用户名: 密码: 验证码:
盐度对中华鲟生长的影响机制及中华鲟的等渗点分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华鲟(Acipenser sinensis)为溯河洄游型鱼类,是国家一级重点保护动物。在迁地保护下,淡水环境中成熟的中华鲟亲鱼面临个体变小,繁殖力下降的问题。为复壮中华鲟个体大小,本文主要分析了盐度对中华鲟生长影响的机制;通过对5月龄,9月龄,12-15龄中华鲟进行实验,构建了“循环养殖系统中特定收集器和计数法计算饲料转化率的方法”和“分级稀释建立高连续梯度盐度选择实验的装置及方法”;探讨了中华鲟幼鱼盐度适应机制;分析了5月龄,9月龄,12-15龄中华鲟的等渗点;构建了叉长、体重和年龄与血清渗透压和等渗点的关系模型;对比了等渗环境和淡水环境下中华鲟幼鱼在与生长相关的行为、激素、酶含量以及组织和卵质成分方面的差异;荧光定量RT-PCR分析了等渗组和淡水组PRL(prolactin), GH (growth hormone), IGF-1(insulin-like growth factor1)在组织的表达差异;同时比较了淡水环境下中华鲟再成熟卵和海水卵的主要成分差异。得出主要结论:盐度并不影响中华鲟幼鱼个体的生长速率大小,但是渗透压调节能耗需要通过增加摄食来实现;全人工繁殖中华鲟幼鱼和野生幼鱼一样具备盐度适应性,且在淡水中已经形成盐度适应机制,喜好盐度位于等渗点区域;等渗点盐度有利于中华鲟幼鱼的钙质积累和酶耗能的节约;等渗组和淡水组相比,淡水组幼鱼需要显著较多的摄食实现和等渗组幼鱼同步生长;等渗点盐度和中华鲟年龄最相关,等渗点随年龄发生变化;盐度和溯河洄游习性对卵质有较大的影响;自幼鱼到性成熟建议中华鲟养殖盐度为8.3-11.5psu。具体方法及得到结论如下:
     1.构建了“循环养殖系统中特定收集器和计数法计算饲料转化率的方法”和“分级稀释建立高连续梯度盐度选择实验的装置及方法”,前者为计算饵料系数和计算早、午、晚摄食节律和日摄食节律提供了方便和准确性;后者为盐度喜好实验提供了设备系统及方法论。
     2.5月龄中华鲟在淡水中已经形成盐水适应机制且喜好盐度位于等渗盐度区域。5月龄中华鲟分别在淡水(FW,0.41psu)和咸水(BW,12.5psu)下养殖28天,前10天为适应期,后18天为适应后期,在第28天采集左右侧第二鳃弓鳃丝进行扫描电镜和透射电镜检查。淡水(0.41psu)和咸水(12.5psu)下,鳃丝中均出现浆细胞、扁平细胞和氯细胞。氯细胞方面,在淡水中氯细胞有两种,一种是球形氯细胞,高度高于临近的扁平细胞;另一种是三角形氯细胞,该氯细胞在鳃丝的高度低于扁平细胞,呈三角形。咸水中则仅出现一种氯细胞—球形氯细胞;且淡水和咸水下,球形氯细胞分布密度和大小没有差异。同时在淡水中发现从三角形氯细胞到球形氯细胞的过渡细胞。通过在适应后期,血清渗透压,血清PRL,GH和IGF-1水平在淡水和各盐水组间没有差异,也是淡水中已经形成盐水适应机制的一种反映。通过“分级稀释建立高连续梯度盐度选择实验的装置及方法”,分析得出5月龄中华鲟的喜好盐度区间为7.5-8.5psu,该盐度接近于等渗点9.52psu;
     3.盐度改变了中华鲟血清离子的组成。9月龄中华鲟等离子点为:K+:9.65±1.01psu;Cl-:6.82±0.37psu;Na+:9.40±0.58psu; Ca2+:1.62±0.71psu。血清钠离子浓度随盐度增加没有显著变化(P=0.250),但血清氯离子随着盐度的增加而增加(P<0.05),NaCl理论贡献值和实际贡献百分比在各盐度没有差异(OsmNaCl=224.27±3.17-233.41±2.63rnOsm/kg,93.39±2.22%-96.79±4.17%)。在各个盐度,血清Mg2+的水平远远低于水样Mg2+浓度。但是血清P浓度却是远远高于水样。血清K+,Mg2+浓度随盐度升高而显著升高,但血清Ca2+则没有变化,Mg:Cl比随环境盐度升高而增加,Ca:Cl比和K:Cl比随盐度升高则没有变化。对比分析淡水组和等渗组血清电解质,发现血清K+, Mg2+, Ca2+浓度,Mg:Cl, Ca:Cl和K:C1比值没有显著差异。
     4.盐度改变了中华鲟的行为。对于9月龄中华鲟而言,在所有盐度组中鳃盖运动频率最低(74±2min-1)和最低的摆尾频率(51±3min-1)均出现在IW(isosmotic water)组。饲料转换率FCR(1.14-1.46)和特定生长率SGR(0.85-1.31)在所有盐度组中没有显著性差异(包括等渗点)(P FCR>0.05和PSGR>0.05)。各盐度下早中晚摄食节律方面,0.25,6.32和25psu组均没有差异,在12psu下晚20:00摄食量显著高于15:00,在19psu下,8:00摄食量显著多于20:00。日摄食方面,在与等渗盐度差异较大的盐度水体(0.27psu和25psu)中华鲟依靠更多的摄食,补充用于渗透压调节消耗的能量。
     5.等渗(IW)和淡水组(FW)对比实验中,盐度影响中华鲟血清PRL激素和GH/IGF-1mRNA的表达。对于9月龄中华鲟而言,在适应期实验中,PRL在12.7psu时略高于至5.98,6.32和9.69psu,但在19.1和25psu又下降到低盐度先前水平。生长激素随盐度增加而增加,在25psu时最高。IGF-1的趋势和GH相反,IGF-1的水平最低发生在25psu。在适应后实验中,三种激素水平盐度随盐度变化没有表现出显著差异性。在等渗组和淡水组比较实验中,淡水中PRL水平显著高于等渗组(P<0.01)但GH和IGF-1水平在等渗组和淡水组则没有显著性差异。
     6.酶含量方面,淡水中华鲟相比于等渗盐度下中华鲟,消耗较大的消化力为渗透压调节提供能量。对于9月龄中华鲟而言,中肠,后肠和肾的Na+/K+-ATP酶含量在IW组和FW(freshwater)组相似,而在鳃丝(P<0.05),前肠(P<0.01)和螺旋瓣(P<0.01)FW明显高于IW高约7%。前肠,螺旋瓣和胃在FW中脂肪酶含量比IW组高出10%(P<0.05)。此外,前肠ALT含量在FW显著高于IW(P<0.05)。在肝脏中淀粉酶的含量也是FW组高于IW组(P<0.05)。另外,在螺旋瓣的蛋白酶含量在FW高于IW约18.1%,而在中肠,则是在IW高于FW约13.2%(P<0.05)。
     7.等渗(IW)和淡水组(FW)对比实验中机体组成成分的差异显著。对于9月龄中华鲟而言,在等渗(IW)和淡水组(FW)对比实验中,脂肪及其脂肪酸组成,粪便蛋白质、脂肪及其氨基酸和脂肪酸组成没有差异,但是肌肉钙离子组成差异显著。经过52天的实验,等渗组肌肉钙离子含量显著高于淡水组;全骨板和头部软骨钙、磷含量等渗组低于淡水组,但是镁离子含量则是等渗组高于淡水组。
     8.盐度造成中华鲟卵质的差异。海水卵较之于淡水卵蛋白含量明显较高,脂肪含量则明显偏低。脂肪酸含量有极大地差异。两种卵均含17种氨基酸,包括10种鱼类必需氨基酸。总氨基酸量和各氨基酸没有差异。卵黄蛋白没有差异。磷元素、镁离子和维他命A在海水卵中含量明显多于淡水卵,维他命E则是淡水卵多于海水卵。钙离子和锌离子没有差异。在淡水卵中检测到镉离子,海水卵中则未检测到。
     9.中华鲟血清渗透压和等渗点和年龄最相关,自幼鱼到性成熟,中华鲟等渗点为8.3-11.5psu。5月龄中华鲟的喜好盐度位于等渗盐度点,血清渗透压与年龄最相关。9月龄子一代中华鲟幼鱼在0.27,6,12,19和25psu盐度下适应后,水渗透压和盐度的关系通过线性拟合确定。二阶多项式拟合血清渗透压和盐度之间的关系,通过解方程求得等渗点为9.57±0.06psu。在该盐度下,血清渗透压等于咸水渗透压,鱼体无渗透压力。五月龄子二代中华鲟在淡水中氯细胞已经形成咸水适应机制,等渗点盐度为9.52psu。以“分级稀释建立高连续盐度梯度实现水生动物盐度选择实验的装置和方法”为新的实验体系,分析得出5月龄子二代中华鲟喜好盐度为8.5-9.5psu,这和5月龄子二代中华鲟等渗点9.52psu保持一致。对5月龄和9月龄中华鲟血清渗透压分析发现:盐水环境和淡水环境下渗透压没有显著差异,淡水环境下渗透压可作为盐水环境渗透压;等渗点下血清渗透压和与中华鲟相适应的淡水条件下血清渗透压在同一个水平。据此,该结果提供了迁地保护下大型中华鲟亚成体等渗点的简易计算方法。测得淡水环境下中华鲟血清渗透压,即作为等渗点盐度渗透压。将此渗透压带入盐度和渗透压关系式,即可计算出等渗点盐度。血清渗透压和年龄的二次多项式模拟最吻合,相关系数最高。因此认为年龄和中华鲟血清渗透压最相关:Y=278.061-11.3127X+0.6587X2,Y表示血清渗透压X表示年龄。对该二次多项式求导得出导数为0时,年龄为8.6年,即从出生到9龄时,中华鲟血清渗透压逐渐降低;从9龄开始,中华鲟血清开始随年龄增加而逐渐升高。同理等渗点也和年龄最为相关:Y=9.79431-0.35711X+0.0213X2,Y表示血清渗透压,X表示年龄。一阶求导得零点横坐标为8.38龄,即第9龄,这和渗透压结果一致。即从出生到9龄时,中华鲟等渗点逐渐降低;从9龄开始,中华鲟血清开始随年龄增加而逐渐升高。
     总之,考虑到在等渗盐度组较之于淡水组明显较低的鳃盖运动频率,摆尾频率,鳃丝Na+/K+-ATPase含量以及所观察到的低脂肪酶,ALT和淀粉酶含量,显著降低的日摄食量和不变的特定生长率,肌肉中显著升高的Ca2+含量和增加的骨板和软骨中Mg2+含量,以及盐度对卵质产生的影响,等渗盐度是中华鲟的较理想生长环境盐度。此外,在淡水养殖中,Ca2+和Mg2+应该进行适当补偿。同时,中华鲟血清渗透压和等渗点盐度随年龄而变化,随着生长的进行,中华鲟的等渗养殖盐度需要进行调整。
Populations of A.sinensis, an anadromous fish species with Class-I state protection in China, grow in coastal waters (seawater) and enter into the Yangtze River (freshwater) to spawn after reaching sexual maturity, IUCN assessed as CR (Critically Endangered) status. A.sinensis subjecting to ex-situ conservation no longer live in brackish water, but spend their entire life cycle in freshwater (FW). The small size of the adults matured in freshwater was associated with decreased fecundity, resulting in more challenge to the conservation work. To restore the body size, this paper aimed to argue whether salinity affect sturgeon body size growth.5-month-old,9-month-old and12-15-year-old sturgeon were tested; Therefore, we constructed "specific collector combined count method in recirculating aquaculture system for feed conversion ratio determination" and the 'establishment of high grade continuous gradient salinity experiment apparatus and method for salinity preference in aquatic animal"; Explored the juvenile Chinese sturgeon salinity adaptation mechanisms; analyzed isosmotic points of5-month-old,9-month-old and12-15-year-old sturgeon; constructed relationships between fork length, body weight and age and serum osmolality, relationships between fork length, body weight and age and isosmotic points; Compared sturgeon behaviors, hormones, enzymes activities and tissue compositions between isosmotic environment and freshwater environment; Quantified fluorescence RT-PCR analysis of GHmRNA and IGF-1mRNA in tissues between isosmotic water (IW) and FW groups; Alalyzed the salinity and migration loss effects on the compositions of freshwater eggs and seawater eggs of Chinese sturgeon; The following conclusions were obtained:
     1. Establish two methods:'specific collector combined count method in recirculating aquaculture systems for feed conversion ratio determination' and 'establishment of high grade continuous gradient dilution salinity experiment apparatus and method for salinity preference'; Count method could reduce physical, biochemical and mechanical error of quantifying uneaten feed collected from holding water. Simultaneously, it saved the disposals uneaten pellets after the uneaten pellets are collected, replaced siphoning by special designed collector and saved time and labors. In addition, the effects of the feces can be ignored. The former one was for calculation of feed conversion and provides a convenient feeding rhythm, meanwhile improved accuracy of FCR; the latter provide the equipment system and methodology for salinity preference experiments. The advantages lies in, on the one hand, the appetas promises long-time salinity gradients than former appatases. On the other hand, tested animals can swim free and rechoose their location.
     2. Five-month-old A.sinensis reared respectively in FW (0.41psu) and brackish water (BW,12.5psu) for26days. The first10days was adaptation period, the later16days were post acclimated period. In the26th day, one of filaments both in left and right second branchial arch was sampled for scanning electron microscopy and transmission electron microscopy examination, respectively. The gill filaments appeared in the mucous cells, pavement cell and MRC on the surface of filament. In terms of MRCs, there were two subtypes of MRCs in FW, one was the ball-shaped MRC, which was higher above the neighboring pavement cells, and the other one was triangular MRC, which was triangle and flat, but it depressed between pavement cells. Only ball-shaped MRCs emerged in filament of BW-acclimated fish. Furthermore, the density and distribution of ball-shaped MRCs did not differ between freshwater and brackish group. It was also found that transitional cells, from triangle to ball-shaped, existed in FW-acclimated filament. Serum PRL, GH and IGF-1levels did not differ between FW and BW groups, which also reflected fish developeded BW adaptation mechanism in FW. Five-month-old A.sinensis had formd adapted MRCs (mitochondria-rich cell) to BW, whose isosmotic point was9.52psu. Taken "establishment of high grade continuous gradient dilution salinity experiment apparatus and method for salinity preference" as a new experimental system and revealed that five-month-old A.sinensis prefer7.5-8.5psu. This agreed to that isosmotic point of5-month-old was9.52psu. As salinity increased, food intake decreased significantly at30psu and fish ceased feeding at38psu compared to food intake at12.5psu.
     3. For9-month-old sturgeon, isoionic points were analyzed in the same way as the isosmotic point was determined: K+:9.65±1.01psu; Cl-:6.82±0.37psu; Na+:9.40±0.58psu; Ca2+:1.62±0.71psu. The trend of Na+concentration as salinity increased was not pronounced (P=0.250), but Cl-tended to pronouncedly higher levels as salinity increased (P=0.021). NaCl contributed to total osmolality and the real NaCl percentages had the same levels in all salinity treatments (OsmNaCl=224.27±3.17-233.41±2.63mOsm/kg;93.39±2.22%-96.79±4.17%) as it did at the isosmotic point (OsmNaCl=227.45±8.04mOsm kg-1;89.93±4.09%). Serum Mg2+level were far lower than the water Mg2+level at any salinity treatment. Nevertheless, serum P was much higher than water at any salinity treatment. Serum Mg2+and K+levels were significant higher in as salinity increased.
     4. Salinity changed the gill ventilation rate, tail beat frequency and daily feeding rhythm.
     For9-month-old A.sinensis, the lowest gill ventilation rate (74±2min-1) and the lowest tail beat frequency (51±3min-1) were observed in IW. The feed intake had no difference at8:00,15:00and20:00in0.25,6.32and25psu groups. FCRs (1.14-1.46) and SGRs (0.85-1.31) were comparable at all salinity groups, including the isosmotic point (PFCR>0.05and PSGR>0.05), but FCR was smaller at25psu and IW groups. In long term salinity tolerance, the condition factor was markedly higher after22d for all15sturgeon compared to the values before the test (P<0.05). However, the feeding rhythm at20:00of12psu-acclimated fish was significantly more than15:00. In19psu group, the feed intake at8:00was significantly more than at20:00. The difference resulted from individual difference. In general, there was no difference in feeding rhythm of each feeding at any salinity group. But the daily feed intake in25and0.25psu groups were significantly higher than6.32and12psu groups.
     5. For9-month-old A.sinensis, in the acclimation period, PRL increased slightly at12.7psu compared to5.98,6.32and9.69psu groups, but it declined again at19.1and25psu. In terms of GH, this hormone gradually increased as salinity increased and was the highest at25psu. The trend of IGF-1was contrary to that of GH, with the lowest IGF-1level observed at25psu. In long term salinity tolerance, the three hormone levels exhibited no significant differences among salinities. As time went on, no obvious changes were observed in any hormone. In IW group and FW group comparison test, the PRL level was significantly higher at the isosmotic point than in freshwater (P<0.01). However, GH and IGF-1exhibited no significant differences. For5-month-old A.sinensis, PRL, GH and IGF-1showed no trend in both acclimated period and post-acclimatedion. RT-PCR analysis of related expression of pituitary GH and IGF-1in different issues showed: pituitary GH mRNA and liver IGF-1mRNA expression in FW-acclimated group were significantly higher than IW-acclimated group; Muscle and kidney IGF-1mRNA levels had the same level between FW and IW groups.
     6. The digestive enzymes and Na+/K+-ATPase consumed more energy instead of energy for growth group in FW than in IW group. The in the gill (P<0.05), foregut (P<0.01) and spiral valve (P<0.01) in FW were approximately7%higher than in IW. The lipase activities in the foregut, spiral valve and stomach in FW were10%higher than in the IW group (P<0.05), and the activities were similar in the other examined issues. In addition, ALT (alamine transaminase) activity in the foregut was significantly higher in FW than in IW, showing a difference of approximately8%compared to IW group (P<0.05). Amylase activity in the liver was also higher in FW than in IW (P<0.05), while these values were equal in other tissues. Furthermore, the protease activity in the spiral valve was18.1%lower in IW than in FW, while in the mid-gut, it was13.2%higher in IW than in FW (P<0.05).
     7. Comparisons of feces protein and amino acids composition showed no difference, as well fatty acids. Muscle protein and amino acids had the similar levels between IW-acclimated fish and FW-acclimated fish. Both groups had the same level fat content (1.92±2.69) g and similar fatty acids compositions. However, in terms of minerals of muscle, Ca content in IW acclimated fish was significantly higher than in in FW-acclimated fish, P and Mg contents had the same levels. Different conditions about Ca, P, Mg contents were present in scutes and cartilage. In abdominal scute and cartilage, Ca levels were higher in FW-acclimated fish than IW-acclimated fish, but in lateral scute and back scute, Ca, Mg and P levels in IW group were higher than in FW group. In cartilage, Mg was not detected both in IW and IW groups. Overall, Ca and P levels in the total scutes and head cartilage in FW-acclimated fish were higher than in IW-acclimated fish, but Mg level in IW (2019.7±183.4mg/100g) was higher than in FW (1827.8±107.8mg/100g). The liver lipid contents (60.96±5.30mg/100g,45.29±18.34mg/100g), VA contents (31.22±9.41mg/100g,24.43±5.15mg/100g) had similar level in the two groups (FW was former, IW was latter). VE values were not detected in liver.
     8. Eggs biochemical contents from wild origin and remature A.sinensis in freshwater were compared, which were related to induce spawning success. The results included dry weight, lipids, fatty acids, protein, amino acids, vitellin (Vn), phosphorus (P), vitamin A (VA) and vitamin E (VE) as well as the concentrations of relevant trace elements. The dry weights of the eggs did not differ between the sturgeons. The wild sturgeon eggs had significantly higher protein content but lower lipid content than the remature sturgeon eggs. There were multiple and significant differences in the fatty acids. Vn showed no difference. The P, magnesium (Mg) and VE contents in seawater eggs were significantly higher than in freshwater eggs. The calcium (Ca) and zinc (Zn) contents showed no difference between both batches. Cadmium (Cd) was only detected in one sample of freshwater eggs. These results helped to discriminate between remature (farmed) and wild origin Chinese sturgeon eggs. It is important to take measures to decrease lipid percentages and to increase protein contents of eggs for remature Chinese sturgeon or even sturgeon matured in freshwater.
     9. A.sinensis were acclimated in0.27,6,12,19and25psu, relationship between water osmolality and salinity was determined by linear fitting. Second-order polynomial fitting were used to assess relationship between serum osmolality and salinity. Isosmotic point was got (9.57±0.06psu) through solution of the two equations. At isosmotic salinity environment, serum osmolality equaled to environment osmolality, sturgeon faced no osmotic pressure. The results of analyzing serum osmolality of5-month and9-month-old A.sinensis showed: there were no significant differences of serum osmolality under FW or BW, including IW. Accordingly, the results provide method to assess isosmotic point of larger ex-situ conservation subadult sturgeon in FW. Regard as the value of serum osmolality in FW as serum osmolality in BW. Serum osmolality in FW-acclimated fish had the same level as serum osmolality in IW-acclimated fish. Simultaneously, we could also take serum osmolality in FW-acclimated fish as serum osmolality in IW-acclimated fish. Take the value of serum osmolality in FW group into the equation of relationship between salinity and water osmolality, and then get the salinity i.e. isosmotic point. The order-two polynomial fitted best in relationship between age and serum osmolality, the correlation coefficients was highest. Therefore age was considered as the most relevant factor to serum osmolality:Y=278.061-11.3127x+0.6587X^2. Derived the equation and the X corresponding to value of derivative equled to zero was8.6years, i.e. from birth to age9the serum osmolality decreased and serum gradually began to increase with age since9-year-old. Similarly, isosmotic osmolality and age were most relevant:Y=9.79431-0.35711X+0.0213X2. Derived the equation and the X corresponding to value of derivative (0) was8.6years. This was similar to serum osmolality equation, i.e. from birth to age9-years, the Chinese sturgeon isosmotic point decreases, from9years on, the isosmotic point began to gradually increase with age.
     In conclusion, the Chinese sturgeon developed seawater-entry readiness in freshwater and the fish preferred isosmotic salinity compared to other salinities. Considering the obviously lower gill ventilation rate, tail beat frequency, Na+/K+-ATPase activity in the gills as well as the lower lipase, ALT and amylase activities observed, lower daily feeding rhythm but same SGR levels, significantly higher Ca content in muscle and increased Mg content in scutes and cartilage in IW compared to FW a salinity corresponding to the IW is ideal for the growth of naive A. sinensis. A. sinensis is suggested to rear in8.3-11.5psu. Besides, Ca2+and Mg2+should be compensated in FW culture. Meanwhile, the plasma osmolality and isosmotic point may vary with the size and age of fish, and salinity may need to be adjusted as naive A. sinensis grow.
引文
1. 常剑波,曹文宣.中华鲟物种保护的历史与前景.水生生物学报,1999(06):712-720
    2. 陈锦辉,庄平,吴建辉,黄硕琳,刘健,杨吉平,徐嘉楠,郑跃平,赵峰,张涛.应用弹式卫星数据回收标志技术研究放流中华鲟幼鱼在海洋中的迁移与分布.中国水产科学,2011(02):437-442
    3. 傅朝君,刘宪亭,鲁大椿,何裕康,贺昌辉,邹武,秦元祥,谢明汉,田应培,谢大敬,柯薰陶,张昌方.葛洲坝下中华鲟人工繁殖.淡水渔业,1985(01):1-5
    4. 高绪生,刘永峰,刘永襄,刘军.温度对皱纹盘鲍稚鲍摄食与生长的影响.海洋与湖沼,1990(01):20-26
    5. 河北省水产研究所,中国科学院水生生物研究所.环境盐度对梭鱼脑下垂体及性腺发育的影响.水产学报,1980(03):229-240+314-315
    6. 侯俊利,陈立侨,庄平,章龙珍,田宏杰,王伟,闫文罡.不同盐度驯化下施氏鲟幼鱼鳃泌氯细胞结构的变化.水产学报,2006(03):316-322
    7. 孔亚珍,贺松林,丁平兴,胡克林.长江口盐度的时空变化特征及其指示意义.海洋学报(中文版),2004(04):9-18
    8. 李伟,危起伟.分级稀释建立高连续梯度盐度选择实验的装置及方法.中国专利201310151754.2
    9. 李伟,危起伟,骆慧.运用计数法求水中残饵量及饲料转化率的方法.中国专利,201010280373.0.2012-2-29
    10.刘鉴毅,危起伟,陈细华,杨德国,杜浩,朱永久,郑卫东,甘芳.葛洲坝下中华鲟繁殖生物学特性及其人工繁殖效果.应用生态学报,2007(06):1397-1402
    11.施兆鸿.盐度对黑鲷卵巢发育的影响.水产学报,1996(04):357-360
    12.王成友.长江中华鲟生殖洄游和栖息地选择.[博士学位论文].武汉:华中农业大学图书馆,2012
    13.危起伟,陈细华,杨德国,刘鉴毅,朱永久,郑卫东.葛洲坝截流24年来中华鲟产卵群体结构的变化.中国水产科学,2005(04):452-457
    14.危起伟,李罗新,杜浩,张晓雁,熊伟,张辉,沈丽,吴金明,张书环,王成友,李创举,柴毅,李奕慰,乔新美,刘志刚,高宇鹏,甘芳.中华鲟全人工繁殖技术研究.中国水产科学,2013(01):1-11
    15.庄平,何绪刚,谢从新,章龙珍,顾孝连,侯俊利,沈闪.水生动物盐度迷宫试验装置.中国专利,200510028855.6.2008-07-16
    16. Allen PJ, Cech JJJ. Age/size effects on juvenile green sturgeon, Acipenser medirostris, oxygen consumption, growth, and osmoregulation in saline environments. Environ Biol fish, 2007,79:211-229
    17. Allen PJ, Cech JJ, Kultz D. Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. J Comp Physiol B, 2009, 179(7):903-920
    18. Allen P, McEnroe M, Forostyan T, Cole S, Nicholl M, et al. Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris. J Comp Physiol B,2011,181:1045-1062
    19. Altinok I, Grizzle JM. Excretion of ammonia and urea by phylogenetically diverse fish species in low salinities. Aquaculture, 2004,238(1):499-507
    20. Altinok I, Sara MG, Frank AC. Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus de Sotoi. Comp Biochem Physiol, 1998, 120:609-616
    21. ANDO M. Effects of bicarbonate on salt and water transport across the intestine of the seawater eel. J Exp Biol, 1990, 150(1):367-379
    22. Anonymous. The biology of the sturgeon in Yangtze and their artificial propagation. The Yangtze Aquatic Resources Survey Group, Sichuan Scientific & Technical Publishing House, 1988 (in Chinese)
    23. AOAC. Official Methods of Analysis, 16th Edition. Cuniff, P. (Ed.), AOAC International, Washington, (Chapter 12; Teen. 960.52), 1995.7
    24. Auerswald L, Jurss K, Schiedek D, Bastrop R. The Influence of Salinity Acclimation on Free Amino Acids and Enzyme Activities in the Intestinal Mucosa of Rainbow Trout, Oncorhynchus mykiss (Walbaum). Comp Biochem Phys A:Physiology, 1997, 116(2): 149-155
    25. Babitha GS, Peter MCS. Cortisol promotes and integrates the osmotic competence of the organs in North African catfish (Clarias gariepinus Burchell), evidence from in vivo and in situ approaches. Gen Comp Endocr, 2010, 168:14-21
    26. Baggerman B. Salinity Preference, Thyroid Activity and the Seaward Migration of Four Species of Pacific Salmon (Oncorhynchus). J Fish Res Board Can, 1960, 17:295-322
    27. Beckman BR. Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen Comp Endocr, 2011,170:233-252
    28. Bemis W, Findeis E, Grande L. An overview of Acipenseriformes. Environ Biol Fish, 1997, 48(1-4):25-71
    29. Birstein V, Bemis W, Waldman J. The threatened status of acipenseriform species: a summary. Environ Biol Fish,1997,48(1-4):427-435
    30. Boeuf G, Payan P. How should salinity influence fish growth? Comp Biochem Phys C, 2001, 130:411-423
    31. Boge G, Lopez L, Peres G. An in vivo study of the role of pyloric caeca in water absorption in rainbow trout (Salmo gairdneri). Comp Biochem Physiol, 1988, 91(1):9-13
    32. Boyer T, Levitus S, Garcia H, Locarnini RA, Stephens C, Antonov J. Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25 grid. Int JClimatol, 2005, 25(7): 931-945
    33. Breves JP, Hasegawa S, Yoshioka M, Fox BK, Davis LK, Lerner DT, Takei Y, Hirano T, Grau EG. Acute salinity challenges in Mozambique and Nile tilapia: Differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. Gen Comp Endocr, 2010,167:135-142
    34. Brooks S, Lloydmills C. Gill Na+, K+-ATPase in a series of hyper-regulating gammarid amphipods. Enzyme characterisation and the effects of salinity acclimation. Comp Biochem Phys A,2006,144(1):24-32
    35. Buddington RK, Diamond JM. Pyloric ceca of fish: a "new" absorptive organ. Am J Physiol, 1987,252(1):G65-G76
    36. Buddington RK, Doroshov SI. Structural and functional relations of the white sturgeon alimentary canal (Acipenser transmontanus). JMorphol, 1986, 190(2): 201-213
    37. Burtle GJ, Liu Q. Dietary Carnitine and Lysine Affect Channel Catfish Lipid and Protein Composition. J World Aquacult soc, 1994, 25(2):169-174
    38. Caprino F, Moretti VM, Bellagamba F, Turchini GM, Busetto ML, Giani I, Paleari MA, Pazzaglia M. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus). Anal Chim Acta, 2008, 617(1-2):139-147
    39. Carragher JF, Sumpter JP. The mobilization of calcium from calcified tissues of rainbow trout (Oncorhynchus mykiss) induced to synthesize vitellogenin. Comp Biochem Phys A, 1991, 99(1-2): 169-172
    40. Cataldi E, Ciccotti E, Dimarco P, Disanto O, Bronzi P, Cataudella S. Acclimation trials of juvenile Italian sturgeon to different salinities: morpho - physiological descriptors. J Fish Biol, 1995, 47(4): 609-618
    41. Cataldi E, Di Marco P, Mandich A, Cataudella S. Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces: Acipenseriformes): effects of temperature and stress. Comp Biochem Phys A, 1998, 121:351-354
    42. Chen IC, Chapman FA, Wei Cl, Portier KM, O'Keefe SF. Differentiation of Cultured and Wild Sturgeon (Acipenser oxyrinchus desotoi) Based on Fatty Acid Composition. J Food Sci, 1995,60(3),631-635
    43. Cheng KM, Hu CQ, Liu YN, Zheng SX, Qi, XJ. Effects of dietary calcium, phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization of Litopenaeus vannamei reared in low-salinity water. Aquaculture, 2006, 251(2-4), 472-483
    44. Czesny S, Dabrowski K. The effect of egg fatty acid concentrations on embryo viability in wild and domesticated walleye (Stizostedion vitreum). Aquat Living Resour, 1998, 11(6), 371-378
    45. Czesny S, Dabrowski K, Christensen JE, Van Eenennaam J, Doroshov S. Discrimination of wild and domestic origin of sturgeon ova based on lipids and fatty acid analysis. Aquaculture, 2000,189(1-2),145-153
    46. Damsgard B, Arnesen AM. Feeding, growth and social interactions during smolting and seawater acclimation in Atlantic salmon, Salmo salar L. Aquaculture, 1998, 168(1-4):7-16
    47. Dasilvarocha A, Gomes V, Vanngan P, Dearrudacamposrochapassos M, Riosfuria R. Metabolic demand and growth of juveniles of Centropomus parallelus as function of salinity. J Exp Mar Biol Ecol, 2005, 316(2):157-165
    48. Denson MR, Stuart KR, Smith TIJ, Weirich CR, Segars A. Effects of salinity on growth, survival, and selected hematological parameters of juvenile cobia Rachycentron canadum. J World Aquacult soc, 2003, 34(4):496-504
    49. DG M, CL M. Chemical properties of the blood. In: Hoar WS, Randall DJ, Farrell AP, eds., Fish Physiology, vol. XIIB. London: Academic Press, 1992, 56-133
    50. Doroshov SI, Moberg GP, Van Eenennaam JP. Observations on the reproductive cycle of cultures white sturgeon, Acipenser transmontanus. Environ Biol Fish, 1997, 48(1-4):265-278
    51. Domeneghini C, Radaelli G, Arrighi S, Francolini M, Mascarello F. Ultrastructural features of the gut in the white sturgeon, Acipenser transmontanus. Histol Histopathol, 2000, 15(2): 429-439
    52. Duncan NJ, Auchinachie N, Robertson D, Murray R, Bromage N. Growth, maturation and survival of out-of-season 0+ and 1+ Atlantic salmon (Salmo salar) smolts. Aquaculture, 1998, 168(1-4):325-339
    53. Eisler R. Zinc hazards to fish, wildlife and invertebrates:A synoptic review. US Fish Wildlife Survey. Biology and Reproduction, 1988, 85
    54. Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev, 2005, 85(1):97-177
    55. Falchuk KH. The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem,1998,188 (1),41-48
    56. Falchuk KH, Montorzi M. Zinc physiology and biochemistry in oocytes and embryos. BioMetals,2001,14(3),385-395
    57. Febry R, Lutz P. Energy partitioning in fish: the activityrelated cost of osmoregulation in a euryhaline cichlid. JExp Biol, 1987, 128(1):63-85
    58. Fernandez I, Gisbert E. The effect of vitamin A on flatfish development and skeletogenesis: A review. Aquaculture, 2011,315(1-2),34-48
    59. Fernandez-Reiriz MJ, Navarro JM, Labarta U. Enzymatic and feeding behaviour of Argopecten purpuratus under variation in salinity and food supply. Comp Biochem Phys A, 2005,141(2):153-163
    60. Fielder DS, Bardsley WJ, Allan GL, Pankhurst PM. The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture, 2005,250: 201-214
    61. Finn RN, Fyhn HJ. Requirement for amino acids in ontogeny of fish. Aquac Res, 2010, 41(5), 684-716
    62. Franklin CE, Forster ME, Davison W. Plasma cortisol and osmoregulatory changes in sockeye salmon transferred to sea water: Comparison between successful and unsuccessful adaptation. JFish Biol, 1992, 41:113-122
    63. Fritz ES, Garside ET. Salinity preferences of Fundulus heteroclitus and F. diaphanus (Pisces: Cyprinodontidae):their role in geographic distribution. Can JZoolog, 1974, 52:997-1003
    64. Fuentes J, Haond C, Guerreiro PM, Silva N, Power DM, Canario AV. Regulation of calcium balance in the sturgeon Acipenser naccarii: a role for PTHrP. Am J Physiol Regul Integr Comp Physiol, 2007, 293(2), R884-893
    65. Fuentes J, Soengas J, Rey P, Rebolledo E. Progressive transfer to seawater enhances intestinal and branchial Na+-K+-ATPase activity in non-anadromous rainbow trout. Aquaculture International, 1997, 5(3):217-227
    66. Furuita H, Ohta H, Unuma T, Tanaka H, Kagawa H, Suzuki N, Yamamoto T. Biochemical composition of eggs in relation to egg quality in the Japanese eel, Anguilla japonica. Fish Physiol Biochem,2003,29(1),37-46
    67. Furuita H, Tanaka H, Yamamoto T, Shiraishi M, Takeuchi T. Effects of n-3 HUFA levels in broodstock diet on the reproductive performance and egg and larval quality of the Japanese flounder, Paralichthys olivaceus. Aquaculture, 2000, 187(3-4),387-398
    68. Furuita H, Tanaka H, Yamamoto T, Suzuki N, Takeuchi T. Effects of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus. Aquaculture, 2002, 210(1-4), 323-333
    69. Furuita H, Unuma T, Nomura K, Tanaka H, Okuzawa K, Sugita T, Yamamoto T. Lipid and fatty acid composition of eggs producing larvae with high survival rate in the Japanese eel. J Fish Biol, 2006, 69(4):1178-1189
    70. Gaal KK, Safar O, Gulyas L, Stadler P. Magnesium in animal nutrition. J Am Coll Nutr, 2004, 23(6):754S-757S
    71. Gavlik S, Specker JL. Metamorphosis in summer flounder: manipulation of rearing salinity to synchronize settling behavior, growth and development. Aquaculture, 2004, 240(1-4): 543-559
    72. Gawlicka A, Teh S, Hung S, Hinton D, De La Noue J. Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiol Biochem,1995,14(5):357-371
    73. Georgievskii VI. General information on minerals. In: mineral nutrition of animals. Published in Moscow by 'Kolos' Publishing House, 1979
    74. Gessner J, Wiirtz S, Kirschbaum F, Wirth M. Biochemical composition of caviar as a tool to discriminate between aquaculture and wild origin. JAppl Ichthyol, 2008, 24:52-56
    75. Gibson RM, Hoglund J. Copying and sexual selection. Trends in Ecology & Evolution, 1992. 7(7):229-232
    76. Gillespie DK, de Peyster A. Plasma calcium as a surrogate measure for vitellogenin in fathead minnows (Pimephales promelas). Ecotox Environ Safe, 2004, 58(1):90-95
    77. Gray C, Al-Dujaili EA, Sparrow AJ, Gardiner SM, Craigon J, Welham, Simon JM, Gardner, DS. Excess Maternal Salt Intake Produces Sex-Specific Hypertension in Offspring: Putative Roles for Kidney and Gastrointestinal Sodium Handling. PLoS One, 2013,8(8): e72682
    78. Grosell M. Intestinal anion exchange in marine fish osmoregulation. J Exp Biol, 2006, 209(15):2813-2827
    79. Grosell M, Gilmour KM, Perry SF. Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol, 2007, 293(5):R2099-R2111
    80. Grosell M, Laliberte C, Wood S, Jensen FB, Wood C. Intestinal HCO3-secretion in marine teleost fish: evidence for an apical rather than a basolateral C1-/HCO3-exchanger. Fish Physiol Biochem, 2001,24(2):81-95
    81. Grosell M, Wood C, Wilson R, Bury N, Hogstrand C, Rankin C, Jensen FB. Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am JPhysiol, 2005,288(4):R936-R946
    82. Guerreiro PM. Water calcium concentration modifies whole-body calcium uptake in sea bream larvae during short-term adaptation to altered salinities. J Exp Biol, 2004,207(4): 645-653
    83. Gwyneth P (Mrs Howells). Size and Osmoregulation in Salmonid Fishes. Nature, 1958,181: 1218-1219
    84. Haga Y, Du SJ, Satoh S, Kotani T, Fushimi H, Takeuchi T. Analysis of the mechanism of skeletal deformity in fish larvae using a vitamin A-induced bone deformity model. Aquaculture,2011,315(1-2):26-33
    85. He X, Zhuang P, Zhang L, Xie C. Osmoregulation in juvenile Chinese sturgeon (Acipenser sinensis Gray) during brackish water adaptation. Fish Physiol Biochem, 2009, 35(2):223-230
    86. Helland SJ, Grisdale-Helland B, Nerland S. A simple method for the measurement of daily feed intake of groups of fish in tanks. Aquaculture, 1996, 139(1-2):157-163
    87. Helm KP, Bindoff NL, Church JA. Changes in the global hydrological-cycle inferred from ocean salinity. Geophys res lett, 2010, 37(18).
    88. Hickman, CP, Trump, BF. The kidney. In: Hoar, WS Randall, DJ, eds., Fish Physiology. New York: Academic Press,1969.91-239
    89. Hirano T, Mayer-Gostan N. Eel esophagus as an osmoregulatory organ. Proc Natl Acad Sci, 1976,73(4):1348-1350
    90. Hirano T, Ogasawara T, Bolton J, Collie N, Hasegawa S, Iwata M. Osmoregulatory role of prolactin in lower vertebrates. Comp physiol environ adap, 1987, 1:112-124
    91. Hochleithner M, Gessner J. The Sturgeons and Paddlefishes of the World: Biology and Aquaculture. Kitzbuhel, Austria: AquaTech Publications, 2001,1-207
    92. Houston AH. Responses of juvenile chum, pink, and coho salmon to sharp sea-water gradients. Can J Zoolog,1957, 35:371-383
    93. Hsieh RJ, Kinsella JE. Oxidation of Polyunsaturated Fatty Acids:Mechanisms, Products, and Inhibition with Emphasis on Fish. In: John EK eds., Advances in Food and Nutrition Research. Academic Press,1989,233-341
    94. Hu J, Zhang Z, Wei Q, Zhen H, Zhao Y, Peng H, Wan Y, Giesy JP, Li L, Zhang B. Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent Proc Natl Acad Sci U S A,2009,106(23):9339-44
    95. Huff DD, Lindley ST, Wells BK, Chai F. Green Sturgeon Distribution in the Pacific Ocean Estimated from Modeled Oceanographic Features and Migration Behavior. PLoS One, 2012, 7(9):e45852
    96. Huong DTT, Jasmani S, Jayasankar V, Wilder M. Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. Aquaculture, 2010, 304(1-4):88-94
    97. Ibrahim Haliloglu, H, BayIr A, Necdet Sirkecioglu, A., Mevlut Aras, N., and Atamanalp, M. Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chem, 2004, 86(1):55-59
    98. Imsland AK, Gunnarsson S, Foss A, Stefansson SO. Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture, 2003, 218(1-4): 671-683
    99. IUCN. Acipenser sinensis. In: IUCN Red List of Threatened Species. Version 2012. International Union for Conservation of Nature.
    100. Iwama GK. Growth of salmonids: 1996. In: Pennell, W., Barton, B.A. (Eds.),principles of salmon culture. Elsevier, 1996, Amsterdam: The Netherlands
    101. Lyman J. Redefinition of salinity and chlorinity. Limnol Oceanogr, 1969, 14(6): 928-929
    102. Jarvis PL, Ballantyne JS. Metabolic responses to salinity acclimation in juvenile shortnose sturgeon(Acipenser brevirostrum). Aquaculture, 2003,219(1):891-909
    103. Jarvis PL, Ballantyne JS, Hogans WE. The influence of salinity on the growth of juvenile shortnose sturgeon. NAm JAquacult, 2001,63(4): 272-276
    104. Jury SH, Kinnison MT, Huntting Howell W, Watson Iii WH. The behavior of lobsters in response to reduced salinity. JExp Mar Biol Ecol, 1994, 180(1):23-37
    105. Kacem A, Gustafsson S, Meunier FJ. Demineralization of the vertebral skeleton in Atlantic salmon Salmo salar L. during spawning migration. Comp Biochem Phys A, 2000, 125(4): 479-484
    106. Kang C-K, Liu F-C, Chang W-B, Lee T-H. Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2C1- cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus. Fish Physiol Biochem, 2012, 38(3): 665-678
    107. Kerstetter TH, White RJ. Changes in intestinal water absorption in coho salmon during short-term seawater adaptation: a developmental study. Aquaculture, 1994, 121(1):171-180
    108. Khodabandeh S, Mosafer S, Khoshnood Z. Effects of cortisol and salinity acclimation on Na+/K+/2C1--cotransporter gene expression and Na+, K+-ATPase activity in the gill of Persian sturgeon, Acipenser persicus, fry. Sci Mar, 2009, 73:111-116
    109. Khoshnood Z, Khodabandeh S, Mosafer S, Khoshnood R. Effects of Cortisol on Gill MRCs in Persian Sturgeon, Acipenser persicus, Fry. Yakhteh, 2010, 11(4):424-431
    110. Koumantakis G, Wyndham LE. An evaluation of osmolality measurement by freezing point depression using micro-amounts of sample. JAutom Chem, 1989, 11 (2):80-83
    111.Kurita Y, Nakada T, Kato A, Doi H, Mistry AC, Chang M-H, Romero MF, Hirose S. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish. Am JPhysiol, 2008, 294(4): R1402-R1412
    112. Lahnsteiner F, Urbanyi B, Horvath A, Weismann T. Bio-markers for egg quality determination in cyprinid fish. Aquaculture, 2001,195(3-4):331-352
    113. Lahnsteiner F, Weismann T, Patzner RA. Physiological and biochemical parameters for egg quality determination in lake trout, Salmo trutta lacustris. Fish Physiol Biochem, 1999, 20(4), 375-388
    114. Laiz-Carrion R, Guerreiro PM, Fuentes J, Canario AVM, Martin DR, Maria P, Mancera JM. Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus. J Exp Zool Part A, 2005,303A 7:563-576
    115. Lall SP. The minerals. In: Halver, JE, Hardy, RW eds., Fish Nutrition, 3rd edn. San Diego, CA, Academic Press, 2002, pp. 259-308
    116. Le Menn F, Pelissero C. Histological and ultrastructural studies of oogenesis of Siberian sturgeon. In: Williot P ed., Acipenser. Bordeaux: Cemagref publications, 1991,113-128
    117. Lehrman DS. Interaction between internal and external environments in the regulation of the reproductive cycle of the ring dove. In: foundations of animal behavior. London: University of Chicago Press, 1996, 440-465.
    118. Leonard JB, McCormick SD. Effects of migration distance on whole-body and tissue-specific energy use in American shad (Alosa sapidissima). Can J Fish Aquat Sci, 1999, 56(7): 1159-1171
    119. Lin SH, Chang CW,Lizuka Y, Tzeng WN. Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. JExp Mar Biol Ecol, 2007, 341(2):254-263
    120. Liao, CM, Ju, YR, Chen WY, Chen BC. Assessing the impact of waterborne and dietborne cadmium toxicity on susceptibility risk for rainbow trout. Sci Total Environ, 2011,409(3): 503-513
    121. Linares-Casenave J, Kroll KJ, Van Eenennaam JP, Doroshov SI. Effect of ovarian stage on plasma vitellogenin and calcium in cultured white sturgeon. Aquaculture, 2003,221(1-4): 645-656
    122. Loretz CA Electrophysiology of ion transport in teleost intestinal cells. In: Wood CM, Shuttleworth TJ eds., Cellular and molecular approaches to fish ionic regulation. San Diego: Academic Press,1995,25-56
    123. Lovett DL, Towle DW, Faris JE. Salinity-sensitive alkaline phosphatase activity in gills of the blue crab, Callinectes sapidus Rathbun. Comp Biochem Phys B, 1994,109(1):163-173
    124. Lu W, Zhang Y, Xiong JH, Balment R. Daily rhythms of urotensin I and II gene expression and hormone secretion in the caudal neurosecretory system of the euryhaline flounder (Platichthys flesus). Gen Comp Endocr, 2013,188:189-195
    125. Lucy OS, Stephen DS, Victoria AB. In: The Role of Learning in Fish Orientation. First published, 2006, by Blackwell Publishing Ltd
    126. Mancera JM, McCormick SD. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts. Comp Biochem Phys B,1998,121:43-48
    127. Marshall WS, Grosell M. Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne JB eds., The physiology of fishes, 3rd edn. Boca Raton: CRC Press, 2006, 177-230
    128. McCormick SD, Hasegawaf S, Hiranot T. Calcium uptake in the skin of a freshwater teleost. Proc Nati Acad Sci USA, 1992, 89:3636-3638
    129. McCormick SD, Regish A, O'Dea MF, Shrimpton JM. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxicorticosterone and aldosterone on osmoregulation, gill Na+, K+-ATPase activity and isoform mRNA levels in Atlantic salmon, Gen Comp Endocrl,2008,157:35-40
    130. McDonald D, Milligan C. Chemical properties of the blood. Fish physiology, 1992, 12(Part B): 55-133
    131. McEnroe M, Cech, JJJ. Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus. Environ Biol Fish,1985,14(1):23-30
    132. McKenzie DJ, Cataldi E, Romano P, Owen SF, Taylor EW, Bronzi P. Effects of acclimation to brackish water on the growth, respiratory metabolism, and swimming performance of young-of-the-year Adriatic sturgeon (Acipenser naccarii). Can J Fish Aquat Sci, 2001,58(6): 1104-1112
    133. Menasveta P, Piyatiratitivorakul S, Rungsupa S, Moree N, Fast AW. Gonadal maturation and reproductive performance of giant tiger prawn (Penaeus monodon Fabricius) from the Andaman Sea and pond-reared sources in Thailand. Aquaculture, 1993, 116(2-3):191-198
    134. Mohseni M, Ozorio ROA, Pourkazemi M, Bai SC. Effects of dietary 1-carnitine supplements on growth and body composition in beluga sturgeon (Huso huso) juveniles. JAppl Ichthyol, 2008,24(6): 646-649
    135. Mommsen TP, French C, Hochachka P. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zoolog, 1980, 58(10):1785-1799
    136. Mylonas CC, Pavlidis M, Papandroulakis N, Zaiss MM, Tsafarakis D, Papadakis IE. Varsamos S. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture, 2009, 287:203-210
    137. Nagashima K, Ando M. Characterization of esophageal desalination in the seawater eel, Anguilla japonica. J Comp Physiol B, 1994, 164(1):47-54
    138. Nelson TC, Doukakis P, Lindley ST, Schreier AD, Hightower JE, Hildebrand LR, Whitlock RE, Webb MAH. Research Tools to Investigate Movements, Migrations, and Life History of Sturgeons (Acipenseridae), with an Emphasis on Marine-Oriented Populations. PLoS One, 2013, 8(8):e71552
    139. Nguyen HQ, Reinertsen H, Rustad T, Tran TM, Kj?rsvik E. Evaluation of egg quality in broodstock cobia Rachycentron Canadum L, Aquac Res, 2011,44(3):371-385
    140. Nielsen C, Madsen S, Bjornsson BT. Changes in branchial and intestinal osmoregulatory mechanisms and growth hormone levels during smolting in hatchery-reared and wild brown trout J Fish Biol, 1999,54(4):799-818
    141. Nolan DT, Op't Veld, RLJM, Balm, PHM, Wendelaar BSE. Ambient salinity modulates the response of the tilapia, Oreochromis mossambicus (Peters), to net confinement. Aquaculture, 1999,177:297-309
    142. Norris AJ, DeVries DR, Wright RA. Coastal Estuaries as Habitat for a Freshwater Fish Species: Exploring Population-Level Effects of Salinity on Largemouth Bass. TAm Fish Soc, 2010,139:610-625
    143. Onuma TA, Makino K, Katsumata H, Beckman BR, Ban M, Ando H, Fukuwaka M-a, Azumaya T, Swanson P, Urano A. Changes in the plasma levels of insulin-like growth factor-I from the onset of spawning migration through upstream migration in chum salmon. Gen Comp Endocr, 2010, 165(2):237-243
    144. Ozaki Y, Koga H, Takahashi T, Adachi S, Yamauchi K. Lipid content and fatty acid composition of muscle, liver, ovary and eggs of captive-reared and wild silver Japanese eel Anguilla japonica during artificial maturation. Fisheries Sci, 2008, 74(2):362-371
    145. Pan ML, Bell WJ, Telfer WH. Vitellogenic blood protein syntheis by insect fat body. Science, 1969, 165:393-394
    146. Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int, 2004, 30(3):357-362
    147. Parkyn DC, Murie DJ, Sherwood ET. Salinity Preference in Hatchery-Reared Juvenile Red Drum. The Scientific World Journal, 2002, 2:1334-1339
    148. Parmelee JT, Renfro JL. Esophageal desalination of seawater in flounder: role of active sodium transport. Am JPhysiol,1983,245(6):R888-R893
    149. Pechenik JA, Berard R, Kerr L. Effects of reduced salinity on survival, growth, reproductive success, and energetics of the euryhaline polychaete Capitella sp. I. J Exp Mar Biol Ecol, 2000,254(1):19-35
    150. Peterson MS, Comyns BH, Rakocinski CF, Fulling GL. Does salinity affect somatic growth in early juvenile Atlantic croaker, Micropogonias undulatus (L.). Journal of Experimental Marine Biology and Ecology, 1999, 238(2):199-207
    151. Pinoni SA., Lopez Mananes AA. Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Biol Ecol, 2004, 307(1):35-46
    152. Rankin JC, Cobb CS, Frankling SC, Brown JA. Circulating angiotensins in the river lamprey, Lampetra fluviatilis, acclimated to freshwater and seawater: possible involvement in the regulation of drinking. Comp Biochem Phys B, 2001,129:311-318
    153. Raymond JP, Gary JPM. The effect of chronic testosterone administration on sturgeon Gonadotropins in juvenile and pre-vitellogenic White Sturgeon (Acipenser transmontannus). Gen Comp Endocr, 1999, 105:218-227
    154. Reinecke M. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system. J Fish Biol, 2010, 76:1233-1254
    155. Reite OB, Maloiy GMO, Aasehaug B. pH, Salinity and Temperature Tolerance of Lake Magadi Tilapia Nature, 1974, 247(5439):315-315
    156. Rhee J-S, Kim R-O, Seo JS, Lee J, Lee Y-M, Lee J-S. Effects of salinity and endocrine-disrupting chemicals on expression of prolactin and prolactin receptor genes in the euryhaline hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Phys C, 2010, 152(4):413-423
    157. Rodriguez A, Gallardo MA, Gisbert E, Santilari S, Ibarz A, Sanchez J, Castello-Orvay F. Osmoregulation in juvenile Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem, 2002, 26(4): 345-354
    158. Roy PK, Lall SP. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L.). Aquaculture, 2003, 221(1-4), 451-468
    159. Rubio VC, Sanchez-Vazquez FJ, Madrid JA. Effects of salinity on food intake and macronutrient selection in European sea bass. Physiol Behav, 2005, 85(3):333-339
    160. Sampaio LSA, Bianchini A. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol, 2002, 269: 187-196
    161. Sakamoto T, Hirano T. Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc Natl Acad Sci USA, 1993,90: 1912-1916
    162. Sakamoto T, McCormick S, Hirano T. Osmoregulatory actions of growth hormone and its mode of action in salmonids: A review. Fish Physiol Biochem,1993,11:155-164
    163. Sakamoto T, McCormick SD. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocr. 2006,147:24-30
    164. Schmidt-Nielsen K. Water and osmotic regulation. In: Schmidt-Nielsen, K Eds., Animal Physiology Adaptation and Environment, fifth edition, Cambridge University Press, 1997, 301-354
    165. Schmitz M, Berglund I, Lundqvist H, Bjornsson BT. Growth hormone response to seawater challenge in Atlantic salmon, Salmo salar, during parr-smolt transformation. Aquaculture, 1994,121:209-221
    166. Schuhmacher A, Gropp JMC — a vitamin for rainbow trout? JAppl Ichthyol, 1998,14(1-2): 87-90
    167. Scott GR, Baker DW, Schulte PM, Wood CM. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. J Exp Biol, 2008, 211(15): 2450-2459
    168. Seale AP, Watanabe S, Breves JP, Lerner DT, Kaneko T, Gordon Grau E. Differential regulation of TRPV4 mRNA levels by acclimation salinity and extracellular osmolality in euryhaline tilapia. Gen Comp Endoc, 2012, 178(1):123-130
    169. Seidelin M, Madsen SS, Blenstrup H, Tipsmark CK. Time - course changes in the expression of Na+, K+ - ATPase in gills and pyloric caeca of brown trout (Salmo trutta) during acclimation to seawater. Physiol Biochem Zool, 2000, 73(4): 446-453
    170. Selden Burke J, Tanaka M, Seikai T. Influence of light and salinity on behaviour of larval Japanese flounder (Paralichthys olivaceus) and implications for inshore migration. Neth J Sea Res,1995,34(1-3):59-69
    171. Shawn RF, Benfey TJ. Effects of dietary estradiol-17β in juvenile shortnose sturgeon, Acipenser brevirostrum, Lesueur. Aquaculture. 2007, 270:405-412
    172. Shearer K, Asgard T. The effect of water-borne magnesium on the dietary magnesium requirement of the rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem, 1992, 9(5): 387-392
    173. Shehadeh ZH., Gordon, MS. The role of the intestine in salinity adaptation of the rainbow trout, Salmo gairdneri. p. Biochem Physiol, 1969, 30(3):397-418
    174. Smith NF, Talbot C, Eddy FB. Dietary salt intake and its relevance to ionic regulation in freshwater salmonids. J Fish Biol, 1989, 35(6):749-753
    175. Soto E, Fernandez D, Thune R, Hawke JP. Interaction of Francisella asiatica with tilapia (Oreochromis niloticus) innate immunity. Infect Immun, 2010, 78(5):2070-2078
    176. Staaland H. A device for the study of salinity preference in mobile marine animals. Comp Biochem Physiol, 1969, 29(2):853-857
    177. Stanzel C, Finelli C. The effects of temperature and salinity on ventilation behavior of two species of ghost shrimp (Thalassinidea) from the northern Gulf of Mexico: a laboratory study. JExp Mar Biol Ecol, 2004, 312(1):19-41
    178. Sundell K, Jutfelt F, Agustsson T, Olsen R-E, Sandblom E, Hansen T, Bjornsson BT. Intestinal transport mechanisms and plasma cortisol levels during normal and out-of-season parr-smolt transformation of Atlantic salmon, Salmo salar. Aquaculture, 2003, 222(1): 265-285
    179. Tierney ML, Luke G, Cramb G, Hazon N. The role of the renin-angiotensin system in the control of blood pressure and drinking in the European eel, Anguilla anguilla. Gen Comp Endocrinol, 1995,100:39-48
    180. Tine M, Delorgeril J, Panfili J, Diop K, Bonhomme F, Durand J. Growth hormone and Prolactin-1 gene transcription in natural populations of the black-chinned tilapia Sarotherodon melanotheron acclimatised to different salinities. Comp Biochem Physiol B, 2007, 147(3):541-549
    181. Tsui WC, Chen JC, Cheng SY. The effects of a sudden salinity change on cortisol, glucose, lactate, and osmolality levels in grouper Epinephelus malabaricus. Fish Physiol Biochem, 2012, 38(5):1323-1329
    182. Tsuzuki M, Sugai J, Maciel J, Francisco C, Cerqueira V. Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture, 2007, 271(1-4):319-325
    183. Uchida K, Kaneko T, Yamauchi K, Hirano T. Morphometrical analysis MRC activity in the gill filaments and lamellae and changes in Na+, K+-ATPase activity during seawater adaptation in chum salmon fry. JExp Zool, 1996, 276(3):193-200
    184. Unesco. Reports of joint panel on the equation of state of seawater. 1962, NS/9/114B, Paris. Pp.17
    185. Usher, ML, Talbot C, Eddy, FB. Effects of transfer to seawater on digestion and gut function in Atlantic salmon smolts (Salmo salar L.). Aquaculture, 1990, 90(1):85-96
    186. Usher ML, Talbott C, Eddy FB. Intestinal water transport in juvenile atlantic salmon (Salmo salar L.) during smolting and following transfer to seawater. Comp Biochem Physiol, 1991, 100(4):813-818
    187. Veillette PA, Sundell K, Specker JL. Cortisol mediates the increase in intestinal fluid absorption in Atlantic salmon during parr-smolt transformation. Gen Comp Endocrinol, 1995, 97(2):250-258
    188. Veillette PA, Young G. Temporal changes in intestinal Na, K-ATPase activity and in vitro responsiveness to cortisol in juvenile chinook salmon Comp Biochem Physiol, 2004, 138(3): 297-303
    189. Veillette PA, White RJ, Specker JL, Young G Osmoregulatory physiology of pyloric ceca: regulated and adaptive changes in chinook salmon. J Exp Zool, 2005, 303(7):608-613
    190. Veillette PA, White RJ, Specker JL. Changes in intestinal fluid transport in Atlantic salmon (Salmo salar L) during parr-smolt transformation. Fish Physiol Biochem, 1993, 12(3): 193-202
    191. Wada T, Aritaki M, Tanaka M. Effects of low-salinity on the growth and development of spotted halibut Verasper variegatus in the larva-juvenile transformation period with reference to pituitary prolactin and gill MRCs responses. J Exp Mar Biol Ecol,2004, 308: 113-126
    192. Wang CY, Wei QW, Kynard B, Du H, Zhang H. Migrations and movements of adult Chinese sturgeon Acipenser sinensis in the Yangtze River, China. J Fish Biol, 2012, 81(2): 696-713
    193. Wei Q. (2010) Acipenser sinensis. In IUCN. IUCN Red List of Threatened Species, 2012
    194. Wei Q, Ke FE, Zhang J, Zhuang P, Luo J, Zhou, R, Yang W. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environ Biol Fish, 1997, 48(1):241-255
    195. Williot P, Brun R. Ovarian development and cycles in cultured Siberian sturgeon, Acipenser baeri. Aquat Living Resour, 1998, 11(02): 111-118
    196. Wills P, Pfeiffer T, Riche M. Production of Florida pompano Trachinotus carolinus in low salinity systems. In: Book of Abstracts World Aquaculture Society. 2010
    197. Wilson JM, Laurent P. Fish gill morphology:inside out J Zool A,2002, 293(3): 192-213
    198. Wilson R, Gilmour K, Henry R, Wood C. Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid-base balance? J Exp Biol, 1996, 199(10): 2331-2343
    199. Wirth M, Kirschbaum F, Gessner J, Kriiger A, Patriche N, Billard R. Chemical and biochemical composition of caviar from different sturgeon species and origins. Food/ Nahrung, 2000, 44(4): 233-237
    200. Wirth M, Kirschbaum F, Gessner J, Williot P, Patriche N, Billard R. Fatty Acid Composition in Sturgeon Caviar from Different Species: Comparing Wild and Farmed Origins. Int Rev Hydrobiol, 2002, 87(5-6): 629-636
    201. Woo NYS, Ng TB, Leung TC, Chow CY. Enhancement of growth of tilapia Oreochromis niloticus in iso-osmotic medium. JAppl Ichthyol, 1997, 13:67-71
    202. Wooster WS, Lee AJ, Dietrich G. Redefinition of salinity. in Deep Sea Research and Oceanographic Abstracts. 1969:Elsevier
    203. Wuertz S, Nitsche A, Jastroch M, Gessner J, Klingenspor M, Kirschbaum F, Kloas W. The role of the IGF-I system for vitellogenesis in maturing female sterlet, Acipenser ruthenus Linnaeus, 1758. Gen Comp Endocr, 2007, 150(1):140-150
    204. Yamada Y, Okamura A, Tanaka S, Utoh T, Horie N, et al. The roles of bone and muscle as phosphorus reservoirs during the sexual maturation of female Japanese eels, Anguilla japonica Temminck and Schlegel (Anguilliformes). Fish Physiol Biochem, 2001,24(4): 327-334
    205. Yang W-K, Hseu J-R, Tang C-H, Chung M-J, Wu S-M, Lee T-H. Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. JExp Mar Biol Ecol, 2009,375(1-2):41-50
    206. Yeo I-K, Mugiya Y. Effects of Extracellular Calcium Concentrations and Calcium Antagonists on Vitellogenin Induction by Estradiol-17β in Primary Hepatocyte Culture in the Rainbow Trout Oncorhynchus mykiss. Gen Comp Endocr, 1997, 105(3):294-301
    207. Yuan YC, Yang HJ, Gong SY, Luo Z, Yu DH, Yan JL, Yang XF. Dietary phosphorus requirement of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult Nutr 2011, 17(2), 159-169
    208. Zhao F, Zhuang P, Zhang L, Hou J. Changes in growth and osmoregulation during acclimation to saltwater in juvenile Amur sturgeon Acipenser schrenckii. Chin J Oceanol Limn, 2010,28(3):603-608
    209. Zhuang P, Kynard B, Zhang L, Zhang T, Cao W. Ontogenetic behavior and migration of Chinese sturgeon, Acipenser sinensis. Environ Biol Fish, 2002, 65(1): 83-97
    210. Zhuang S. The influence of salinity, diurnal rhythm and daylength on feeding behavior in Meretrix meretrix Linnaeus. Aquaculture, 2006, 252(2-4): 584-590
    211. Ziegeweid JR, Black MC. Hematocrit and plasma osmolality values of young-of-year shortnose sturgeon following acute exposures to combinations of salinity and temperature. Fish Physiol Biochem, 2010, 36: 963-968

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700