用户名: 密码: 验证码:
基于RANKL/RANK/OPG轴的绝经后骨质疏松症发病机制及健骨颗粒干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、目的:
     阐明去卵巢大鼠骨质疏松症与RANKL/RANK/OPG系统的关系,以及健骨颗粒干预对该系统及破骨细胞RANK信号通路关键节点的调节作用,从破骨细胞的分化和功能调节的角度揭示健骨颗粒防治绝经后骨质疏松症的作用机制。
     二、方法:
     1去卵巢骨质疏松大鼠OPG/RANKL表达的动态变化及健骨颗粒的干预作用。
     1.1动物实验:6月龄雌性SD大鼠160只,随机分成假手术组、去卵巢模型组、去卵巢+雌激素组和去卵巢+健骨颗粒组各40只。各组行双侧卵巢结扎切除术,假手术组除未行卵巢结扎切除外,其余步骤同模型组。术后3天健骨颗粒组给予健骨颗粒2g·kg-1·d-,雌二醇组给予17β--雌二醇100μg·kg-1·d-1,假手术组和模型组以生理盐水灌胃。术后2、6、12、24周每组分别处死10只,取血清、股骨、胫骨和腰椎骨备用。
     1.2指标检测:双能X射线检测骨密度;三点弯曲法行股骨生物力学检测;胫骨上段制作石蜡切片,MASSON染色和TRAP染色后进行形态学分析骨小梁面积和破骨细胞量;ELISA检测血清中的TRAP、BALP、OC、RANKL和OPG含量;腰椎骨分别提取组织RNA和蛋白,实时荧光定量PCR法检测RANKL/OPG的mMRNA表达,Western Blot法检测RANKL/OPG蛋白的表达。
     2健骨颗粒对破骨细胞分化和RANK信号通路的影响
     2.1含药血清制备:取3月龄雄性SD大鼠20只,分为中药组和对照组各10只,中药组给予健骨颗粒2g·kg-1·d-1,对照组给予生理盐水2m1·d-,连续灌胃7天,于最后一次灌胃后1h腹主动脉无菌取血,凝固后离心取血清备用。
     2.2细胞培养和指标检测:破骨细胞前体细胞株RAW264.7分为阴性对照组、空白血清组和含药血清组。阴性对照组不加RANKL,空白血清组和含药血清组在50ng/ml RANKL诱导下,分别加入10%空白血清和健骨颗粒含药血清培养。干预6天后行TRAP染色,观察计算破骨细胞分化情况;干预24、48、96小时后分别提取细胞RNA蛋白,实时荧光定量PCR法和Western Blot法检测RANK信号通路受体、TRAF6、NF-κB(P50和P52亚基)、c-Fos和NFATcl的mRNA及蛋白的表达。
     三、结果:
     1去卵巢术后12周模型组与假手术对照组相比,骨密度和骨生物力学指标持续下降,造模成功。去卵巢术后2-12周模型组破骨细胞增加,血清TRAP和血清BALP, OC等骨重建指标均明显升高,补充雌激素可逆转去卵巢导致的骨密度和骨生物力学指标下降,以及骨重建指标变化。与假手术组相比,模型组术后2周骨RANKL表达升高而血清RANKL下降,术后6-24周与假手术组相比均无显著差别。术后2周模型组骨组织OPG明显下降,随后逐渐升高,但与同期假手术对照组相比,模型组骨OPG始终较低;血清OPG在术后6-12周明显低于假手术组。补充雌激素可缓解去卵巢后骨组织和血清RANKL/OPG的变化。相关性分析表明骨RANKL与破骨细胞骨吸收呈正相关,但与血清RANKL无相关性;骨OPG与骨重建指标负相关,与血清OPG表达水平呈正相关。
     2健骨颗粒干预可明显增加去卵巢大鼠的骨密度,提高骨生物力学性能,降低去卵巢大鼠骨组织破骨细胞量和血清TRAP、BALP和0C等骨重建指标表达。健骨颗粒可降低去卵巢大鼠骨组织RANKL的表达,提高去卵巢大鼠骨组织和血清OPG的表达。
     3RANKL刺激增加破骨前体细胞RANK受体及其信号通路下游转录因子NF-κB (P50)、c-Fos和NFATcl的mRNA和蛋白表达,从而诱导破骨细胞分化。健骨颗粒含药血清能抑制RANKL诱导的体外破骨细胞分化,降低RANK通路受体、c-Fos、NFATcl的mRNA和蛋白表达,但对NF-KB和TRAF6的表达无明显作用。
     四、结论:
     1RANKL和OPG表达水平均随大鼠去卵巢术后时间呈动态非线性变化。血清OPG水平可作为绝经后骨质疏松症预测和防治疗效观察的参考指标。
     2健骨颗粒能缓解去卵巢后骨组织RANKL和OPG表达的异常变化,降低骨重建水平,达到防治绝经后骨质疏松症的目的。
     3健骨颗粒可通过下调RANK受体及其信号通路下游转录因子c-Fos和NFATcl的表达,抑制破骨细胞的分化,降低骨吸收水平,从而防治骨质疏松症。
Objective
     To clarify the relationships between osteoporosis of ovariectomized rats and OPG/RANK/RANKL system, and reveal the mechanism of Jiangu Granule preventing postmenopausal osteoporosis from the aspect of osteoclast differentiation and function.
     Methods
     1Dynamic changes of OPG/RANKL expression in ovariectomy-induced osteoporotic rats and effects of Jiangu Granule treatment.
     1.1Animal experiments:160female SD rats of6months old were randomly divided into4groups:sham operated, Ovariectomized, ovariectomized+estrogen and OVX+Jiangu Granule,40each group. Each group underwent bilateral ovariectomy exepted for the sham group, which were subjeted to sham surgery.3days after operation, OVX+Jiangu Granule group were given Jiangu Granule2g·kg-1·d-1, estradiol17p-estradiol group received100μg·kg-1·d-1, sham operation group and model group were given saline gavage. After2,6,12and24weeks,10rats of each group were sacrificed, the serum, femur, tibia and lumbar spine bone were harvested.
     1.2Detection of indexes:bone density was measured by dual-energy X-rays; three-point bending method were used in femur biomechanical testing; tibia were made paraffin setions, trabecular area and the amount of osteoclasts were measured after MAS SON staining and TRAP staining; serum TRAP, BALP, OC, RANKL and OPG levels were detected by ELISA; lumbar were extracted mRNA and protein, RANKL/OPG mRNA expression was detected by real-time PCR, and the protein was detectd by Western Blot assay.
     2The effect of Jiangu Granule on osteoclast differentiation and RANK signaling. pathway
     2.1Preparation of serum-containing drugs:20male SD rats of3months old were divided into Jiangu Granule group and control group,10each. Jiangu Granule group received medicine of2g·kg-1·d-1, the control group received saline2ml·d-1for7days.1h after the last gavage, abdominal aortic blood was harvested and centrifugated after solidification to obtain the serum.
     2.2Cell culture and index detection:osteoclast precursor cell line RAW264.7were cultured and separated into3groups:negative control group, blank serum and drug serum group. Negative control group without RANKL, blank serum and drug serum group containing with50ng/ml RANKL, and10%blank serum or drug serum. After6days culture, the cells were TRAP stained to calculate differentiated osteoclasts;24,48and96hours after the treatment, cells were extracted RNA and proteins, real-time quantitative PCR and Western Blot assay were applied to detect mRNA and protein expression of RANK and TRAF6, NF-κB (P50and P52subunits), c-Fos and NFATc1.
     Results
     1Compared with the sham-operated group, bone mass and biomechanical indicators of model group continued to decline, which indicates the success of osteoporosis model.2-12weeks post operation, bone osteoclasts, indicators of bone remodeling including serum TRAP, serum BALP and OC of the model group were significantly increased, and estrogen replacement therapy can reverse the decline of bone density and the increase of bone biomechanical indicators induced by ovariectomy. Compared with the sham operated group, bone RANKL in model group increased at2week post OVX, after which they fell to near the level of the sham group. OPG of bone model group decreased sharply at2week post OVX, and subsequently increased, but compared with the same period of sham control group, bone OPG in model group consistently lower; Serum OPG in OVX group was significantly lower than that in the sham group during6-12week post OVX. Estrogen can relieve bone and serum RANKL/OPG changes after ovariectomy. Correlation analysis showed a positive correlation between bone RANKL and osteoclast resorption indicators, but no correlation in RANKL levels between bone and serum. There was a positive correlation in OPG levels between bone and serum, while a negative correlation between bone OPG level and bone resorption markers.
     2Jiangu granule treatment can significantly increase bone density and bone strength in ovariectomized rats, and reduce osteoclasts volume and indicators of bone remodeling including serum TRAP, BALP and OC. Jiangu Granule can reduce bone RANKL expression, and increase OPG expression in bone and serum of ovariectomized rats.
     3RANKL stimulation increased mRNA and protein expression of NF-κB (P50), c-Fos and NFATc1, thus induced osteoclast differentiation; Jiangu Granule containing serum can reduce the rate of osteoclast differentiation induced by RANKL, and reduce mRNA and protein expression of RANK, c-Fos and NFATc1.
     Conclusions
     1RANKL and OPG showed nonlinear variations with time post ovariectomy in rats. Serum OPG level can be used as an indicator of postmenopausal osteoporosis disease.
     2Jiangu Granule may regulate the expression of RANKL and OPG to affect bone remodeling, so as to prevent and treat osteoporosis induced by ovariectomy.
     3Jiangu Granule may supress osteoclast differentiation in vitro by regulate RANK, c-Fos and NFATc1expression.
引文
[1]Consensus Development Conference:Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med.1993,94:646-650
    [2]邱贵兴.骨质疏松性骨折——被忽视了的健康杀手[J].中华医学杂志.2005,85(11):730
    [3]Seifert-Klauss V, Fillenberg S, Schneider H, et al. Bone loss in premenopausal, perimenopausal and postmenopausal women:results of a prospective observational study over 9 years. Climacteric. 2012,15(5):433-40
    [4]de Villiers TJ. Bone health and osteoporosis in postmenopausal women. Best Pract Res Clin Obstet Gynaecol.2009,23(1):73-85
    [5]J.Caetano-Lopes, H.canhao, J.E.Fonseca. Osteoimmunology-The hidden immune regulation bone[J]. Autoimmunity Aeviews.2009.8:250-255
    [6]Anne-Priscille T. Receptor activator of nuclear factor-κB ligand and osteoprotegerin:maintaining the balance to prevent bone loss. Clinical Interventions in Aging.2010,18(11):345-354
    [7]Martin TJ. Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop. 2013.4(4):186-197
    [8]Peter P, Jan Z, David W. S, etc. Theoretical, investigation of the role of the RANK-RANKL-OPG system in bone remodeling. Journal of Theoretical Biology.2010,262(2):306-316
    [9]Blair JM, Zheng Y, Dunstan CR. RANK ligand. Int J Biochem Cell Biol.2007,39(6):1077-81
    [10]Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, etc. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell.1998,;93(2):165-76
    [11]Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H, Shima N, etc. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun.1998,246(1):199-204
    [12]Fuller K, Wong B, Fox S, Choi Y, Chambers TJ. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med.1998,188(5):997-1001
    [13]Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, etc. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol.1999,145(3):527-38
    [14]Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K, Udagawa N, etc. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol. 1999,163(1):434-442
    [15]Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, etc. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci. USA.1999,96:35403-545
    [16]Bolon B, Carter C, Daris M, Morony S, Capparelli C, Hsieh A, etc. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Mol Ther. 2001,3(2):197-205
    [17]Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, etc. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell.1997,89(2):309-319
    [18]Tanaka H1, Mine T, Ogasa H, Taguchi T, Liang CT. Expression of RANKL/OPG during bone remodeling in vivo. Biochem Biophys Res Commun.2011,411(4):690-4
    [19]Weitzmann MN. The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. Scientifica (Cairo).2013, 2013:125705
    [20]Trouvin AP, Goeb V. Receptor activator of nuclear factor-KB ligand and osteoprotegerin:maintaining the balance to prevent bone loss. Clin Interv Aging.2010,18(11):345-354
    [21]Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, etc. Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. J Theor Biol.2010,262(2):306-316
    [22]Joseph L, Yongwon C, Mark H, etc. Osteoimmunology:Interactions of the Immune and Skeletal Systems, Elsevier.2011
    [23]Roberto R. The immune system and bone[J]. Archives of Biochemistry and Biophysics.2010, 503(1):41-53
    [24]Silva I1, Branco JC. Rank/Rankl/opg:literature review. Acta Reumatol Port.2011,36(3):209-18 Wang XF1, Zhang YK, Yu ZS, Zhou JL. The role of the serum RANKL/OPG ratio in the healing of
    [25]intertrochanteric fractures in elderly patients. Mol Med Rep.2013,7(4):1169-72
    [26]Salgueiro ME, Manso G, Castells X,, et al. Trends in the pharmacological treatment of osteoporosis in Spain from 2000 to 2008. Maturitas.2013,74(1):74-8
    [27]Lacey DL, Boyle WJ, Simonet WS, et al. Bench to bedside:elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov.2012,11(5):401-19
    [28]李媚,袁婷婷,何勇静等.中药方剂防治骨质疏松症的研究概况.中国实验方剂学杂志.2014,20(6):233-238
    [29]戴建锋,方瑞华,施昕磊.中药治疗骨质疏松症的研究进展.中国乡村医药.2014,21(3):78-79
    [30]戎堃,刘彬丽,李木子等.中药防治骨质疏松的研究进展.世界中医药.2013,(12):1505-1507
    [31]邢燕,田雪峰,张倩楠等.中药治疗骨质疏松进展.中国骨质疏松杂志.2013,19(3):302-306
    [32]薛长松.中药对可调控骨重建过程相关因子的作用.黑龙江中医药.2013,(5):79-80
    [33]薛长松.中药对调控骨重建过程信号通路的作用.黑龙江中医药.2013,(4):77-79
    [34]宋芳婷.补肾中药抗骨质疏松机理研究进展.黑龙江中医药.2013,(1):55-56
    [35]林燕萍,周瑞祥,黄美雅,等.健骨颗粒对去卵巢骨质疏松模型大鼠骨质量的影响.中国中西医结合杂志.2004,24(5):431-434
    [36]吴银生,黄云梅,黄美雅等.健骨颗粒含药血清对成骨细胞增殖的影响.中华中医药学刊.2010,28(7):1402-1404
    [37]林燕萍,李咏高,马建华等.健骨颗粒对去卵巢骨质疏松模鼠骨代谢的影响.福建中医学院学报.2001,11(4):17-19
    [38]乔伟伟,赵先哲.骨质疏松动物模型研究进展和展望.实验动物与比铰医学.2011,31(1):73-78
    [39]唐利,王鸿度,陈庄.骨质疏松动物模型形态学与计量学研究及其应用中国老年医学杂志.2012,32(17):3851-3
    [40]Crockett JC, Rogers MJ, Coxon FP, et al. Bone remodelling at a glance. J Cell Sci.2011,124(7):991-8
    [41]Sims NA, Gooi JH. Bone remodeling:Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol.2008,19(5):444-51
    [42]Coleman R, Brown J, Terpos E, et al. Bone markers and their prognostic value in metastatic bone disease:clinical evidence and future directions. Cancer Treat Rev.2008,34(7):629-39
    [43]Arlot ME, Delmas PD, Chappard D, Meunier PJ. Trabecular and endocortical bone remodeling in postmenopausal osteoporosis:comparison with normal postmenopausal women. Osteoporos Int. 1990,1(1):41-9
    [44]Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin:paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol.2002,22(4):549-553
    [45]Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev.2008,29(2):155-192
    [46]高飞,霍建忠。不同龄小鼠成骨细胞OPG和RANKL表达的变化,中华风湿病学杂志.2005,9(4):219-221
    [47]Kudlacek S, Schneider B, Woloszczuk W, et al. Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone.32(6):681-686,2003
    [48]Oh ES, Rhee EJ, Oh KW, et al. Circulating osteoprotegerin levels are associated with age, waist-to-hip ratio, serum total cholesterol, and low-density lipoprotein cholesterol levels in healthy Korean women. Metabolism.54(1):49-54,2005
    [49]Bord S, Ireland DC, Beavan SR, et al.The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone.2003,32(2):136-41
    [50]Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology.1999,140(9):4367-70
    [51]Di Carlo C, Tommaselli GA, Gargano V, et al. Effects of estrogen-progestin therapy on serum levels of RANKL, osteoprotegerin, osteocalcin, leptin, and ghrelin in postmenopausal women. Menopause.2007, 14(1):38-44
    [52]Phipps AI, Doherty JA, Voigt LF, et al. Long-term use of continuous-combined estrogen-progestin hormone therapy and risk of endometrial cancer. Cancer Causes Control.2011,22(12):1639-46
    [53]Hikita A, Yana I, Wakeyama H, et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand. J Biol Chem.2006,281(48):36846-55
    [54]金珉廷,郑洪新.中医肾藏精生髓主骨理论与骨质疏松症.辽宁中医药大学学报.2009,11(3):35-36
    [55]张京松.中医“补肾法”治疗老年骨质疏松症临床研究.中华中医药学刊.2014,32(2):430-432
    [56]姜群群,沈云鹏,李慧.从肾论治原发性骨质疏松性骨折.云南中医中药杂志.2013,34(4):83-84
    [57]彭建,李万逸,李海平.补肾健骨方治疗骨质疏松性椎体骨折的临床疗效分析.中国实用医药.2013,(17):42-44
    [58]王少君,李艳.中医理论对骨质疏松症发病机制的认识.世界中医药.2013,(9);1044-1048
    [59]周鹏,胡素敏,高学敏等.骨质疏松的肾脾先后天制化病机探讨及辨证用药.时珍国医国药.2011,22(3):681-682
    [60]孙海霞.脾肾互赞的理论渊源及其对后世的影响.山西中医学院学报.2007,8(3):14-15
    [61]支英杰,谢雁鸣,徐桂琴.传统医学对绝经后骨质疏松症病因病机的认识.辽宁中医药大学学报.2010,12(6):144-6
    [62]周鹏,胡素敏,高学敏.骨质疏松的肾脾先后天制化病机探讨及辨证用药.时珍国医国药.2011,22(3):681-2
    [63]林燕萍,周瑞祥,马建华,等.健骨颗粒对骨质疏松模型大鼠垂体-肾上腺轴的影响[J].中国骨伤.2004,17(1):19-21
    [64]林燕萍,李咏高,王和鸣,等.健骨颗粒对骨质疏松模鼠垂体-甲状腺轴的影响[J].中国骨伤.2002,15(3):154-156
    [65]林煜,吴银生,卢天祥,黄云梅,林燕萍.健骨颗粒对成骨细胞分化的影响[J],中华中医药杂志,2012,27(1):162-165
    [66]Kartsogiannis V1, Ng KW. Mol Cell Endocrinol. Cell lines and primary cell cultures in the study of bone cell biology.2004,228(1-2):79-102
    [67]肖新华,廖二元,董源媛.小鼠单核细胞RAW264.7的细胞生物学特征.南华大学学报(医学版).2008,36(3):282-285
    [68]Jurdic P, Saltel F, Chabadel A, Destaing O. Podosome and sealing zone:Specificity of the osteoclast model. Eur J Cell Biol.2006,85(3/4):195-202
    [69]王松,沈霖.破骨细胞分化、形成过程中表现型特点.武汉体育学院学报.2007,41(4):62-66
    [70]柯玮,朱建华.中药血清药理方法学的研究概况.中国医药指南.2011,9(6):24-25
    [71]黄臣虎,陆茵,高骁君,孙志广,严令耕.中药血清药理学研究进展.中国实验方剂学杂志.2011,17(10):266-71
    [72]Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone.2007;40(2): 251-64
    [73]Xu J, Wu HF, Ang ES, et al.. NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev.2009;20(1):7-17
    [74]Darnay BG, Ni J, Moore PA, et al. Activation of NF-kB by RANK requires tumor necrosisfactor receptor-associated factor (TRAF) 6 and NF-kB-inducing kinase. Identification of a ncvelTRAF6 interaction motif. J Biol Chem 1999;274(12):7724-31
    [75]Wong BR, Bresser D, Kim N, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999;4(6):1041-9
    [76]Xu Jl, Wu HF, Ang ES, et al. Woloszyn M, Zheng MH, Tan RX. NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev.2009;20(1):7-17
    [77]Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun.2009, 378(1):1-5
    [78]Matsuo K, Owens JM, Tonko M, et al.Fosll is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet.2000,24(2):184-7
    [79]Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev.2005,208 (1):126-40
    [80]Zhao Q, Wang X, Liu Y, et al. NFATc1:functions in osteoclasts. Int J Biochem Cell Biol.2010, 42(5):576-9
    [81]Negishi-Koga T, Takayanagi H. Ca2+-NFATcl signaling is an essential axis of osteoclast differentiation. Immunol Rev.2009,231(1):241-56
    [1]J.Caetano-Lopes, H.canhao, J.E.Fonseca. Osteoimmunology-The hidden immune regulation bone[J]. Autoimmunity Aeviews.2009;8:250-255
    [2]Anne-Priscille T. Receptor activator of nuclear factor-KB ligand and osteoprotegerin:maintaining the balance to prevent bone loss[J]. Clinical Interventions in Aging.2010,18(11):345-354
    [3]Peter P, Jan Z, David W. S,etc.Theoretical. investigation of the role of the RANK-RANKL-OPG system in bone remodeling[J]. JoumRNAl of Theoretical Biology.2010;262(2):306-316
    [4]Liu C, Walter TS, Huang P, et al. Structural and functional insights of RANKL-RANK interaction and signaling[J]. J Immunol.2010;184(12):6910-6919
    [5]Brendan F. Boyce, Lianping Xing. Functions of RANKL/RANK/OPG in bone modeling and remodeling[J].Arch Biochem Biophys.2008,473(2):139-146
    [6]奚正德,胡峻熊RANKL-RANK信号传导与破骨细胞生成及骨病[J].中国骨质疏松杂志.2008,14(4):286-293
    [7]Asagiri M, Takayanagi H.The molecular understanding of osteoclast differentiation [J]. Bone.2007;40: 251-264
    [8]Toshihide M, Akinori M, Nobuyuki U, et al.Identyfication of cell cycle-arrested quiescent osteoclast precursors in vivo[J]. J Cell Biol.2009;184(4):541-554
    [9]Takayanagi H. Osteoimmunology:shared mechanisms and crosstalk the bone and immune systems[J]. Nat Rev Immunol,2007;7:292-304
    [10]Zhao C, Irie N,Takada Y,et al. Bidirectional ephrinB2-EphB4. Signaling controls bone homeostasis[J]. Cell Metab,2006; 4(2):111-121
    [11]Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease[J]. Cell.2008;133(l): 38-52
    [12]Roberto R. The immune system and bone[J]. Archives of Biochemistry and Biophysics. 2010;503(1):41-53
    [13]Wen Zhao, Yuying Liu, Catherine M. The Role of T Cells in Osteoporosis, an Update[J]. Int J Clin Exp Pathol.2009;(2):544-552
    [14]Kojiro S, Ayako S,Kazuo O,et al.Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction [J]. J Exp Med.2006;203(12):2673-2682
    [15]张立智,蒋垚.骨免疫学研究进展.国际骨科学杂志[J].2009;1O(1):218-235
    [16]Li X, Qin L, Bergenstock M, et al. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts[J]. J Biol Chem.2007;282(45):33098-33106
    [17]Zhao B, Takamil M, Yamadal A, et al. Interferon regulatory factor 8 regulates bone metabolism by suppressing osteoclastogenesis[J]. Nat Med.2009; 15(9):1066-71
    [18]Gao Y, Grassi F, Ryan MR, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation [J]. J Clin Invest.2007;117(1):122-132
    [19]Kotake S, Nanke Y, Mogi M, et al. IFN-gamma producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL[J]. Eur J Immunol.2005; 35(11):3353-3363
    [20]吴巍,姚欣欣,朱辛奕.TGF-B在骨组织中作用的研究进展[J].吉林医药学院学报.2009;30(2):45-47
    [21]Fre'de'ric B, Laurence D, Marc B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors [J]. Cytokine & Growth Factor.2009;20:19-28
    [22]P. Lencel, D. MagneInflammaging:The driving force in osteoporosis? Medical Hypotheses. 2011;76:317-321
    [23]Jabbar S, Drury J, Fordham JN. Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis[J]. J Clin Pathol.2011;64(9):354-357
    [24]Piet G. Emerging treatments for postmenopausal Osteoporosis-focus on denosumab[J]. Clinical Interventions in Aging.2009;4:241-250
    [25]Receptor activator of nuclear factor-κB ligand and osteoprotegerin:maintaining the balance to prevent bone loss[J]. Clinical Interventions in Aging.2010;5:345-354
    [26]Dai Y, Shen L. Relationships between serum osteoprotegerin, matrix metalloproteinase -2 levels and bone metabolism in postmenopausal women[J]. Chin Med J (Engl).2007,120(22):2017-2021
    [27]Liu JM, ZhaoHY, NingG, et al. Relationships between the changes of serum levels of OPG and RANKL with age, menopause, bone biochemical markers and bone mineral density in Chinesewomen aged 20-75[J]. Calcif Tissue Int.2005,76(1):1-6
    [28]V. Breuil, M. Ticchioni, J. Testa, et al. Immune changes in post-menopausal osteoporosis:the Immunos study[J]. Osteoporos Int.2010; 21:805-814
    [29]Jaya Gi, Nydiaris HS, Luis A. Z, et al. A Bone-Protective Role for IL-17 Receptor Signaling in Ovariectomy-Induced Bone Loss[J]. Eur J Immunol.2009; 39(10):2831-2839
    [30]Vanessa DS, Stephanie PM, Michael GB, et al. Leptin,Fat Mass,and Bone Mineral Density in Healthy Pre-and Postmenopausel Women[J]. J Clin Densitom.2011;14(3):321-325
    [31]Pervin V, Mukaddes C, Cemil A. Effects of menopause and postmenopausal tibolone treatment on plasma TNFa, IL-4, IL-10, IL-12 cytokine pattern and some bone turnover markers[J]. Pharmacological Research.2006;53:367-371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700