3) diabetic rats treated with pioglitazone1.5mg/kg and JTXKG9g/kg, respectively. Both pioglitazone and JTXKG were dissolved in distilled water and given to the rats via gastrogavage once a day. The normal and drug-untreated DM rats were administrated with the same volume of vehicle. Drug intervention lasted for4weeks.
     The body weight of the rats was record weekly. The fasting blood glucose (FBG) and the random blood glucose (RBG) before and after the treatment were detected. The oral glucose tolerance test (OGTT) and insulin tolerence test (ITT) were performed at the end of the study. We also measured the serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cr), urea nitrogen (BUN), fasting insulin (FINS), superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) and calculated the insulin sensitivity index (ISI). The pancreas and liver were removed and fixed for pathological observation.
     The mRNA levels of AMPKa, GLUT4and IRS-1and the protein expression levels of AMPKa, p-AMPKa, GLUT4and IRS-1in muscle tissues were detected. The mRNA levels of AMPKa and the protein expression levels of AMPKa, p-AMPKa, p-ACC in liver tissues were determined. The mRNA of leptin in adipose tissue was also measured.
     Results:
     Improvement of the symptoms:The typical symptoms of DM, such as polydipsia, polyphagia, polyuria, and emaciation of rats were relieved by JTXKG.
     Indicators of glucose metabolism:JTXKG reduced the FBG and RBG levels of the diabetic rats (P<0.05), and effect on reducing FBS was dose-dependent. The HbAlc and the serum insulin levels of the diabetic rats were not improved by JTXKG (P>0.05). JTXKG increased the ISI (P<0.05), and improved the glucose tolerance and the insulin tolerance of the diabetic rats.
     Indicators of lipid metabolism:Compared with the model group, serum TC, TG, LDL-C levels of the rats in JTXKG group decreased by33%,57%and44%, respectively, and the serum HDL level increased by69%. And the difference between groups was significant (P0.05).
     Liver and kidney function:JTXKG reduced the ALT level by50%(P<0.05), but it did not change the AST, BUN and Cr levels (P>0.05).
     Pathological changes:JTXKG protected the pathological changes of the pancreatic and liver tissue of the diabetic rats.
     Oxidative stress indicators:Compared with the model group, JTXKG increased the SOD activity by60%in diabetic rats, and it lowered serum MDA and NO levels by34%and52%, respectively. The difference between the groups was statistical significance (P<0.05).
     Influence on AMPK signal pathway:The AMPK-a mRNA and protein expression in liver and skeletal muscle of the diabetic rats were lower than the normal rats. However, JTXKG increased the AMPK-a mRNA level, as well as the AMPKa and p-AMPKa protein expression in liver and muscle tissues. JTXKG up-regulated the mRNA level of GLUT4and IRS-1in the muscular tissues of diabetic rats. It enhanced the protein expression of GLUT4and IRS-1in the muscular tissues of diabetic rats. JTXKG significantly increased p-ACC protein expression in the liver tissue of diabetic rats. The mRNA expression of leptin in adipose tissue of diabetic rats was also increased by JTXKG.
     Conclusion:
     1JTXKG can reduce the blood glucose levels, regulate glucose metabolism, improve the insulin sensitivity, and maintain glucose homeostasis of the diabetic rats.
     2JTXKG can decrease serum lipid profiles and regulate lipid metabolism of the diabetic
     3JTXKG can improve the ability of anti-oxidative stress, adjust the oxidative stress state of the diabetic rats.
     4JTXKG can regulate the AMPK-GLUT4-ISR-1signal pathway, so that it relieved insulin resistance in the muscle tissue of the diabetic rats, which may be one of the mechanism of JTXKG treating diabetes.
     5JTXKG can regulate the AMPK-ACC signal pathway in the liver, through which it can promote fatty acid oxidation and regulate lipid metabolism. This may be another mechanism of JTXKG on diabetes.
     6Theory of controlling DM by regulating the function of liver, spleen and kidney together is not only theoretically scientific but also supported by experimental data.
     The innovation of the study is to research on the pharmacological and anti-oxidative effect of JTXKG on diabetic rats, which was induced by high fat diet combined with streptozotozin. The constructed principal of JTXKG, which is controlling DM by regulating the function of liver, spleen and kidney together, was innovated. And we further studied the influence of JTXKG on AMPK signal pathway, which is one of the most important pathway in glucose and lipid metabolism, so as to reveal the possible working mechanisms of JTXKG and provide the experimental data proof for the novel theory in DM treatment.
引文
[1]Global Diabetes Plan. International Diabetes Federation.(2011-2012):3-4.
    [2]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. New England Journal of Medicine,2010,362(12):1090-1101.
    [3]Roglic G, Unwin N. Mortality attributable to diabetes:estimates for the year 2010[J]. Diabetes research and clinical practice,2010,87(1):15-19.
    [4]高思华.以中西医结合理论为指导,立足肝脾肾辨治糖尿病.中国中西医结合杂志,1994,14(10): 622-623
    [5]高思华,龚燕冰,倪青等.肝脾肾同治法辨证治疗2型糖尿病的临床研究.中华中医药杂志,2009,24(8):1007-1010
    [6]张锡纯.医学衷中参西录[M].4 ed.北京:人民卫生出版社,2010.
    [7]胡春宇.糖尿病和消渴病关系诠释及糖尿病辨治理论的探索[D].北京;中国中医研究院,2005.
    [8]余臣祖,张朝宁.曹玉山教授治疗消渴病经验[J].世界中西医结合杂志,2013,8(9):879-81.
    [9]晁梁.周仲瑛辨证论治糖尿病的经验特色[J].辽宁中医杂志,2007,33(12):1536-7.
    [10]岂云祥,陈宏伟.祝谌予降糖对药方治疗气阴两虚2型糖尿病[J].中国民间疗法,2004,12(11):6.
    [11]庞博,王世东,赵进喜,等.再论吕仁和诊治糖尿病“六对论治”思路与方法[J].世界中医药,2013,8(3):274-278.
    [12]闫秀峰,倪青,陈世波,等.对林兰糖尿病中医“三型辨证”理论的探讨[J].中医杂志,2006,46(12):885-887.
    [13]徐灿坤.程益春治疗糖尿病经验撷谈[J].山东中医杂志,2010(10):717-718.
    [14]谭曦然,傅延龄.消渴病从肝论治的理论探讨[J].吉林中医药,2008,28(6):403-404.
    [15]黄有伟.血瘀与2型糖尿病关系探析[J].长春中医药大学学报,2010,26(3):354-355.
    [16]高思华.以中西医结合理论为指导,立足肝脾肾辨治糖尿病[J].中国中西医结合杂志,1994,14(10):622-623.
    [17]赵越洋.浅析糖尿病的中医防治方法[J].中国民族民间医药杂志,2013,22(11):109.
    [18]邓烨,李赛美,朱章志.熊曼琪教授治疗糖尿病学术经验述略[J].中华中医药杂志,2012,27(8):2110-2113.
    [19]林兰,倪青.2型糖尿病“三型辨证”的理论与实践[J].科学中国人,2011(9):78-80.
    [20]朱海燕.中医辨证论治2型糖尿病胰岛素抵抗对照研究[J].实用中医内科杂志,2012,26(8):58-59.
    [21]赵学荣,任双杰.李炳茂治疗糖尿病经验[J].中医杂志,2013,54(8):709-710.
    [22]郑红.分期治疗消渴病临证思路探讨[J].时珍国医国药,2010,21(3):765.
    [23]苏浩,仝小林,王皖洁.仝小林教授治疗糖尿病学术观点和经验[J].中国医药指南,2008,6(24):198-200.
    [24]周潮,佟杰,杨荣阁,等.辨证分时论治2型糖尿病及对胰岛功能的影响[J].陕西中医,2013,34(4):410-411.
    [25]李家云,程森华,柳燕.方朝晖辨证运用自定方治疗糖尿病的经验[J].中医药临床杂志,2012,24(2):142-144.
    [26]赵璐.吕靖中辨治糖尿病经验[J].四川中医,2009,27(5):4-6.
    [27]连建共,卢庆忠,陈卓英.气血津液辨证诊治糖尿病200例[J].医学信息:中旬刊,2011,24(5):1945.
    [28]乔海平.辨证论治结合西药治疗2型糖尿病150例[J].环球中医药,2012,5(10):778-780.
    [29]贾典荣,谢建华,高琳琳,等.健胰I号方治疗2型糖尿病临床观察[J].中医药临床杂志,2013,25(9):773-775.
    [30]吴海艳,王旭,刘庆军.益气养阴活血方中西医结合治疗2型糖尿病临床观察[J].辽宁中医杂志,2013,40(1):136-138.
    [31]张维佳,杨宏杰,张振贤,等.芪连消渴方对2型糖尿病胰岛素抵抗及相关炎症因子的影响[J].湖南中医杂志,2011,27(001):4-6.
    [32]杨柳清,黄苏萍,衡先培,等.丹瓜方治疗长期血糖控制不良2型糖尿病疗效观察[J].福建中医学院学报,2010,20(2):3-6.
    [33]胡旭珍,吴晓晶,马治国,等.回药伊消方改善2型糖尿病胰岛素抵抗作用的临床研究[J].宁夏医科大学学报,2013,35(9):953-955.
    [34]贺仲晨.自拟消渴降糖方治疗2型糖尿病疗效观察[J].现代中西医结合杂志,2013,22(28):3130-3132.
    [35]赵澜,王旭.王旭教授从瘀热辨治糖尿病临床思路及经验总结[J].辽宁中医药大学学报,2013,15(5):97-99.
    [36]汪何,吕雄,江丹,等.三芪丹颗粒改善2型糖尿病胰岛素敏感性的临床研究[J].中华中医药杂志,2011,26(8):1749-1751.
    [37]闫玲玲,马建.祛胰抵方对2型糖尿病R的临床观察[J].中医药学报,2012,40(1):113-115.
    [38]肖军财.李怡教授治疗糖尿病中“通腹法”的运用;5TH全国中西医结合内分泌代谢病学术大会暨糖尿病论坛,中国北京,F,2012[C].
    [39]朱蕴华,陶枫,金昕,等.清化颗粒对具备 “热” 证素特征2型糖尿病患者糖代谢,胰岛功能和氧化应激水平的疗效观察[J].世界科学技术:中医药现代化,2013,15(4):753-759.
    [40]冯建华,张萌,王殿云,等.清热解毒方对2型糖尿病患者血清炎症因子干预的临床研究[J].中国医药科学,2013,3(8):9-14.
    [41]叶广华,薛颖妍,温卫东,等.益气清热降糖方联合吡格列酮胶囊治疗2型糖尿病随机平行对照研究[J].实用中医内科杂志,2013,27(7):128-130.
    [42]李馨兰,范福山,廖丽坤,等.消渴方治疗2型糖尿病临床研究[J].中医学报,2013,28(8):1215-1218.
    [43]朱妍,连凤梅,仝小林.清热降浊方对2型糖尿病合并代谢综合征患者胰岛β细胞功能的影响[J].中国中医药信息杂志,2010,17(8):9-11.
    [44]马忠军,耿晓云.化积清热固冲降溢方治疗肥胖型2型糖尿病50例临床观察[J].新中医,2012,44(2):41-44.
    [45]赵晋明.益气健脾法在糖尿病中的应用[J].山西医药杂志,2012,41(7):752-753.
    [46]丁萍,吴小秋,王丹.健脾消糖颗粒对糖尿病前期炎症因子的影响[J].中国实验方剂学杂志,2013,19(4):306-308.
    [47]罗玉韵,丁萍,吴小秋,等.健脾消糖方改善2型糖尿病胰岛素抵抗的临床研究[J].云南中医中药杂志,2010,31(7):12-14.
    [48]严军,张艺,胡春平,等.滋膵降糖方对2型糖尿病患者胰岛β细胞功能的影响[J].成都医学院学报,2013,8(3):288-290.
    [49]郑敏,杨宏杰,张丹,等.养阴柔肝方对2型糖尿病患者胰岛功能的影响[J].上海中医药杂志,2013,47(10):28-30.
    [50]李吉武,孟立锋.温阳益气活血方治疗初发肥胖2型糖尿病临床观察[J].新中医,2013,45(3):105-107.
    [51]范朝华,杨宏杰,张丹,等.芪贞降糖方改善2型糖尿病胰岛素抵抗临床研究[J].浙江中医杂志,2011,46(10):715-716.
    [52]谢奇.六味地黄丸在2型糖尿病治疗中的作用与研究[J].中医临床研究,2013,5(1):116-118.
    [53]张智勇.附子理中汤治疗2型糖尿病23例[J].河南中医,2013,33(10):1647-1648.
    [54]张鸣.玉女煎加减方治疗2型糖尿病临床研究[J].浙江中医药大学学报,2010,34(1):67.
    [55]程旸,许立,许波华,等.四妙颗粒对湿热困脾型糖尿病模型小鼠血糖及糖耐量的影响[J].中南药学,2011,9(4):245-248.
    [56]张先慧,张艳红,胡照娟,等.辛开苦降方对初发2型糖尿病KKay小鼠胰岛素抵抗及脂质代谢的影响[J].北京中医药,2013,32(4):243-247.
    [57]糟玉琴,冶岱蔚.千金黄连丸及其拆方对2型糖尿病胰岛素抵抗大鼠脂代谢的实验研究[J].新疆中医药,2012,30(1):33-35.
    [58]王永刚,尤金枝,周晓俊,等.四黄降糖颗粒对胰岛素抵抗模型大鼠的剂量依赖性实验研究[J].现代中医药,2013,33(2):97-100.
    [59]高晶,欧丽娜,王茜,等.益气养阴清热方对实验性2型糖尿病大鼠糖脂代谢的影 响[J].北京中医药大学学报,2013,36(7):462-467.
    [60]都晓伟,王欢,吴军凯,等.参葛降糖胶囊对胰岛素抵抗型糖尿病大鼠脂肪细胞因子水平影响的实验研究[J].上海中医药杂志,2012,46(8):81-84.
    [61]王艳红,岳宗相,刘致勤,等.参芪复方对自发性2型糖尿病GK大鼠氧化应激损伤的影响[J].现代临床医学,2013,39(1):29-31.
    [62]杨文军,钱秋海,刘大文,等.糖肝康颗粒对糖尿病模型大鼠血糖,血脂及NO含量的影响[J].山东中医杂志,2010,3):193-195.
    [63]徐佳丹,卢婉妃,何岚,等.复方降糖滴丸对实验性糖尿病大鼠血糖,血脂的调节作用及机理研究[J].中华中医药学刊,2013,31(4):814-817.
    [64]陈玲,衡先培,蓝元隆,等.丹瓜方对2型糖尿病模型大鼠骨骼肌脂联素的影响[J].福建中医药大学学报,2013,23(1):10-12.
    [65]衡先培,黄苏萍,程心玲,等.丹栝方干预糖尿病动脉粥样硬化大鼠糖脂代谢及氧化应激研究[J].中国中西医结合杂志,2013,33(2):244-351.
    [66]张艳萍,郭志义,吴范武,等.代平颗粒对2型糖尿病大鼠血糖,血脂水平及骨骼肌Glut4mRNA, IRS-1mRNA表达的影响[J].中国实验方剂学杂志,2012,18(13):157-161.
    [67]崔鹏,田春雨,张艳萍,等.双益方对2型糖尿病大鼠SOD, MDA, FFA影响的实验研究[J].时珍国医国药,2013,24(8):1840-1842.
    [68]刘志霞,张艳平,吴范武,等.双益方改善2型糖尿病大鼠糖,脂代谢及作用机制的初步研究[J].辽宁中医杂志,2012,39(2):221-224.
    [69]隋艳波,刘莉,谢宁.洋参御糖丸调控糖尿病大鼠肝脏胰岛素P13K信号通路的机制研究[J].河南中医,2014,34(1):49-51.
    [70]郭俊杰,潘云蓉,赵玉立.益气化浊胶囊通过AMPK信号通路改善胰岛素抵抗的实验研究[J].中华中医药学刊,2013,31(12):2685-2688.
    [71]范冠杰,孙晓泽,唐咸玉,等.降糖补肾方对糖尿病大鼠IKKβ mRNA表达的影响[J].北京中医药大学学报,2011,34(6):402-404.
    [72]范冠杰,孙璐,孙晓泽,等.降糖补肾方对糖尿病大鼠肌肉组织胰岛素受体及胰岛素受体底物-1表达的作用研究[J].辽宁中医杂志,2011,38(12):2307-2309.
    [73]冯建华,李洁,王殿云,等.清热解毒方对2型糖尿病大鼠血清炎症因子抵抗素,瘦素,IL-1的干预研究[J].中国医药科学,2012,2(9):32-33.
    [74]冯建华,刘媛,李国霞,等.清热解毒方对2型糖尿病模型大鼠血清炎症因子TNF—α,IL-1,IL-6的干预研究[J].环球中医药,2012,5(8):573-575.
    [75]冯建华,李洁,王殿云,等.清热解毒方对2型糖尿病大鼠胰岛β细胞及骨骼肌细胞NF-κB/I κB信号途径的调节作用[J].中华中医药杂志,2013,28(1):93-95.
    [76]马建,韩裕璧,李永华.祛胰抵方对2型糖尿病胰岛素抵抗大鼠IL-6的影响[J].中医药学报,2013,40(6):15-17.
    [77]马建,韩美子,杜丽坤,等.祛胰抵方对2型糖尿病胰岛素抵抗大鼠TNF-α的影响[J].中医药信息,2013,30(4):51-53.
    [78]马建,赵富民,赵娜,等.祛胰抵方对2型糖尿病胰岛素抵抗大鼠血清瘦素,脂联素的影响[J].中国中医药科技,2013,20(3):241-242.
    [79]马建,姚秀明,赵娜,等.祛胰抵方对2型糖尿病胰岛素抵抗大鼠PI-3K的影响[J].中医药学报,2013,41(5):50-53.
    [80]程莉娟,成细华,喻嵘,等.左归降糖方对2型糖尿病MKR小鼠脑NF-κB信号通路炎症因子的影响[J].时珍国医国药,2013,24(8):1823-1825.
    [81]马燕,张晶,王亚,等.黄芪降糖颗粒降糖作用实验研究[J].中国实验方剂学杂志,2011,17(8):157-160.
    [82]韩静,潘秋,余俊达,等.活血解毒方对糖尿病大鼠氧化应激的影响[J].北京中医药大学学报,2010,33(9):618-622.
    [83]韩静,姚青,余俊达,等.活血解毒方对糖尿病大鼠胰岛β细胞保护作用的研究[J].中华中医药杂志,2013,28(6):1681-1684.
    [84]史婧丽,吴莹,宋玉萍,等.津力达颗粒对糖尿病大鼠胰岛B细胞的保护作用[J].第二军医大学学报,2012,33(4):385-389.
    [85]郝贤,姜德友,李迪星.健脾活血方对2型糖尿病胰岛素抵抗大鼠脂肪细胞因子的影响[J].上海中医药杂志,2013,47(9):78-81.
    [86]宋军,赵林华,姬航宇,等.开郁清热方对脂联素及胰岛分泌的影响[J].北京中医药,2011,30(4):310-312.
    [87]甄仲,常柏,李敏,等.开郁清热方对自发2型糖尿病大鼠胰岛β细胞功能的影响[J].天津中医药大学学报,2010,29(4):200-203.
    [88]常秀亭,李婕,谢曦,等.糖脉交泰胶囊对高糖高脂糖尿病大鼠糖脂代谢及肝脏葡萄糖激酶,低密度脂蛋白受体的影响[J].中国药理学通报,2013,29(2):234-237.
    [89]董晞,张浩军,赵世萍,等.糖肾方对自发性2型糖尿病模型大鼠脂代谢及肝脏脂变的影响[J].中华中医药杂志,2010,25(11):1778-1781.
    [1]Carling D, Mayer F V, Sanders M J, et al. AMP-activated protein kinase:nature's energy sensor[J]. Nature chemical biology,2011,7(8):512-518.
    [2]Woods A, Johnstone S R, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade[J]. Current Biology,2003,13(22):2004-2008.
    [3]Steinberg G R, Kemp B E. AMPK in health and disease[J]. Physiological reviews,2009, 89(3):1025-1078.
    [4]Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase
    [5]Lim C T, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling[J]. Journal of molecular endocrinology,2010,44(2):87-97.
    [6]Thomson D M, Winder W W. AMP-activated protein kinase control of fat metabolism in skeletal muscle[J]. Acta physiologica,2009,196(1):147-154.
    [7]Hawley S A, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase[J]. Journal of Biological Chemistry, 1996,271(44):27879-27887.
    [8]Herrero-Martin G, H(?)yer-Hansen M, Garcia-Garcia C, et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells [J]. The EMBO journal,2009,28(6):677-685.
    [9]Langelueddecke C, Jakab M, Ketterl N, et al. Effect of the AMP-kinase modulators AICAR, metformin and compound C on insulin secretion of INS-1E rat insulinoma cells under standard cell culture conditions[J]. Cellular Physiology and Biochemistry,2012, 29(1-2):75-86.
    [10]Habegger K M, Hoffman N J, Ridenour C M, et al. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol [J]. Endocrinology,2012,153(5): 2130-2141.
    [11]Lee J O, Lee S K, Kim J H, et al. Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-Mediated Cbl/CAP Signaling in 3T3-L1 Preadipocyte cells[J]. Journal of Biological Chemistry,2012, 287(53):44121-44129.
    [12]Gong H, Xie J, Zhang N, et al. MEF2A binding to the Glut4 promoter occurs via an AMPKa2-dependent mechanism[J]. Medicine and science in sports and exercise,2011, 43(8):1441-1450.
    [13]O'Neill H M, Maarbjerg S J, Crane J D, et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise [J]. Proceedings of the National Academy of Sciences,2011,108(38):16092-16097.
    [14]Minokoshi Y, Kim Y B, Peroni O D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nature,2002,415(6869):339-343.
    [15]Bruce C R, Mertz V A, Heigenhauser G J F, et al. The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects[J]. Diabetes,2005,54(11):3154-3160.
    [16]Schweitzer G G, Arias E B, Cartee G D. Sustained postexercise increases in AS 160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation[J], Journal of Applied Physiology,2012,113(12):1852-1861.
    [17]Kim M S, Hur H J, Kwon D Y, et al. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice[J]. Molecular and cellular endocrinology,2012,358(1): 127-134.
    [18]Xu M, Hu J, Zhao W, et al. Quercetin differently regulates insulin-mediated glucose transporter 4 translocation under basal and inflammatory conditions in adipocytes[J]. Molecular nutrition & food research,2013.
    [19]Miyamoto L, Toyoda T, Hayashi T, et al. Effect of acute activation of 5'-AMP-activated protein kinase on glycogen regulation in isolated rat skeletal muscle [J]. Journal of Applied Physiology,2007,102(3):1007-1013.
    [20]龚豪杰,谢谨,张楠,等.不同强度运动对AMPKa2三种不同基因状态鼠MEF2/GLUT4 DNA结合活性的影响[J].体育科学,2011,31(002):55-63.
    [21]李良刚,陈槐卿,McGee S L. AMPK调节骨骼肌细胞GLUT4基因表达的机制研究[J].生物医学工程学杂志,2008,25(1):161-167.
    [22]Xu S, Han P, Huang M, et al. In vivo, ex vivo, and in vitro studies on apelin's effect on myocardial glucose uptake[J]. Peptides,2012,37(2):320-326.
    [23]Arden C, Hampson L, Huang G, et al. A role for PFK-2/FBPase-2, as distinct from fructose 2,6-bisphosphate, in regulation of insulin secretion in pancreatic beta-cells [J]. Biochem. J,2008,411:41-51.
    [24]Bergeron R, Russell R R, Young L H, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats[J]. American Journal of Physiology-Endocrinology And Metabolism,1999,276(5):E938-E944.
    [25]Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways[J]. Cellular and Molecular Life Sciences,2010,67(20):3407-3423.
    [26]Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state[J]. The Journal of clinical investigation,2010,120(7):2355.
    [27]Lin H V, Kim J Y, Pocai A, et al. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic/knockout mice[J]. Diabetes,2007,56(8):1969-1976.
    [28]Hwang S L, Jeong Y T, Li X, et al. Inhibitory cross-talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle[J]. British journal of pharmacology,2013,169(1):69-81.
    [29]Chen M H, Lin C H, Shih C C. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice[J]. Evidence-Based Complementary and Alternative Medicine,2014.
    [30]Xia X, Yan J, Shen Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis[J]. PLoS one,2011,6(2):e16556.
    [31]Koo S H, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J]. Nature,2005,437(7062):1109-1111.
    [32]Xue B, Kahn B B. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues [J]. The Journal of physiology,2006,574(1):73-83.
    [33]Deshmukh A S, Long Y C, de Castro Barbosa T, et al. Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase (AMPK) α1-specific activity and glucose transport in human skeletal muscle[J]. Diabetologia,2010,53(6):1142-1150.
    [34]Egan D F, Shackelford D B, Mihaylova M M, et al. Phosphorylation of ULK1 (hATGl) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011,331(6016):456-461.
    [35]Buhl E S, Jessen N, Pold R, et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome[J]. Diabetes,2002,51(7):2199-2206.
    [36]Diraison F, Parton L, Ferre P, et al. Over-expression of sterol-regulatory-element-binding protein-lc (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release:modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)[J]. Biochem. J,2004,378:769-778.
    [37]Hardie D G. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism[J]. Proceedings of the Nutrition Society,2011,70(01):92-99.
    [38]Song G, Gao Y, Wang C, et al. Rosiglitazone reduces fatty acid translocase and increases AMPK in skeletal muscle in aged rats:a possible mechanism to prevent high-fat-induced insulin resistance [J]. Chinese Medical Journal (English Edition),2010,123(17):2384.
    [39]Tangeman L, Wyatt C N, Brown T L. Knockdown of AMP-activated protein kinase alpha 1 and alpha 2 catalytic subunits[J]. Journal of RNAi and gene silencing:an international journal of RNA and gene targeting research,2012,8:470.
    [40]Liu J F, Ma Y, Wang Y, et al. Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress[J]. Phytotherapy Research,2011,25(4):588-596.
    [41]Bijland S, Mancini S J, Salt I P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation[J]. Clinical Science,2013,124(8):491-507.
    [42]Canto C, Auwerx J. PGC-lalpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure [J]. Current opinion in lipidology,2009,20(2):98.
    [43]Fujii N, Ho R C, Manabe Y, et al. Ablation of AMP-activated protein kinase α2 activity exacerbates insulin resistance induced by high-fat feeding of mice[J]. Diabetes,2008, 57(11):2958-2966.
    [44]Petersen K F, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes [J]. New England Journal of Medicine,2004,350(7):664-671.
    [45]Koves T R, Ussher J R, Noland R C, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance[J]. Cell metabolism,2008, 7(1):45-56.
    [46]Glund S, Deshmukh A, Long Y C, et al. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle[J]. Diabetes,2007,56(6):1630-1637.
    [47]Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, et al. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle[J]. Diabetes,2008,57(12): 3211-3221.
    [48]Glund S, Treebak J T, Long Y C, et al. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle[J]. Endocrinology,2009,150(2):600-606.
    [49]吴乃君,冯凭,金秀平,等.二甲双胍对糖尿病大鼠脂肪组织AMPK和PPARy的表达及胰岛素抵抗影响[J].中国医院药学杂志,2011,31(4):297-299.
    [50]Viollet B, Lantier L, Devin-Leclerc J, et al. Targeting the AMPK pathway for the treatment of Type 2 diabetes[J]. Frontiers in Bioscience (Landmark Edition),2009,14: 3380.
    [51]Han D, Yang B, Olson L, et al. Activation of autophagy through modulation of 5prime-AMP-activated protein kinase protects pancreatic beta-cells from high glucose [J]. Biochem. J,2010,425:541-551.
    [52]Riboulet-Chavey A, Diraison F, Siew L K, et al. Inhibition of AMP-Activated Protein Kinase Protects Pancreatic β-Cells From Cytokine-Mediated Apoptosis and CD8+ T-Cell-Induced Cytotoxicity[J]. Diabetes,2008,57(2):415-423.
    [53]Miao X Y, Gu Z Y, Liu P, et al. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway [J]. Peptides,2013,39:71-79.
    [54]Cai Y, Martens G A, Hinke S A, et al. Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation[J]. Free Radical Biology and Medicine,2007, 42(1):64-78.
    [55]Lieberthal W, Tang M, Zhang L, et al. Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the alphal or the alpha2 isoform of the catalytic domain of AMPK[J]. BMC nephrology,2013,14(1):251.
    [56]Levine B, Mizushima N, Virgin H W. Autophagy in immunity and inflammation[J]. Nature,2011,469(7330):323-335.
    [57]Qiu S L, Xiao Z C, Piao C M, et al. AMP-activated Protein Kinase a2 Protects against Liver Injury from Metastasized Tumors via Reduced Glucose Deprivation-induced Oxidative Stress[J]. Journal of Biological Chemistry,2014,289(13):9449-9459.
    [58]Shaked M, Ketzinel-Gilad M, Cerasi E, et al. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP);in pancreatic beta-cells[J]. PloS one,2011,6(12):e28804.
    [59]Fu A, Eberhard C E, Screaton R A. Role of AMPK in pancreatic beta cell function[J]. Molecular and cellular endocrinology,2013,366(2):127-134.
    [60]胡亚耘.小檗碱对高糖高脂诱导的NIT-1胰岛β细胞胰岛素分泌和自噬的影响[D].华中科技大学,2012.
    [61]Lim A, Park S H, Sohn J W, et al. Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreaticβ-cells[J]. Diabetes,2009, 58(12):2813-2819.
    [62]Sun G, Tarasov A I, McGinty J, et al. Ablation of AMP-activated protein kinase al and a2 from mouse pancreatic beta cells and RIP2. Cre neurons suppresses insulin release in vivo[J]. Diabetologia,2010,53(5):924-936.
    [63]Salt IP, Palmer T M. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation[J]. Expert opinion on investigational drugs,2012,21(8):1155-1167.
    [64]Andreasen A S, Kelly M, Berg R M G, et al. Type 2 diabetes is associated with altered NF-κB DNA binding activity, JNK phosphorylation, and AMPK phosphorylation in skeletal muscle after LPS[J]. PLoS One,2011,6(9):e23999.
    [65]Lihn A S, Pedersen S B, Lund S, et al. The anti-diabetic AMPK activator AICAR reduces IL-6 and IL-8 in human adipose tissue and skeletal muscle cells[J]. Molecular and cellular endocrinology,2008,292(1):36-41.
    [66]Zhang W, Zhang X, Wang H, et al. AMP-activated protein kinase al protects against diet-induced insulin resistance and obesity[J]. Diabetes,2012,61(12):3114-3125.
    [67]Young A, Wu W, Sun W, et al. Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression[J]. Arteriosclerosis, thrombosis, and vascular biology,2009,29(11):1902-1908.
    [68]Penumathsa S V, Thirunavukkarasu M, Samuel S M, et al. Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2009,1792(1):39-48.
    [1]Zhang Q, Xiao X, Feng K, et al. Berberine moderates glucose and lipid metabolism through multipathway mechanism[J]. Evidence-Based Complementary and Alternative Medicine,2010,2011.
    [2]Shao M, Lu X, Cong W, et al. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress[J]. PloS one,2014, 9(3):e92574.
    [3]Srinivasan K, Ramarao P. Animal models in type 2 diabetes research:an overview[J]. Indian Journal of Medical Research,2012.
    [4]朱超,朱莹莹.II型糖尿病动物模型的构建[J].中国实验动物学报,2013,21(2):84-88.
    [5]Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action[J]. Biochemical and biophysical research communications,2010,397(3): 543-547.
    [6]伍静,王彬,鲍臻,等.糖尿病动物模型的特点及影响因素分析[J].现代生物医学进展,2013,25):4988-4990.
    [7]Klinger S, Poussin C, Debril M B, et al. Increasing GLP-1-induced β-cell proliferation by silencing the negative regulators of signaling cAMP response element modulator-a and DUSP14[J]. Diabetes,2008,57(3):584-593.
    [8]Grant S F A, Hakonarson H, Schwartz S. Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults?[J]. Endocrine reviews, 2010,31(2):183-193.
    [9]Luger A, Mattsson A F, KoLtowska-Haggstrom M, et al. Incidence of Diabetes Mellitus and Evolution of Glucose Parameters in Growth Hormone—Deficient Subjects During Growth Hormone Replacement Therapy A long-term observational study[J]. Diabetes care,2012,35(1):57-62.
    [10]Duong M, Cohen J I, Convit A. High cortisol levels are associated with low quality food choice in type 2 diabetes[J]. Endocrine,2012,41(1):76-81.
    [11]热娜,艾则孜.2型糖尿病患者神经-内分泌-免疫网络有关指标的紊乱及其临床意义[J].科技导报,2010,8):46-50.
    [12]高春艳,董卫军,赵丹威,等.血浆蛋白质Z及凝血4项检测在2型糖尿病并发症早期诊断中的意义[J].中国实验诊断学,2012,16(1):88-90.
    [13]Odegaard J I, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity[J]. Cold Spring Harbor perspectives in medicine,2012,2(3):a007724.
    [14]郑南,高丽娟,周妍妍,等.补肾健脾益气养阴法对糖尿病大鼠细胞免疫影响的研究[J].黑龙江医药,2010,23(006):913-915.
    [15]盖鑫,弓晓杰,鲁明明,等.人参治疗糖尿病有效成分研究[J].长春中医药大学学报,2013,29(3):539-540.
    [16]Shang W, Yang Y, Zhou L, et al. Ginsenoside Rbl stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes[J]. Journal of Endocrinology,2008, 198(3):561-569.
    [17]Gu J, Li W, Xiao D, et al. Compound K, a final intestinal metabolite of ginsenosides, enhances insulin secretion in MIN6 pancreatic β-cells by upregulation of GLUT2[J]. Fitoterapia,2013,87:84-88.
    [18]张汝学,贾正平,刘景龙,等.地黄寡糖对2型糖尿病大鼠肝脏糖代谢关键酶活性及基因表达的影响[J].中草药,2012,43(002):316-320.
    [19]Zhang R X, Li M X, Jia Z P. Rehmannia glutinosa:Review of botany, chemistry and pharmacology[J]. Journal of ethnopharmacology,2008,117(2):199-214.
    [20]Shieh J P, Cheng K C, Chung H H, et al. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats[J]. Journal of agricultural and food chemistry,2011, 59(8):3747-3753.
    [21]杨勇,容蓉,蒋春红,等.山茱萸不同极性提取物降糖作用的研究[J].辽宁中医杂志,2011,38(1):170-172.
    [22]Yin J, Ye J, Jia W. Effects and mechanisms of berberine in diabetes treatment[J]. Acta Pharmaceutica Sinica B,2012,2(4):327-334.
    [23]Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action[J]. Biochemical and biophysical research communications,2010,397(3): 543-547.
    [24]Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression[J]. Metabolism,2010,59(2): 285-292.
    [25]Wang Y, Campbell T, Perry B, et al. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet-and streptozotocin-induced diabetic rats[J]. Metabolism,2011, 60(2):298-305.
    [26]Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine[J]. Medical science monitor:international medical journal of experimental and clinical research,2011,17(7):RA164-7.
    [27]陈新,黄静,李盼盼,等.黄连生物碱对糖尿病小鼠降糖和氧化应激作用研究[J].亚太传统医药,2012,8(4):24-25.
    [28]Yang X Y, Qiang G F, Zhang L, et al. Salvianolic acid A protects against vascular endothelial dysfunction in high-fat diet fed and streptozotocin-induced diabetic rats[J]. Journal of Asian natural products research,2011,13(10):884-894.
    [29]高思华,龚燕冰,倪青,et al.肝脾肾同治法辨证治疗2型糖尿病的临床研究[J].中华中医药杂志,2009,8):1007-1010.
    [30]刘丽波.4791例体检者高血糖,高血脂,高血压相关性分析[J].数理医药学杂志,2010,23(1):61-64.
    [31]Crawford A G, Cote C, Couto J, et al. Prevalence of obesity, type II diabetes mellitus, hyperlipidemia, and hypertension in the United States:findings from the GE Centricity Electronic Medical Record database [J]. Population health management,2010,13(3): 151-161.
    [32]李琼,曾丹.脂肪肝与高血压,高血糖,高血脂,超重的相关性[J].中国老年学杂志,2012,31(23):4530-4532.
    [33]Saltiel A R, Kahn C R. Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature,2001,414(6865):799-806.
    [34]Lopaschuk G D. Abnormal mechanical function in diabetes:relationship to altered myocardial carbohydrate/lipid metabolism[J]. Coronary artery disease,1996,7(2): 116-123.
    [35]Muoio D M, Neufer P D. Lipid-induced mitochondrial stress and insulin action in muscle[J]. Cell metabolism,2012,15(5):595-605.
    [36]Henriksen E J, Diamond-Stanic M K, Marchionne E M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes[J]. Free Radical Biology and Medicine,2011, 51(5):993-999.
    [37]Kasznicki J, Kosmalski M, Sliwinska A, et al. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy [J]. Molecular biology reports,2012,39(9): 8669-8678.
    [38]Mariappan N, Elks C M, Sriramula S, et al. NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes [J]. Cardiovascular research, 2010,85(3):473-483.
    [39]徐雷,冯波,王华,等.抗氧化剂α-硫辛酸对2型糖尿病大鼠动脉组织NF-κB表达的影响[J].中国病理生理杂志,2008,23(12):2474-2475.
    [40]戴青原.氧化应激与糖尿病及动脉粥样硬化研究进展[J].心血管病学进展,2013,34(5):664-668.
    [41]Zraika S, Hull R L, Udayasankar J, et al. Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis[J]. Diabetologia,2009,52(4):626-635.
    [42]Doronzo G, Viretto M, Russo I, et al. Nitric oxide activates PI3-K and MAPK signalling pathways in human and rat vascular smooth muscle cells:Influence of insulin resistance and oxidative stress[J]. Atherosclerosis,2011,216(1):44-53.
    [43]Higashi Y, Noma K, Yoshizumi M, et al. Endothelial function and oxidative stress in cardiovascular diseases[J]. Circulation journal:official journal of the Japanese Circulation Society,2009,73(3):411-418.
    [44]唐金国,刘恪英.氧化应激在动脉粥样硬化中的作用及抗氧化治疗研究进展[J].检验医学与临床,2013,14):1885-1889.
    [45]Kearney M T. Changing the Way We Think About Endothelial Cell Insulin Sensitivity, Nitric Oxide, and the Pathophysiology of Type 2 Diabetes The FoxO Is Loose [J]. Diabetes,2013,62(5):1386-1388.
    [46]何月涵,吴锡链,陈丽娜,等.SOD, MDA和NO在2型糖尿病胰岛素抵抗阶段和糖尿病晚期阶段含量变化的实验研究[J].第十次中国生物物理学术大会论文摘要集,2006,404.
    [47]Vardi N, Parlakpinar H, Cetin A, et al. Protective effect of β-carotene on methotrexate-induced oxidative liver damage[J]. Toxicologic pathology,2010,38(4): 592-597.
    [48]Fukai T, Ushio-Fukai M. Superoxide dismutases:role in redox signaling, vascular function, and diseases[J]. Antioxidants & redox signaling,2011,15(6):1583-1606.
    [49]衡先培,黄苏萍,程心玲,等.丹栝方干预糖尿病动脉粥样硬化大鼠糖脂代谢及氧化应激研究[J].中国中西医结合杂志,2013,33(2):244-51.
    [50]王艳红,岳宗相,刘致勤,等.参芪复方对自发性2型糖尿病GK大鼠氧化应激损伤的影响[J].现代临床医学,2013,39(1):29-31.
    [51]Samarghandian S, Borji A, Delkhosh M B, et al. Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats[J]. Journal of Pharmacy & Pharmaceutical Sciences,2013,16(2):352-362.
    [1]杨娜,马峰,张丽荣,等.单味中药有效成分治疗糖尿病及其并发症机理探讨[J].吉林中医药,2009(3):244-246.
    [2]赵轩,高彦彬.改善胰岛素抵抗的单味中药成分和机制研究[J].世界中医药,2013,8(7):840-843.
    [3]王芬,何华亮,刘铜华.抗糖尿病中药活性成分及其作用机制的研究进展[J].时珍国医国药,2008,19(3):766-767.
    [4]季芳,肖国春,董莉,等.药用植物来源的α-葡萄糖苷酶抑制剂研究进展[J].中国中药杂志,2010(12):1633-1640.
    [5]谢科.小檗碱改善胰岛素抵抗的研究进展[J].中华内分泌代谢杂志,2011,27(864):867.
    [6]李佳,王成章,严学兵,等.植物皂苷生物活性研究进展[J].草业科学,2012,3:488-494.
    [7]杨小红,王素利,张伟程.中医药对2型糖尿病胰岛p细胞功能的早期保护研究进展[J].中医药临床杂志,2010(3):268-272.
    [8]Morton G J, Schwartz M W. Leptin and the CNS Control of Glucose Metabolism[J]. Physiological reviews,2011,91(2):389.
    [9]Konner A C, Bruning J C. Selective insulin and leptin resistance in metabolic disorders[J]. Cell metabolism,2012,16(2):144-152.
    [10]刘芬,万春燕,杨志秋,等.细胞因子信号转导抑制物与糖尿病的研究进展【J].细胞生物学杂志,2009,31(1):33-38.
    [11]唐振媚,黄群英,林芳,等.2型糖尿病和高血压病患者瘦素水平及其相关性分析[J].现代中西医结合杂志,2013,22(34):3770-3771.
    [12]王丽红,陈诺琦.瘦素的生物学效应及与糖尿病的联系[J].中国实用医药,2010,19):239-241.
    [13]张黎群,李晋芳.血清瘦素,脂联素等指标与2型糖尿病湿热证相关性研究[J].中医学报,2011,26(001,):79-80.
    [14]尚小平,石爱民.参葛降糖胶囊对2型糖尿病大鼠脂代谢及脂肪细胞因子影响的实验研究[J].中国临床研究,2013,26(7):637-639.
    [15]Minokoshi Y, Kim Y B, Peroni O D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nature,2002,415(6869):339-343.
    [16]Lim C T, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling[J]. Journal of molecular endocrinology,2010,44(2):87-97.
    [17]张远远,刘星,何君,等.AMPK基因在C57BL/6J小鼠糖脂代谢中的作用[J].中国糖尿病杂志,2012,19(12):935-938.
    [18]Mu J, Brozinick Jr J T, Valladares O, et al. A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle[J]. Molecular cell, 2001,7(5):1085-1094.
    [19]Chopra I, Li H F, Wang H, et al. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle[J]. Diabetologia,2012,55(3):783-794.
    [20]李晓山,买淑鹏,王重建,等.高脂膳食对大鼠肝组织腺苷酸活化蛋白激酶表达的影响[J].华中科技大学学报:医学版,2008,37(1):44-47.
    [21]Vitzel K F, Bikopoulos G, Hung S, et al. Chronic treatment with the AMP-kinase activator AICAR increases glycogen storage and fatty acid oxidation in skeletal muscles but does not reduce hyperglucagonemia and hyperglycemia in insulin deficient rats[J]. PloS one,2013,8(4):e62190.
    [22]Hu R, Yan H, Hao X, et al. Shizukaol D Isolated from Chloranthus japonicas Inhibits AMPK-Dependent Lipid Content in Hepatic Cells by Inducing Mitochondrial Dysfunction[J]. PloS one,2013,8(8):e73527.
    [23]杨子初,廖煌伶.AMPK在转化医学研究中的意义与展望[J].中国细胞生物学学报,2013,35(3):357-366.
    [24]李艳英,耿厚法,班博.α-硫辛酸对糖尿病大鼠血糖,血脂及肝脏内AMPKa表达及活性的影响[J].中国生物制品学杂志,2010,23(9):957-960.
    [25]李楠,范颖,贾旭鸣,等.黄芪及其有效部位对糖尿病模型大鼠AdipoRl, AMPK mRNA表达的影响[J].中华中医药杂志,2011,26(5):1176-1181.
    [26]王宁,张娟,建方方,等.小檗碱激活AMPK抑制3T3-L1脂肪细胞分化[J].放射免疫学杂志,2012,25(3):273-275.
    [27]郭俊杰,潘云蓉,赵玉立.益气化浊胶囊通过AMPK信号通路改善胰岛素抵抗的实验研究[J].中华中医药学刊,2013,31(12):2685-2688.
    [28]Samuel V T, Shulman G I. Mechanisms for insulin resistance:common threads and missing links[J]. Cell,2012,148(5):852-871.
    [29]Yu L F, Qiu B Y, Nan F J, et al. AMPK activators as novel therapeutics for type 2 diabetes[J]. Current topics in medicinal chemistry,2010,10(4):397-410.
    [30]Ruderman N B, Carling D, Prentki M, et al. AMPK, insulin resistance, and the metabolic syndrome[J]. The Journal of clinical investigation,2013,123(7):2764.
    [31]Coletta D K, Sriwijitkamol A, Wajcberg E, et al. Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo:a randomised trial[J]. Diabetologia,2009,52(4):723-732.
    [32]衣雪洁,王一涵,邹文姝,等.运动对胰岛素抵抗状态下瘦素-AMPK-ACC信号转导通路的影响[J].沈阳体育学院学报,2012,31(1):77-80.
    [33]Richter E A, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake[J]. Physiological reviews,2013,93(3):993-1017.
    [34]孙长颢,周晓蓉,闻颖,等.共轭亚油酸对胰岛素抵抗大鼠葡萄糖运载体4蛋白表达影响的研究[J].中华预防医学杂志,2007,01:25-28.
    [35]Hussey S E, McGee S L, Garnham A, et al. Exercise increases skeletal muscle GLUT4 gene expression in patients with type 2 diabetes[J]. Diabetes, Obesity and Metabolism, 2012,14(8):768-771.
    [36]公小娟,刘畅,姜丁文,等.振动运动对大鼠骨骼肌AMPK-GLUT4糖代谢通路的影响[J].中国临床解剖学杂志,2013,31(3):293-298.
    [37]Tan Y, Kamal M, Wang Z, et al. Chinese herbal extracts (SK0506) as a potential candidate for the therapy of the metabolic syndrome[J]. Clinical Science,2011,120: 297-305.
    [38]马建,马晓静,杜丽坤,等.祛胰抵方对2型糖尿病胰岛素抵抗大鼠骨骼肌细胞膜葡萄糖转运蛋白4的影响[J].云南植物研究,2010,5:420-426.
    [39]陈频,徐向进,史道华.复方丹参滴丸对胰岛素抵抗大鼠糖脂代谢的影响[J].中成药,2008,30(4):489-493.
    [40]Copps K D, White M F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2[J]. Diabetologia, 2012,55(10):2565-2582.
    [41]Shaw L M. The insulin receptor substrate (IRS) proteins [J]. Cell Cycle,2011,10(11): 1750-1756.
    [42]Long Y C, Cheng Z, Copps K D, et al. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways [J]. Molecular and cellular biology,2011,31(3):430-441.
    [43]Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity[J]. Kidney international,2011,79(8):883-896.
    [44]Chopra I, Li H F, Wang H, et al. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle[J]. Diabetologia,2012,55(3):783-794.
    [45]郭俊杰,张素超,赵玉立.益气化浊胶囊对KKAy小鼠骨骼肌组织中胰岛素受体底物表达的影响[J].中成药,2013,35(12):2733-2735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700