用户名: 密码: 验证码:
鼠多形螺旋线虫感染对宿主抗细菌天然免疫反应的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蠕虫在世界范围内每年大约有30亿人口受到感染,并且发现蠕虫感染高发地区往往与原虫性、细菌性、病毒性疾病高发地区一致或重叠,比如疟疾、肺结核、艾滋病等。这种情况一般由蠕虫与其他病原共感染后蠕虫引起强烈的免疫调节有关。在发展中国家蠕虫感染与其他病原比如细菌等共感染经常发生。如鼠伤寒沙门氏菌,可以通过食物经口传播,可感染多种动物及人类,其感染人类可导致急性肠炎,该病原的感染依赖于宿主的免疫状况及共感染情况,因此鼠伤寒沙门氏菌容易感染婴幼儿及免疫力低下人群易感染。肠道蠕虫感染会对宿主进行免疫调节和改变宿主免疫状况,蠕虫感染诱导产生的Th2免疫反应会对细菌诱导的Th1免疫反应有抑制作用,从而导致宿主对细菌的控制与清除能力减弱。肠道蠕虫则主要诱导宿主Th2免疫反应,而应对鼠伤寒沙门氏菌则主要依赖宿主天然免疫系统,在肠道蠕虫感染情况下共感染鼠伤寒沙门氏菌可能会导致更严重的病症。目前蠕虫感染对宿主抗细菌免疫调节研究很多,但是对宿主细菌感染天然免疫反应的影响尚不清楚。本课题首先对小鼠进行寄生虫检测,排除鼠自身携带寄生虫的可能。为研究蠕虫感染对宿主抗细菌天然免疫反应的影响,本课题建立了肠道蠕虫多形螺旋线虫与鼠伤寒沙门氏菌或者鼠柠檬酸杆菌共感染C57BL/6小鼠作为动物感染模型,并对共感染肠道蠕虫与细菌小鼠天然免疫反应进行分析。
     本研究利用鼠伤寒沙门氏菌感染造成急性感染模型,对共感染肠道蠕虫与细菌组及各对照组小鼠肠道细菌增殖进行涂板计数分析,并利用红色荧光鼠伤寒沙门氏菌对细菌在盲肠组织中的侵入情况进行观察分析;通过冰冻切片对各组中急性肠炎病理变化观察打分并分析;利用流式细胞分筛技术、免疫荧光染色技术、ELISA技术和荧光定量PCR技术对各组小鼠天然免疫反应水平进行比较分析;通过Th2细胞因子体外刺激并感染巨噬细胞对肠道蠕虫影响宿主抗细菌天然免疫机制进行研究。研究结果发现共感染肠道蠕虫与鼠伤寒沙门氏菌组小鼠比单独感染鼠伤寒沙门氏菌小鼠出现更严重的肠道病理变化和更低的生存率,包括粪便中细菌排出量增加、盲肠和结肠组织炎症加重、细菌侵入增多等。肠道蠕虫感染导致宿主在抗鼠伤寒沙门氏菌感染中抗菌肽分泌不足、细胞因子分泌受到抑制以及抗鼠伤寒沙门氏菌关键单核细胞--中性粒细胞数量不足。通过对其影响机制进一步分析研究发现,蠕虫感染导致宿主在抗鼠伤寒沙门氏菌免疫反应时中性粒细胞召集相关的趋化因子KC和MIP2以及细胞因子TNFα表达水平。体外巨噬细胞刺激及鼠伤寒沙门氏菌感染实验证明,蠕虫感染诱导的Th2细胞因子IL-4/IL-13刺激提高巨噬细胞中调节性细胞因子IL-10表达水平,进而导致巨噬细胞在感染鼠伤寒沙门氏菌后表达趋化因子KC、MIP2及细胞因子TNFα水平较未处理组巨噬细胞下降显著。本研究还利用鼠柠檬酸杆菌引起肠道慢性细菌感染模型进行验证,同样发现肠道蠕虫多形螺旋线虫感染导致鼠柠檬酸杆菌诱导的慢性细菌性结肠炎发病严重,且体重下降迅速及生存率下降,肠道组织中抗菌肽Reg3γ与趋化因子KC的分泌表达受到抑制,以及中性粒细胞召集受阻。
     本课题通过研究寄生性蠕虫对宿主抗细菌天然免疫反应的影响,确定了肠道蠕虫感染抑制宿主抗细菌感染时抗菌肽、趋化因子及细胞因子的分泌表达,阻碍了中性粒细胞的召集。为进一步了解蠕虫感染对细菌性疾病的影响提供依据,也为预防和治疗寄生虫和细菌混合感染这一重要公共卫生问题的提供新方法和参考。
Helminths are estimated to infect3billion people worldwide. The distribution ofseveral helminth pathogens coincides geographically with many devastating microbialdiseases including HIV, malaria, and tuberculosis, and it is possible that the strongimmunomodulatory effects of helminthes on host responses may have a significantimpact on such coincident infections. In many developing countries, exposure tohelminth infections and simultaneous infection with other pathogens such as bacteriais very common.. Such as Salmonella enterica serovar Typhimurium (S.Typhimurium), it is a Gram-negative food-borne pathogen that is a major cause ofacute gastroenteritis in humans. The ability of the host to control such bacterialpathogens may be influenced by host immune status and by concurrent infections. Across-regulatory suppression of Th1responses by a helminth-driven strong Th2response has been suggested as a contributing factor to the alteration of the hostresponse to concurrent bacterial infections.Although much is known about thepotential role of helminth stimulated T cells, typically Th2and Treg, in altering hostprotection against the bacterial infection, the impact of helminth infection on theinnate immune response to enteric bacterial pathogens is less well understood. To testthe hypothesis that helminth infection may negatively regulate host mucosal innateimmunity against bacterial enteropathogens, a murine co-infection model wasestablished by using the intestinal nematode Heligmosomoides polygyrus and S.Typhimurium.
     In this study, Salmonella-induced acute colitis was used, and the bacterialevasion and output was calculated. Also the pathology and innate immune reponsesinclude monocyte recruitment, cytokine expressions and chemokine expressions weredetermined through the HE staining, FACs and Real-time PCR. The in vitrostimulation of macrophage by Th2cytokines and infection with Salmonella wasprocessed for understanding the mechanism of the way by which the helminthinfection suppresses the bacteria induced innate immune responses. We found that mice co-infected with S. Typhimurium and H. polygyrus developed more severeintestinal inflammation than animals infected with S. Typhimurium alone. Theenhanced susceptibility to Salmonella-induced intestinal injury in co-infected micewas found to be associated with diminished neutrophil recruitment to the site ofbacterial infection that correlated with decreased expression of the chemoattractantsMIP-2and KC, poor control of bacterial replication and exacerbated intestinalinflammation. The mechanism of helminth-induced inhibition of MIP-2and KCexpression involved IL-10and, to a less extent, IL-4and IL-13. Ly6G antibody-mediated depletion of neutrophils reproduced the adverse effects of H. polygyrus onSalmonella infection. Our results suggest that impaired neutrophil recruitment is animportant contributor to the enhanced severity of Salmonella enterocolitis associatedwith helminth co-infection. The Citrobacter rodentium (C. rodentium) infected micewith co-infected helminth H. polygyrus were used for verifying the impairedrecruitment of nrutrophil by the helminth infection. The results show the sameinbition of KC and Reg3γ in the conlon tissue from the co-infected mice withhelminth and bacteria. And the neutrophil recruitment was also suppressed by thehelminth infection.
     In the current study, we determined that the helminth infection may suppressesthe bacteria induced innate immune responses, and the helminth infection decreasesthe anti-microbial peptides, chemokine and cytokine expressions in the co-infectedmice with bacteria, failed the neutrophil recruitment during the innate immunityagainst bacteria. The better understanding of the regulation of helminth infection onthe innate immune responses induced by bacteria provides the novel insight and toolto prevent and control the co-current infection with helminth and bacteria.
引文
[1] HOTEZ P. J. and FERRIS M. T., The antipoverty vaccines. Vaccine,2006.24(31-32): p.5787-5799.
    [2] HOTEZ P. J., MOLYNEUX D. H., FENWICK A., et al., Current concepts-control of neglected tropical diseases. New England Journal of Medicine,2007.357(10): p.1018-1027.
    [3] HOTEZ P. J., BRINDLEY P. J., BETHONY J. M., et al., Helminth infections:The great neglected tropical diseases. Journal of Clinical Investigation,2008.118(4): p.1311-1321.
    [4] CROMPTON D. W. and NESHEIM M. C., Nutritional impact of intestinalhelminthiasis during the human life cycle. Annu Rev Nutr,2002.22: p.35-59.
    [5] CROMPTON D. W. T. and NESHEIM M. C., Nutritional impact of intestinalhelminthiasis during the human life cycle. Annual Review of Nutrition,2002.22:p.35-59.
    [6] HARRISON L. M., NERLINGER A., BUNGIRO R. D., et al., Molecularcharacterization of ancylostoma inhibitors of coagulation factor xa-hookwormanticoagulant activity in vitro predicts parasite bloodfeeding in vivo. Journal ofBiological Chemistry,2002.277(8): p.6223-6229.
    [7] LAWRENCE C. E., PATERSON J. C. M., WEI X. Q., et al., Nitric oxidemediates intestinal pathology but not immune expulsion during trichinellaspiralis infection in mice. Journal of Immunology,2000.164(8): p.4229-4234.
    [8] BALEMBA O. B., MBASSA G. K., ASSEY R. J., et al., Lesions of the entericnervous system and the possible role of mast cells in the pathogenic mechanismsof migration of schistosome eggs in the small intestine of cattle duringschistosoma bovis infection. Veterinary Parasitology,2000.90(1-2): p.57-71.
    [9] BARBARA G., VALLANCE B. A. and COLLINS S. M., Persistent intestinalneuromuscular dysfunction after acute nematode infection in mice.Gastroenterology,1997.113(4): p.1224-32.
    [10] MUKHOPADHYAY B., SAHA S., MAITI S., et al., Clinical appraisal of ascarislumbricoides, with special reference to surgical complications. Pediatr Surg Int,2001.17(5-6): p.403-5.
    [11] CRAWFORD A. M., PATERSON K. A., DODDS K. G., et al., Discovery ofquantitative trait loci for resistance to parasitic nematode infection in sheep: I.Analysis of outcross pedigrees. BMC Genomics,2006.7: p.178.
    [12] HAMDANI N., DOUKHAN R., PICARD A., et al., A bipolar disorder patientbecoming asymptomatic after adjunctive anti-filiarasis treatment: A case report.BMC Psychiatry,2013.13: p.81.
    [13] LLOYD S., KRISTENSEN S. and SOULSBY E. J., The effect of corticosteroidtherapy on infection with toxocara canis in dogs. Z Parasitenkd,1981.66(1): p.57-61.
    [14] XU Y. H., MACEDONIA J., SHER A., et al., Dynamic analysis of splenic th1and th2lymphocyte functions in mice infected with schistosoma japonicum.Infect Immun,1991.59(9): p.2934-40.
    [15] CAULADA-BENEDETTI Z., AL-ZAMEL F., SHER A., et al., Comparison ofth1-and th2-associated immune reactivities stimulated by single versus multiplevaccination of mice with irradiated schistosoma mansoni cercariae. Journal ofImmunology,1991.146(5): p.1655-60.
    [16] GASBARRE L. C., Limiting dilution analyses for the quantification of cellularimmune responses in bovine ostertagiasis. Veterinary Parasitology,1986.20(1-3):p.133-47.
    [17] ALMERIA S., CANALS A., ZARLENGA D. S., et al., Quantification ofcytokine gene expression in lamina propria lymphocytes of cattle followinginfection with ostertagia ostertagi. J Parasitol,1997.83(6): p.1051-5.
    [18] BAKER D. G., STOTT J. L. and GERSHWIN L. J., Abomasal lymphaticlymphocyte subpopulations in cattle infected with ostertagia ostertagi andcooperia sp. Vet Immunol Immunopathol,1993.39(4): p.467-73.
    [19] BALIC A., BOWLES V. M. and MEEUSEN E. N., The immunobiology ofgastrointestinal nematode infections in ruminants. Adv Parasitol,2000.45: p.181-241.
    [20] ROSE M. E., OGILVIE B. M., HESKETH P., et al., Failure of nude (athymic)rats to become resistant to reinfection with the intestinal coccidian parasiteeimeria nieschulzi or the nematode nippostrongylus brasiliensis. ParasiteImmunol,1979.1(2): p.125-32.
    [21] FORT M. M., CHEUNG J., YEN D., et al., Il-25induces il-4, il-5, and il-13andth2-associated pathologies in vivo. Immunity,2001.15(6): p.985-95.
    [22] HARNETT W. and HARNETT M. M., Molecular basis of worm-inducedimmunomodulation. Parasite Immunol,2006.28(10): p.535-43.
    [23] FINKELMAN F. D., SHEA-DONOHUE T., MORRIS S. C., et al., Interleukin-4-and interleukin-13-mediated host protection against intestinal nematode parasites.Immunol Rev,2004.201: p.139-55.
    [24] VOEHRINGER D., REESE T. A., HUANG X., et al., Type2immunity iscontrolled by il-4/il-13expression in hematopoietic non-eosinophil cells of theinnate immune system. J Exp Med,2006.203(6): p.1435-46.
    [25] DILLON S. R., SPRECHER C., HAMMOND A., et al., Interleukin31, acytokine produced by activated t cells, induces dermatitis in mice. Nat Immunol,2004.5(7): p.752-60.
    [26] VALLANCE B. A. and COLLINS S. M., The effect of nematode infection uponintestinal smooth muscle function. Parasite Immunol,1998.20(5): p.249-53.
    [27] QUINNELL R. J., WOOLHOUSE M. E., WALSH E. A., et al.,Immunoepidemiology of human necatoriasis: Correlations between antibodyresponses and parasite burdens. Parasite Immunol,1995.17(6): p.313-8.
    [28] ANTIGNANO F., MULLALY S. C., BURROWS K., et al., Trichuris murisinfection: A model of type2immunity and inflammation in the gut. J Vis Exp,2011(51).
    [29] VAN DER KLEIJ D., LATZ E., BROUWERS J. F., et al., A novel host-parasitelipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor2and affects immune polarization. J Biol Chem,2002.277(50): p.48122-9.
    [30] CAPRON A., RIVEAU G. J., BARTLEY P. B., et al., Prospects for aschistosome vaccine. Curr Drug Targets Immune Endocr Metabol Disord,2002.2(3): p.281-90.
    [31] PEARCE E. J., LA FLAMME A., SABIN E., et al., The initiation and functionof th2responses during infection with schistosoma mansoni. Adv Exp Med Biol,1998.452: p.67-73.
    [32] ABRAHAM D., LUCIUS R. and TREES A. J., Immunity to onchocerca spp. Inanimal hosts. Trends Parasitol,2002.18(4): p.164-71.
    [33] BOITELLE A., SCALES H. E., DI LORENZO C., et al., Investigating theimpact of helminth products on immune responsiveness using a tcr transgenicadoptive transfer system. Journal of Immunology,2003.171(1): p.447-54.
    [34] WINTER M. D., Nematodirus battus50years on--a realistic vaccine candidate?Trends Parasitol,2002.18(7): p.298-301.
    [35] BURKE M. L., JONES M. K., GOBERT G. N., et al., Immunopathogenesis ofhuman schistosomiasis. Parasite Immunol,2009.31(4): p.163-76.
    [36] RAGHEB S. and BOROS D. L., Characterization of granuloma t lymphocytefunction from schistosoma mansoni-infected mice. Journal of Immunology,1989.142(9): p.3239-46.
    [37] EYAL I., ZVEIBIL F. and STAMLER B., Anaphylactic shock due to rupture ofa hepatic hydatid cyst into a pericystic blood vessel following blunt abdominaltrauma. J Pediatr Surg,1991.26(2): p.217-8.
    [38] BUIJS J., EGBERS M. W., LOKHORST W. H., et al., Toxocara-inducedeosinophilic inflammation. Airway function and effect of anti-il-5. Am J RespirCrit Care Med,1995.151(3Pt1): p.873-8.
    [39] VAN DER LELIJ A., DOEKES G., HWAN B. S., et al., Humoral autoimmuneresponse against s-antigen and irbp in ocular onchocerciasis. Invest OphthalmolVis Sci,1990.31(7): p.1374-80.
    [40] JAMES S. L., COOK K. W. and LAZDINS J. K., Activation of humanmonocyte-derived macrophages to kill schistosomula of schistosoma mansoni invitro. Journal of Immunology,1990.145(8): p.2686-90.
    [41] PESTEL J., DESSAINT J. P., JOSEPH M., et al., Macrophage triggering byaggregated immunoglobulins. Ii. Comparison of ige and igg aggregates orimmune complexes. Clin Exp Immunol,1984.57(2): p.404-12.
    [42] ATOCHINA O. and HARN D., Lnfpiii/lex-stimulated macrophages activatenatural killer cells via cd40-cd40l interaction. Clin Diagn Lab Immunol,2005.12(9): p.1041-9.
    [43] JAMES S. L., GLAVEN J., GOLDENBERG S., et al., Tumour necrosis factor(tnf) as a mediator of macrophage helminthotoxic activity. Parasite Immunol,1990.12(1): p.1-13.
    [44] RZEPCZYK C. M., BISHOP C. J., CHEUNG K., et al., Stimulation ofneutrophil respiratory burst and iodination reaction by opsonized microfilariae ofdirofilaria immitis. Aust J Exp Biol Med Sci,1986.64(Pt1): p.43-51.
    [45] BASS D. A. and SZEJDA P., Mechanisms of killing of newborn larvae oftrichinella spiralis by neutrophils and eosinophils. Killing by generators ofhydrogen peroxide in vitro. Journal of Clinical Investigation,1979.64(6): p.1558-64.
    [46] RAMALHO-PINTO F. J., MCLAREN D. J. and SMITHERS S. R.,Complement-mediated killing of schistosomula of schistosoma mansoni by rateosinophils in vitro. J Exp Med,1978.147(1): p.147-56.
    [47] ADEWUSI K. and GOVEN A. J., Effect of anti-thymocyte serum on theeosinophil and lysophospholipase responses in mice infected with trichinellaspiralis. Parasitology,1987.94(Pt1): p.115-22.
    [48] HERNDON F. J. and KAYES S. G., Depletion of eosinophils by anti-il-5monoclonal antibody treatment of mice infected with trichinella spiralis does notalter parasite burden or immunologic resistance to reinfection. Journal ofImmunology,1992.149(11): p.3642-7.
    [49] KORENAGA M., HITOSHI Y., TAKATSU K., et al., Regulatory effect of anti-interleukin-5monoclonal antibody on intestinal worm burden in a primaryinfection with strongyloides venezuelensis in mice. Int J Parasitol,1994.24(7): p.951-7.
    [50] VALLANCE B. A., MATTHAEI K. I., SANOVIC S., et al., Interleukin-5deficient mice exhibit impaired host defence against challenge trichinella spiralisinfections. Parasite Immunology,2000.22(10): p.487-492.
    [51] JACKSON J. A., TURNER J. D., RENTOUL L., et al., T helper cell type2responsiveness predicts future susceptibility to gastrointestinal nematodes inhumans. J Infect Dis,2004.190(10): p.1804-11.
    [52] LEE T. D., Helminthotoxic responses of intestinal eosinophils to trichinellaspiralis newborn larvae. Infect Immun,1991.59(12): p.4405-11.
    [53] MCLAREN D. J., PETERSON C. G. and VENGE P., Schistosoma mansoni:Further studies of the interaction between schistosomula and granulocyte-derivedcationic proteins in vitro. Parasitology,1984.88(Pt3): p.491-503.
    [54] BUTTERWORTH A. E., VADAS M. A., WASSOM D. L., et al., Interactionsbetween human eosinophils and schistosomula of schistosoma mansoni. Ii. Themechanism of irreversible eosinophil adherence. J Exp Med,1979.150(6): p.1456-71.
    [55] OWHASHI M., HORII Y., IKEDA T., et al., Importance of mast-cell-derivedeosinophil chemotactic factor a on granuloma formation in murineschistosomiasis japonica: Evaluation using mast-cell-deficient w/wv mice. IntArch Allergy Appl Immunol,1990.92(1): p.64-8.
    [56] WARD R. E. and MCLAREN D. J., Schistosoma mansoni: Migration andattrition of challenge parasites in naive rats and rats protected with vaccine serum.Parasite Immunol,1989.11(2): p.125-46.
    [57] POTTER K. and LEID R. W., A review of eosinophil chemotaxis and function intaenia taeniaeformis infections in the laboratory rat. Veterinary Parasitology,1986.20(1-3): p.103-16.
    [58] SCHMID-HEMPEL P. and EBERT D., On the evolutionary ecology of specificimmune defence. Trends in Ecology&Evolution,2003.18(1): p.27-32.
    [59] FRANK S. A. and SCHMID-HEMPEL P., Mechanisms of pathogenesis and theevolution of parasite virulence. Journal of Evolutionary Biology,2008.21(2): p.396-404.
    [60] SCHMID-HEMPEL P., Variation in immune defence as a question ofevolutionary ecology. Proceedings of the Royal Society B-Biological Sciences,2003.270(1513): p.357-366.
    [61] MITCHELL T. J., The pathogenesis of streptococcal infections: From toothdecay to meningitis. Nature Reviews Microbiology,2003.1(3): p.219-230.
    [62] SANSONETTI P. J. and DI SANTO J. P., Debugging how bacteria manipulatethe immune response. Immunity,2007.26(2): p.149-161.
    [63] HORNEF M. W., WICK M. J., RHEN M., et al., Bacterial strategies forovercoming host innate and adaptive immune responses. Nature Immunology,2002.3(11): p.1033-1040.
    [64] FINKELMAN F. D., MADDEN K. B., CHEEVER A. W., et al., Effects ofinterleukin12on immune responses and host protection in mice infected withintestinal nematode parasites. J Exp Med,1994.179(5): p.1563-72.
    [65] URBAN J. F., JR., MADDEN K. B., CHEEVER A. W., et al., Ifn inhibitsinflammatory responses and protective immunity in mice infected with thenematode parasite, nippostrongylus brasiliensis. Journal of Immunology,1993.151(12): p.7086-94.
    [66] LOUKAS A. and MAIZELS R. M., Helminth c-type lectins and host-parasiteinteractions. Parasitology Today,2000.16(8): p.333-339.
    [67] TORTORELLA D., GEWURZ B. E., FURMAN M. H., et al., Viral subversionof the immune system. Annual Review of Immunology,2000.18: p.861-926.
    [68] YEWDELL J. W. and HILL A. B., Viral interference with antigen presentation.Nature Immunology,2002.3(11): p.1019-1025.
    [69] SEET B. T., JOHNSTON J. B., BRUNETTI C. R., et al., Poxviruses and immuneevasion. Annual Review of Immunology,2003.21: p.377-423.
    [70] O'NEILL S. M., BRADY M. T., CALLANAN J. J., et al., Fasciola hepaticainfection downregulates th1responses in mice. Parasite Immunol,2000.22(3): p.147-55.
    [71] CLERY D., TORGERSON P. and MULCAHY G., Immune responses ofchronically infected adult cattle to fasciola hepatica. Veterinary Parasitology,1996.62(1-2): p.71-82.
    [72] HENKLE K. J., LIEBAU E., MULLER S., et al., Characterization and molecularcloning of a cu/zn superoxide dismutase from the human parasite onchocercavolvulus. Infect Immun,1991.59(6): p.2063-9.
    [73] GRZYCH J. M., PEARCE E., CHEEVER A., et al., Egg deposition is the majorstimulus for the production of th2cytokines in murine schistosomiasis mansoni.Journal of Immunology,1991.146(4): p.1322-7.
    [74] FOX J. G., BECK P., DANGLER C. A., et al., Concurrent enteric helminthinfection modulates inflammation and gastric immune responses and reduceshelicobacter-induced gastric atrophy. Nat Med,2000.6(5): p.536-42.
    [75] ZACCONE P., FEHERVARI Z., JONES F. M., et al., Schistosoma mansoniantigens modulate the activity of the innate immune response and prevent onsetof type1diabetes. Eur J Immunol,2003.33(5): p.1439-49.
    [76] SUMMERS R. W., ELLIOTT D. E., URBAN J. F., JR., et al., Trichuris suistherapy for active ulcerative colitis: A randomized controlled trial.Gastroenterology,2005.128(4): p.825-32.
    [77] AIME N., HAQUE A., BONNEL B., et al., Neutrophil-mediated killing ofdipetalonema viteae microfilariae: Simultaneous presence of ige, igg antibodiesand complement is required. Immunology,1984.51(3): p.585-94.
    [78] HEATH D. D., HOLCMAN B. and SHAW R. J., Echinococcus granulosus: Themechanism of oncosphere lysis by sheep complement and antibody. Int JParasitol,1994.24(7): p.929-35.
    [79] RICKARD M. D., MACKINLAY L. M., KANE G. J., et al., Studies on themechanism of lysis of echinococcus granulosus protoscoleces incubated innormal serum. J Helminthol,1977.51(3): p.221-8.
    [80] MARIKOVSKY M., ARNON R. and FISHELSON Z., Proteases secreted bytransforming schistosomula of schistosoma mansoni promote resistance to killingby complement. Journal of Immunology,1988.141(1): p.273-8.
    [81] DEMPSEY P. W., ALLISON M. E., AKKARAJU S., et al., C3d of complementas a molecular adjuvant: Bridging innate and acquired immunity. Science,1996.271(5247): p.348-50.
    [82] GREEN T. D., NEWTON B. R., ROTA P. A., et al., C3d enhancement ofneutralizing antibodies to measles hemagglutinin. Vaccine,2001.20(1-2): p.242-8.
    [83] ROSS T. M., XU Y., BRIGHT R. A., et al., C3d enhancement of antibodies tohemagglutinin accelerates protection against influenza virus challenge. NatImmunol,2000.1(2): p.127-31.
    [84] VAN DAM G. J., SEINO J., ROTMANS J. P., et al., Schistosoma mansonicirculating anodic antigen but not circulating cathodic antigen interacts withcomplement component c1q. Eur J Immunol,1993.23(11): p.2807-12.
    [85] LACLETTE J. P., SHOEMAKER C. B., RICHTER D., et al., Paramyosininhibits complement c1. Journal of Immunology,1992.148(1): p.124-8.
    [86] CELIK I., STOVER C., BOTTO M., et al., Role of the classical pathway ofcomplement activation in experimentally induced polymicrobial peritonitis.Infect Immun,2001.69(12): p.7304-9.
    [87] WARREN J., MASTROENI P., DOUGAN G., et al., Increased susceptibility ofc1q-deficient mice to salmonella enterica serovar typhimurium infection. InfectImmun,2002.70(2): p.551-7.
    [88] PIEDRAFITA D., SPITHILL T. W., DALTON J. P., et al., Juvenile fasciolahepatica are resistant to killing in vitro by free radicals compared with larvae ofschistosoma mansoni. Parasite Immunol,2000.22(6): p.287-95.
    [89] OU X., THOMAS G. R., CHACON M. R., et al., Brugia malayi: Differentialsusceptibility to and metabolism of hydrogen peroxide in adults and microfilariae.Exp Parasitol,1995.80(3): p.530-40.
    [90] ZANG X., YAZDANBAKHSH M., JIANG H., et al., A novel serpin expressedby blood-borne microfilariae of the parasitic nematode brugia malayi inhibitshuman neutrophil serine proteinases. Blood,1999.94(4): p.1418-28.
    [91] BOZAS S. E., PANACCIO M., CREANEY J., et al., Characterisation of a novelkunitz-type molecule from the trematode fasciola hepatica. Mol BiochemParasitol,1995.74(1): p.19-29.
    [92] KAGEYAMA T., Molecular cloning, expression and characterization of anascaris inhibitor for pepsin and cathepsin e. Eur J Biochem,1998.253(3): p.804-9.
    [93] BENNETT K., LEVINE T., ELLIS J. S., et al., Antigen processing forpresentation by class ii major histocompatibility complex requires cleavage bycathepsin e. Eur J Immunol,1992.22(6): p.1519-24.
    [94] MACDONALD A. S., LOKE P., MARTYNOGA R., et al., Cytokine-dependentinflammatory cell recruitment patterns in the peritoneal cavity of mice exposedto the parasitic nematode brugia malayi. Med Microbiol Immunol,2003.192(1):p.33-40.
    [95] MACDONALD A. S., STRAW A. D., DALTON N. M., et al., Cutting edge: Th2response induction by dendritic cells: A role for cd40. Journal of Immunology,2002.168(2): p.537-40.
    [96] FAVEEUW C., MALLEVAEY T., PASCHINGER K., et al., Schistosome n-glycans containing core alpha3-fucose and core beta2-xylose epitopes arestrong inducers of th2responses in mice. Eur J Immunol,2003.33(5): p.1271-81.
    [97] BRADY M. T., O'NEILL S. M., DALTON J. P., et al., Fasciola hepaticasuppresses a protective th1response against bordetella pertussis. Infect Immun,1999.67(10): p.5372-8.
    [98] SATOGUINA J., MEMPEL M., LARBI J., et al., Antigen-specific t regulatory-1cells are associated with immunosuppression in a chronic helminth infection(onchocerciasis). Microbes Infect,2002.4(13): p.1291-300.
    [99] MARSHALL M. A., JANKOVIC D., MAHER V. E., et al., Mice infected withschistosoma mansoni develop a novel non-t-lymphocyte suppressor populationwhich inhibits virus-specific ctl induction via a soluble factor. Microbes Infect,2001.3(13): p.1051-61.
    [100] BELKAID Y. and ROUSE B. T., Natural regulatory t cells in infectious disease.Nat Immunol,2005.6(4): p.353-60.
    [101] BLUESTONE J. A. and ABBAS A. K., Natural versus adaptive regulatory tcells. Nat Rev Immunol,2003.3(3): p.253-7.
    [102] TAYLOR A., VERHAGEN J., BLASER K., et al., Mechanisms of immunesuppression by interleukin-10and transforming growth factor-beta: The role of tregulatory cells. Immunology,2006.117(4): p.433-42.
    [103] DOETZE A., SATOGUINA J., BURCHARD G., et al., Antigen-specificcellular hyporesponsiveness in a chronic human helminth infection is mediatedby t(h)3/t(r)1-type cytokines il-10and transforming growth factor-beta but not bya t(h)1to t(h)2shift. Int Immunol,2000.12(5): p.623-30.
    [104] SKAPENKO A., KALDEN J. R., LIPSKY P. E., et al., The il-4receptor alpha-chain-binding cytokines, il-4and il-13, induce forkhead box p3-expressingcd25+cd4+regulatory t cells from cd25-cd4+precursors. Journal of Immunology,2005.175(9): p.6107-16.
    [105] SECOR W. E., Interactions between schistosomiasis and infection with hiv-1.Parasite Immunol,2006.28(11): p.597-603.
    [106] KJETLAND E. F., NDHLOVU P. D., GOMO E., et al., Association betweengenital schistosomiasis and hiv in rural zimbabwean women. AIDS,2006.20(4):p.593-600.
    [107] GALLAGHER M., MALHOTRA I., MUNGAI P. L., et al., The effects ofmaternal helminth and malaria infections on mother-to-child hiv transmission.AIDS,2005.19(16): p.1849-55.
    [108] DRUILHE P., TALL A. and SOKHNA C., Worms can worsen malaria:Towards a new means to roll back malaria? Trends Parasitol,2005.21(8): p.359-62.
    [109] BROOKER S., CLEMENTS A. C., HOTEZ P. J., et al., The co-distribution ofplasmodium falciparum and hookworm among african schoolchildren. Malar J,2006.5: p.99.
    [110] MARUYAMA T., SCHODEL F., IINO S., et al., Distinguishing between acuteand symptomatic chronic hepatitis b virus infection. Gastroenterology,1994.106(4): p.1006-15.
    [111] KAMEL M. A., MILLER F. D., EL MASRY A. G., et al., The epidemiology ofschistosoma mansoni, hepatitis b and hepatitis c infection in egypt. Ann TropMed Parasitol,1994.88(5): p.501-9.
    [112] CHEN C. C., LOUIE S., MCCORMICK B., et al., Concurrent infection with anintestinal helminth parasite impairs host resistance to enteric citrobacterrodentium and enhances citrobacter-induced colitis in mice. Infect Immun,2005.73(9): p.5468-81.
    [113] WEINSTOCK J. V., Helminths and mucosal immune modulation. Ann N YAcad Sci,2006.1072: p.356-64.
    [114] WILSON M. S., TAYLOR M. D., BALIC A., et al., Suppression of allergicairway inflammation by helminth-induced regulatory t cells. J Exp Med,2005.202(9): p.1199-212.
    [115] SMITS H. H. and YAZDANBAKHSH M., Chronic helminth infectionsmodulate allergen-specific immune responses: Protection against development ofallergic disorders? Ann Med,2007.39(6): p.428-39.
    [116] BEYERS A. D., VAN RIE A., ADAMS J., et al., Signals that regulate the hostresponse to mycobacterium tuberculosis. Novartis Found Symp,1998.217: p.145-57; discussion157-9.
    [117] BASSILY S., DUNN M. A., FARID Z., et al., Chronic hepatitis b in patientswith schistosomiasis mansoni. J Trop Med Hyg,1983.86(2): p.67-71.
    [118] MADWAR M. A., EL TAHAWY M. and STRICKLAND G. T., Therelationship between uncomplicated schistosomiasis and hepatitis b infection.Trans R Soc Trop Med Hyg,1989.83(2): p.233-6.
    [119] MCCLARY H., KOCH R., CHISARI F. V., et al., Inhibition of hepatitis b virusreplication during schistosoma mansoni infection in transgenic mice. J Exp Med,2000.192(2): p.289-94.
    [120] BENTWICH Z., KALINKOVICH A., WEISMAN Z., et al., Can eradication ofhelminthic infections change the face of aids and tuberculosis? ImmunologyToday,1999.20(11): p.485-7.
    [121] GALAI N., KALINKOVICH A., BURSTEIN R., et al., African hiv-1subtype cand rate of progression among ethiopian immigrants in israel. Lancet,1997.349(9046): p.180-1.
    [122] MUNIZ-JUNQUEIRA M. I., TAVARES-NETO J., PRATA A., et al., Antibodyresponse to salmonella typhi in human schistosomiasis mansoni. Rev Soc BrasMed Trop,1996.29(5): p.441-5.
    [123] ROUGEMONT A., BOISSON-PONTAL M. E., PONTAL P. G., et al.,Tuberculin skin tests and b.C.G. Vaccination in hyperendemic area ofonchocerciasis. Lancet,1977.1(8006): p.309.
    [124] MALHOTRA I., MUNGAI P., WAMACHI A., et al., Helminth-and bacilluscalmette-guerin-induced immunity in children sensitized in utero to filariasis andschistosomiasis. Journal of Immunology,1999.162(11): p.6843-8.
    [125] SABIN E. A., ARAUJO M. I., CARVALHO E. M., et al., Impairment oftetanus toxoid-specific th1-like immune responses in humans infected withschistosoma mansoni. J Infect Dis,1996.173(1): p.269-72.
    [126] HASEEB M. A. and CRAIG J. P., Suppression of the immune response todiphtheria toxoid in murine schistosomiasis. Vaccine,1997.15(1): p.45-50.
    [127] KULLBERG M. C., PEARCE E. J., HIENY S. E., et al., Infection withschistosoma mansoni alters th1/th2cytokine responses to a non-parasite antigen.Journal of Immunology,1992.148(10): p.3264-70.
    [128] ACTOR J. K., SHIRAI M., KULLBERG M. C., et al., Helminth infectionresults in decreased virus-specific cd8+cytotoxic t-cell and th1cytokineresponses as well as delayed virus clearance. Proc Natl Acad Sci U S A,1993.90(3): p.948-52.
    [129] ARAUJO F. G., COELHO P. M., PEREIRA L. H., et al., Schistosoma mansoni:Impairment of the cell-mediated immune response in mice. Clin Exp Immunol,1977.28(2): p.289-91.
    [130] MUNIZ-JUNQUEIRA M. I., TOSTA C. E. and PRATA A., T cell-dependentimmunodepression in vivo in schistosoma mansoni infected patients. Rev SocBras Med Trop,1990.23(1): p.27-31.
    [131] MANSFIELD L. S., GAUTHIER D. T., ABNER S. R., et al., Enhancement ofdisease and pathology by synergy of trichuris suis and campylobacter jejuni inthe colon of immunologically naive swine. Am J Trop Med Hyg,2003.68(1): p.70-80.
    [132] O'NEILL S. M., MILLS K. H. and DALTON J. P., Fasciola hepatica cathepsin lcysteine proteinase suppresses bordetella pertussis-specific interferon-gammaproduction in vivo. Parasite Immunol,2001.23(10): p.541-7.
    [133] KHAN I. A., HAKAK R., EBERLE K., et al., Coinfection withheligmosomoides polygyrus fails to establish cd8+t-cell immunity againsttoxoplasma gondii. Infect Immun,2008.76(3): p.1305-13.
    [134] RAINE T., ZACCONE P., DUNNE D. W., et al., Can helminth antigens beexploited therapeutically to downregulate pathological th1responses? Curr OpinInvestig Drugs,2004.5(11): p.1184-91.
    [135] YAZDANBAKHSH M., KREMSNER P. G. and VAN REE R., Allergy,parasites, and the hygiene hypothesis. Science,2002.296(5567): p.490-4.
    [136] ELLIOTT D. E., SETIAWAN T., METWALI A., et al., Heligmosomoidespolygyrus inhibits established colitis in il-10-deficient mice. Eur J Immunol,2004.34(10): p.2690-8.
    [137] DUNNE D. W. and COOKE A., A worm's eye view of the immune system:Consequences for evolution of human autoimmune disease. Nat Rev Immunol,2005.5(5): p.420-6.
    [138] ELLIOTT D. E., URBAN J. J., ARGO C. K., et al., Does the failure to acquirehelminthic parasites predispose to crohn's disease? Faseb Journal,2000.14(12):p.1848-55.
    [139] GALE E. A., A missing link in the hygiene hypothesis? Diabetologia,2002.45(4): p.588-94.
    [140] PALMAS C., GABRIELE F., CONCHEDDA M., et al., Causality orcoincidence: May the slow disappearance of helminths be responsible for theimbalances in immune control mechanisms? J Helminthol,2003.77(2): p.147-53.
    [141] TODD J. A., A protective role of the environment in the development of type1diabetes? Diabet Med,1991.8(10): p.906-10.
    [142] TRONCONE R., FRANZESE A., MAZZARELLA G., et al., Gluten sensitivityin a subset of children with insulin dependent diabetes mellitus. Am JGastroenterol,2003.98(3): p.590-5.
    [143] REARDON C., SANCHEZ A., HOGABOAM C. M., et al., Tapeworminfection reduces epithelial ion transport abnormalities in murine dextran sulfatesodium-induced colitis. Infect Immun,2001.69(7): p.4417-23.
    [144] KHAN W. I., BLENNERHASSET P. A., VARGHESE A. K., et al., Intestinalnematode infection ameliorates experimental colitis in mice. Infect Immun,2002.70(11): p.5931-7.
    [145] MOREELS T. G., NIEUWENDIJK R. J., DE MAN J. G., et al., Concurrentinfection with schistosoma mansoni attenuates inflammation induced changes incolonic morphology, cytokine levels, and smooth muscle contractility oftrinitrobenzene sulphonic acid induced colitis in rats. Gut,2004.53(1): p.99-107.
    [146] ELLIOTT D. E., LI J., BLUM A., et al., Exposure to schistosome eggs protectsmice from tnbs-induced colitis. Am J Physiol Gastrointest Liver Physiol,2003.284(3): p. G385-91.
    [147] CROESE J., O'NEIL J., MASSON J., et al., A proof of concept studyestablishing necator americanus in crohn's patients and reservoir donors. Gut,2006.55(1): p.136-7.
    [148] WALK S. T., BLUM A. M., EWING S. A., et al., Alteration of the murine gutmicrobiota during infection with the parasitic helminth heligmosomoidespolygyrus. Inflamm Bowel Dis,2010.16(11): p.1841-9.
    [149] ANDERSSON M., BOMAN A. and BOMAN H. G., Ascaris nematodes frompig and human make three antibacterial peptides: Isolation of cecropin p1andtwo asabf peptides. Cell Mol Life Sci,2003.60(3): p.599-606.
    [150] HAYES K. S., BANCROFT A. J., GOLDRICK M., et al., Exploitation of theintestinal microflora by the parasitic nematode trichuris muris. Science,2010.328(5984): p.1391-4.
    [151] CHEN C. C., LOUIE S., MCCORMICK B. A., et al., Helminth-primeddendritic cells alter the host response to enteric bacterial infection. Journal ofImmunology,2006.176(1): p.472-83.
    [152] FABREGA A. and VILA J., Salmonella enterica serovar typhimurium skills tosucceed in the host: Virulence and regulation. Clin Microbiol Rev,2013.26(2): p.308-41.
    [153] BARTHEL M., HAPFELMEIER S., QUINTANILLA-MARTINEZ L., et al.,Pretreatment of mice with streptomycin provides a salmonella enterica serovartyphimurium colitis model that allows analysis of both pathogen and host. InfectImmun,2003.71(5): p.2839-58.
    [154] SHI H. N., SCOTT M. E., STEVENSON M. M., et al., Zinc deficiency impairst cell function in mice with primary infection of heligmosomoides polygyrus(nematoda). Parasite Immunol,1994.16(7): p.339-50.
    [155] CONWAY K. L., KUBALLA P., SONG J. H., et al., Atg16l1is required forautophagy in intestinal epithelial cells and protection of mice from salmonellainfection. Gastroenterology,2013.145(6): p.1347-57.
    [156] WENG M. Q., HUNTLEY D., HUANG I. F., et al., Alternatively activatedmacrophages in intestinal helminth infection: Effects on concurrent bacterialcolitis. Journal of Immunology,2007.179(7): p.4721-4731.
    [157] HARRIS N. and GAUSE W. C., To b or not to b: B cells and the th2-typeimmune response to helminths. Trends Immunol,2011.32(2): p.80-8.
    [158] GORDON M. A., ZIJLSTRA E. E., NAUS C. W., et al., Schistosomiasis doesnot contribute to death or recurrence of nontyphoid salmonella bacteremia inhuman immunodeficiency virus-infected malawian adults. Clin Infect Dis,2003.37(12): p. e177-9.
    [159] OLIVIER M., FORET B., LE VERN Y., et al., Plasticity of migrating cd1b+and cd1b-lymph dendritic cells in the promotion of th1, th2and th17in responseto salmonella and helminth secretions. PLoS ONE,2013.8(11): p. e79537.
    [160] BLISS S. K., BUTCHER B. A. and DENKERS E. Y., Rapid recruitment ofneutrophils containing prestored il-12during microbial infection. Journal ofImmunology,2000.165(8): p.4515-21.
    [161] LU L., WOO J., RAO A. S., et al., Propagation of dendritic cell progenitorsfrom normal mouse liver using granulocyte/macrophage colony-stimulatingfactor and their maturational development in the presence of type-1collagen. JExp Med,1994.179(6): p.1823-34.
    [162]张西臣苏利波王景林李建华宫鹏涛王明山杨举张国才李赫任文陟张楠李淑红.伊氏锥虫与路氏锥虫二重PCR检测试剂盒及制备方法.中国,ZL201110093874.2,20.13-02-06
    [163] DIAO J., WINTER E., CHEN W., et al., Characterization of distinctconventional and plasmacytoid dendritic cell-committed precursors in murinebone marrow. Journal of Immunology,2004.173(3): p.1826-33.
    [164] GODINEZ I., RAFFATELLU M., CHU H., et al., Interleukin-23orchestratesmucosal responses to salmonella enterica serotype typhimurium in the intestine.Infect Immun,2009.77(1): p.387-98.
    [165] RAFFATELLU M., SANTOS R. L., CHESSA D., et al., The capsule encodingthe viab locus reduces interleukin-17expression and mucosal innate responses inthe bovine intestinal mucosa during infection with salmonella enterica serotypetyphi. Infect Immun,2007.75(9): p.4342-50.
    [166] RAFFATELLU M., SANTOS R. L., VERHOEVEN D. E., et al., Simianimmunodeficiency virus-induced mucosal interleukin-17deficiency promotessalmonella dissemination from the gut. Nat Med,2008.14(4): p.421-8.
    [167] NAUCIEL C. and ESPINASSE-MAES F., Role of gamma interferon and tumornecrosis factor alpha in resistance to salmonella typhimurium infection. InfectImmun,1992.60(2): p.450-4.
    [168] EVERTS B., SMITS H. H., HOKKE C. H., et al., Helminths and dendritic cells:Sensing and regulating via pattern recognition receptors, th2and treg responses.Eur J Immunol,2010.40(6): p.1525-37.
    [169] DENNING T. L., WANG Y. C., PATEL S. R., et al., Lamina propriamacrophages and dendritic cells differentially induce regulatory and interleukin17-producing t cell responses. Nat Immunol,2007.8(10): p.1086-94.
    [170] MCCORMICK B. A., HOFMAN P. M., KIM J., et al., Surface attachment ofsalmonella typhimurium to intestinal epithelia imprints the subepithelial matrixwith gradients chemotactic for neutrophils. J Cell Biol,1995.131(6Pt1): p.1599-608.
    [171] TAKEUCHI A., Electron microscope studies of experimental salmonellainfection. I. Penetration into the intestinal epithelium by salmonella typhimurium.Am J Pathol,1967.50(1): p.109-36.
    [172] LI Y., KARLIN A., LOIKE J. D., et al., Determination of the criticalconcentration of neutrophils required to block bacterial growth in tissues. J ExpMed,2004.200(5): p.613-22.
    [173] DOUGAN G., JOHN V., PALMER S., et al., Immunity to salmonellosis.Immunol Rev,2011.240(1): p.196-210.
    [174] VAN AMPTING M. T., LOONEN L. M., SCHONEWILLE A. J., et al.,Intestinally secreted c-type lectin reg3b attenuates salmonellosis but notlisteriosis in mice. Infect Immun,2012.80(3): p.1115-20.
    [175] ROSENBERGER C. M., GALLO R. L. and FINLAY B. B., Interplay betweenantibacterial effectors: A macrophage antimicrobial peptide impairs intracellularsalmonella replication. Proc Natl Acad Sci U S A,2004.101(8): p.2422-7.
    [176] DONG N., MA Q. Q., SHAN A. S., et al., Influence of truncation of avian beta-defensin-4on biological activity and peptide-membrane interaction. Protein PeptLett,2012.19(4): p.430-8.
    [177] GU C., WU L. and LI X., Il-17family: Cytokines, receptors and signaling.Cytokine,2013.64(2): p.477-85.
    [178] BLEICHER L., DE MOURA P. R., WATANABE L., et al., Crystal structure ofthe il-22/il-22r1complex and its implications for the il-22signaling mechanism.FEBS Lett,2008.582(20): p.2985-92.
    [179] SUNDQUIST M. and WICK M. J., Tnf-alpha-dependent and-independentmaturation of dendritic cells and recruited cd11c(int)cd11b+cells during oralsalmonella infection. Journal of Immunology,2005.175(5): p.3287-98.
    [180] SALCEDO S. P., NOURSADEGHI M., COHEN J., et al., Intracellularreplication of salmonella typhimurium strains in specific subsets of splenicmacrophages in vivo. Cell Microbiol,2001.3(9): p.587-97.
    [181] MONACK D. M., BOULEY D. M. and FALKOW S., Salmonella typhimuriumpersists within macrophages in the mesenteric lymph nodes of chronicallyinfected nramp1+/+mice and can be reactivated by ifngamma neutralization. JExp Med,2004.199(2): p.231-41.
    [182] CHEMINAY C., CHAKRAVORTTY D. and HENSEL M., Role of neutrophilsin murine salmonellosis. Infect Immun,2004.72(1): p.468-77.
    [183] VASSILOYANAKOPOULOS A. P., OKAMOTO S. and FIERER J., Thecrucial role of polymorphonuclear leukocytes in resistance to salmonella dublininfections in genetically susceptible and resistant mice. Proc Natl Acad Sci U SA,1998.95(13): p.7676-81.
    [184] CONLAN J. W., Critical roles of neutrophils in host defense againstexperimental systemic infections of mice by listeria monocytogenes, salmonellatyphimurium, and yersinia enterocolitica. Infect Immun,1997.65(2): p.630-5.
    [185] GULIG P. A., DOYLE T. J., HUGHES J. A., et al., Analysis of host cellsassociated with the spv-mediated increased intracellular growth rate ofsalmonella typhimurium in mice. Infect Immun,1998.66(6): p.2471-85.
    [186] MEDNICK A. J., FELDMESSER M., RIVERA J., et al., Neutropenia alterslung cytokine production in mice and reduces their susceptibility to pulmonarycryptococcosis. Eur J Immunol,2003.33(6): p.1744-53.
    [187] CONLAN J. W., Neutrophils and tumour necrosis factor-alpha are important forcontrolling early gastrointestinal stages of experimental murine listeriosis. J MedMicrobiol,1997.46(3): p.239-50.
    [188] BLOMGRAN R., DESVIGNES L., BRIKEN V., et al., Mycobacteriumtuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naivecd4t cells. Cell Host Microbe,2012.11(1): p.81-90.
    [189] BLISS S. K., GAVRILESCU L. C., ALCARAZ A., et al., Neutrophil depletionduring toxoplasma gondii infection leads to impaired immunity and lethalsystemic pathology. Infect Immun,2001.69(8): p.4898-905.
    [190] CONTRERAS I., SHIO M. T., CESARO A., et al., Impact of neutrophil-secreted myeloid related proteins8and14(mrp8/14) on leishmaniasisprogression. PLoS Negl Trop Dis,2013.7(9): p. e2461.
    [191] DALEY J. M., THOMAY A. A., CONNOLLY M. D., et al., Use of ly6g-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol,2008.83(1): p.64-70.
    [192] HAN Y. and CUTLER J. E., Assessment of a mouse model of neutropenia andthe effect of an anti-candidiasis monoclonal antibody in these animals. J InfectDis,1997.175(5): p.1169-75.
    [193] LEHRER R. I. and CLINE M. J., Leukocyte myeloperoxidase deficiency anddisseminated candidiasis: The role of myeloperoxidase in resistance to candidainfection. Journal of Clinical Investigation,1969.48(8): p.1478-88.
    [194] MULLANE K. M., KRAEMER R. and SMITH B., Myeloperoxidase activity asa quantitative assessment of neutrophil infiltration into ischemic myocardium. JPharmacol Methods,1985.14(3): p.157-67.
    [195] EBE Y., HASEGAWA G., TAKATSUKA H., et al., The role of kupffer cellsand regulation of neutrophil migration into the liver by macrophageinflammatory protein-2in primary listeriosis in mice. Pathol Int,1999.49(6): p.519-32.
    [196] DHAWAN P. and RICHMOND A., Role of cxcl1in tumorigenesis ofmelanoma. J Leukoc Biol,2002.72(1): p.9-18.
    [197] KLEBANOFF S. J. and ROSEN H., The role of myeloperoxidase in themicrobicidal activity of polymorphonuclear leukocytes. Ciba Found Symp,1978(65): p.263-84.
    [198] ALKARMI T. and BEHBEHANI K., Echinococcus multilocularis: Inhibition ofmurine neutrophil and macrophage chemotaxis. Exp Parasitol,1989.69(1): p.16-22.
    [199] BROWN C. R., BLAHO V. A. and LOIACONO C. M., Susceptibility toexperimental lyme arthritis correlates with kc and monocyte chemoattractantprotein-1production in joints and requires neutrophil recruitment via cxcr2.Journal of Immunology,2003.171(2): p.893-901.
    [200] CALL D. R., NEMZEK J. A., EBONG S. J., et al., Differential local andsystemic regulation of the murine chemokines kc and mip2. Shock,2001.15(4):p.278-84.
    [201] GUPTA S., FENG L., YOSHIMURA T., et al., Intra-alveolar macrophage-inflammatory peptide2induces rapid neutrophil localization in the lung. Am JRespir Cell Mol Biol,1996.15(5): p.656-63.
    [202] DRISCOLL K. E., Macrophage inflammatory proteins: Biology and role inpulmonary inflammation. Exp Lung Res,1994.20(6): p.473-90.
    [203] OQUENDO P., ALBERTA J., WEN D. Z., et al., The platelet-derived growthfactor-inducible kc gene encodes a secretory protein related to platelet alpha-granule proteins. J Biol Chem,1989.264(7): p.4133-7.
    [204] ROVAI L. E., HERSCHMAN H. R. and SMITH J. B., The murine neutrophil-chemoattractant chemokines lix, kc, and mip-2have distinct induction kinetics,tissue distributions, and tissue-specific sensitivities to glucocorticoid regulationin endotoxemia. J Leukoc Biol,1998.64(4): p.494-502.
    [205] SHERRY B., HORII Y., MANOGUE K. R., et al., Macrophage inflammatoryproteins1and2: An overview. Cytokines,1992.4: p.117-30.
    [206] WAN M. X., LIU Q., WANG Y., et al., Protective effect of low molecularweight heparin on experimental colitis: Role of neutrophil recruitment and tnf-alpha production. Inflamm Res,2002.51(4): p.182-7.
    [207] CAO Q., WANG Y., ZHENG D., et al., Il-10/tgf-beta-modified macrophagesinduce regulatory t cells and protect against adriamycin nephrosis. J Am SocNephrol,2010.21(6): p.933-42.
    [208] ABRAHAMSOHN I. A., DA SILVA A. P. and COFFMAN R. L., Effects ofinterleukin-4deprivation and treatment on resistance to trypanosoma cruzi.Infect Immun,2000.68(4): p.1975-9.
    [209] HOEBE K., JANSSEN E. and BEUTLER B., The interface between innate andadaptive immunity. Nat Immunol,2004.5(10): p.971-4.
    [210] DALTON D. K., PITTS-MEEK S., KESHAV S., et al., Multiple defects ofimmune cell function in mice with disrupted interferon-gamma genes. Science,1993.259(5102): p.1739-42.
    [211] GORDON S., Alternative activation of macrophages. Nat Rev Immunol,2003.3(1): p.23-35.
    [212] MAJOR J., FLETCHER J. E. and HAMILTON T. A., Il-4pretreatmentselectively enhances cytokine and chemokine production in lipopolysaccharide-stimulated mouse peritoneal macrophages. Journal of Immunology,2002.168(5):p.2456-63.
    [213] BHATTACHARYYA S., GHOSH S., JHONSON P. L., et al.,Immunomodulatory role of interleukin-10in visceral leishmaniasis: Defectiveactivation of protein kinase c-mediated signal transduction events. Infect Immun,2001.69(3): p.1499-507.
    [214] WENG M., HUNTLEY D., HUANG I. F., et al., Alternatively activatedmacrophages in intestinal helminth infection: Effects on concurrent bacterialcolitis. Journal of Immunology,2007.179(7): p.4721-31.
    [215] SU C. W., CAO Y., ZHANG M., et al., Helminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages. Journal ofImmunology,2012.189(3): p.1459-66.
    [216] LUPERCHIO S. A., NEWMAN J. V., DANGLER C. A., et al., Citrobacterrodentium, the causative agent of transmissible murine colonic hyperplasia,exhibits clonality: Synonymy of c. Rodentium and mouse-pathogenic escherichiacoli. J Clin Microbiol,2000.38(12): p.4343-50.
    [217] VALLANCE B. A., DENG W., KNODLER L. A., et al., Mice lacking t and blymphocytes develop transient colitis and crypt hyperplasia yet suffer impairedbacterial clearance during citrobacter rodentium infection. Infect Immun,2002.70(4): p.2070-81.
    [218] VALLANCE B. A., CHAN C., ROBERTSON M. L., et al., Enteropathogenicand enterohemorrhagic escherichia coli infections: Emerging themes inpathogenesis and prevention. Can J Gastroenterol,2002.16(11): p.771-8.
    [219] DIEFENBACH A., Innate lymphoid cells in the defense against infections. EurJ Microbiol Immunol (Bp),2013.3(3): p.143-51.
    [220] ZHENG Y., VALDEZ P. A., DANILENKO D. M., et al., Interleukin-22mediates early host defense against attaching and effacing bacterial pathogens.Nat Med,2008.14(3): p.282-9.
    [221] MCBEE M. E., ZENG Y., PARRY N., et al., Multivariate modeling identifiesneutrophil-and th17-related factors as differential serum biomarkers of chronicmurine colitis. PLoS ONE,2010.5(10): p. e13277.
    [222] HEKMATDOOST A., WU X., MORAMPUDI V., et al., Dietary oils modifythe host immune response and colonic tissue damage following citrobacterrodentium infection in mice. Am J Physiol Gastrointest Liver Physiol,2013.304(10): p. G917-28.
    [223] SPEHLMANN M. E., DANN S. M., HRUZ P., et al., Cxcr2-dependent mucosalneutrophil influx protects against colitis-associated diarrhea caused by anattaching/effacing lesion-forming bacterial pathogen. Journal of Immunology,2009.183(5): p.3332-43.
    [224] ARMSTRONG D. A., MAJOR J. A., CHUDYK A., et al., Neutrophilchemoattractant genes kc and mip-2are expressed in different cell populations atsites of surgical injury. J Leukoc Biol,2004.75(4): p.641-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700