用户名: 密码: 验证码:
内蒙古绒山羊皮肤毛囊毛乳头细胞系的建立及其基因表达谱型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛乳头控制毛囊的新生和毛囊的大小,是毛囊生长和毛囊周期的控制中枢。内蒙古绒山羊体表皮肤具有两种大小和质地差异显著的毛囊,初级毛囊(产粗毛)和次级毛囊(产绒)。绒山羊初级毛囊与次级毛囊大小上的显著差异使其成为研究毛囊形态发生发育机制的优良模型。而次级毛囊比初级毛囊更为明确的毛囊年生长周期及每个周期的易于划分等特点也为研究毛囊周期机制提供了良好的实验材料。本研究通过Ⅱ型胶原酶消化结合机械分离的方法,共建立了三种毛乳头细胞系,分别为毛囊生长期初级毛囊毛乳头细胞、生长期次级毛囊毛乳头细胞和休止期次级毛囊毛乳头细胞。我们对三种毛乳头细胞的形态和生长情况进行了检测,发现体外培养条件下所有三种毛乳头细胞均呈三角形或多角形,均高表达毛乳头细胞特异性标记分子α-平滑肌肌动蛋白。不同的是,只有毛囊生长期初级毛囊毛乳头细胞和生长期次级毛囊毛乳头细胞能够在体外培养条件下形成细胞凝集块,休止期次级毛囊毛乳头细胞在任何代次均不能形成。随后的细胞增殖能力检测发现休止期次级毛囊毛乳头细胞较另外两种毛乳头细胞增殖能力弱。高通量转录组测序技术在检测基因表达水平的方面具有高效、全面和精确的特点。以山羊基因组全序列测序结果为研究背景,利用高通量转录组测序的方法我们对三种毛乳头细胞基因表达谱型进行了分析。基因表达差异性分析显示,毛囊生长期的初级毛囊和次级毛囊的毛乳头细胞基因表达的差异主要表现在血管新生、细胞外基质-受体相互作用,以及Wnt/β-catenin/Lefl KEGG信号通路方面,预示着这些基因在毛囊的形态发生发育过程中可能起到关键作用;毛囊生长期次级毛囊毛乳头细胞和休止期次级毛囊毛乳头细胞差异表达的基因主要富集于细胞周期、细胞黏附分子、细胞因子-细胞因子受体相互作用,以及p53KEGG信号通路上,并揭示在次级毛囊休止期中期毛乳头细胞在促进次级毛囊的退行和绒纤维生长的停止的同时,能够抑制自身细胞凋亡并为完整功能毛乳头的重建或恢复活性做准备。所有这些发现将为进一步研究出生后的毛囊形态发生发育和毛囊周期性生长提供信息。
Dermal papilla is considered the control center of hair follicle neogenesis, size, growth and hair cycle. Inner Mongolia Cashmere goats(Copra hircus) have a double coat comprising the primary (producing guard hair) and secondary hair follicles (producing cashmere), which have dramatically different sizes and textures. That makes the Cashmere goats become a potent model for hair follicle morphogenesis research. The secondary hair follicles have a circannual growth cycle, with each growth phase can be easily distinguished. That provides us good materials for researches on the hair cycle. In the present study by using microdissection combined with collagenase II digestion, we established three dermal papilla cell lines with respect to the anagen primary hair follicles, anagen secondary hair follicles, and telogen secondary hair follicles. We had clarified the similarities and differences in their morphology and growth characteristics, and found that all the three types of dermal papilla cells exhibited a triangular or polygon shape, and were all positive for the a-smooth muscle actin, which is a specific marker for cultured dermal papilla cells. However, only those dermal papilla cells derived from the anagen primary hair follicles or the anagen secondary hair follicles could form cell aggregates. The telogen secondary hair follicle-derived dermal papilla cells could not form cell aggregates at any passage. Subsequent cell proliferation ability analyses showed that the telogen secondary hair follicle-derived dermal papilla cells had lower proliferation rate than the other two cell types. There are great advantages in measuring gene expression levels of the high-throughput transcriptome sequencing technology, by which we identified gene expression patterns of the three dermal papilla cell lines on the research background of complete goat genome sequence. Gene expression difference analyses revealed that the majority of the differentially expressed genes between the anagen primary hair follicle dermal papilla cells and the anagen secondary hair follicle dermal papilla cells are involved in vascularization, ECM-receptor interaction and Wnt/(3-catenin/Lefl signaling pathways from the Kyoto Encyclopedia of Gene and Genomes (KEGG) database, suggesting their critical roles in hair follicle morphogenesis. Enrichment analyses revealed that differently expressed genes between the anagen secondary hair follicle dermal papilla cells and the telogen secondary hair follicle dermal papilla cells were significantly enriched in cell cycle, cell adhesion molecules, cytokine-cytokine receptor interaction and p53signaling pathway from the KEGG database, and suggested that in the middle of telogen the secondary hair follicle dermal papilla cells seemed on the one hand to promote the degeneration of the secondary hair follicles and cessation of cashmere growth, while on the other hand to resist self-apoptosis and prepare for the regeneration or revivification of fully functional dermal papillae. All these findings will provide us information for further researches on postnatal hair follicle morphogenesis and hair growth cycles.
引文
1. de Melker AA, Desban N, Duband JL (2004) Cellular localization and signaling activity of beta-catenin in migrating neural crest cells. Dev Dyn 230:708-726.
    2. Driskell RR, Giangreco A, Jensen KB, Mulder KW, Watt FM (2009) Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136:2815-2823.
    3. Ibraheem M, Galbraith H, Scaife J, Ewen S (1994) Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin. J Anat 185 (Pt 1): 135-142.
    4. Dong Y, Xie M, Jiang Y, Xiao N, Du X, et al. (2013) Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol 31: 135-141.
    5. McDonald B, Hoey W, Hopkins P (1987) Cyclical fleece growth in cashmere goats. Crop and Pasture Science 38:597-609.
    6. Nixon A, Gumseyb M, Betteridgec K, Mitchellc R, Welchc R (1991) Seasonal hair follicle activity and fibre growth in some New Zealand Cashmere-bearing goats (Caprus hircus). Journal of Zoology 224:589-598.
    7. Geng R, Yuan C, Chen Y (2013) Exploring differentially expressed genes by RNA-Seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PLoS One 8:e62704.
    8. Su R, Zhang W-G, Sharma R, Chang Z-L, Yin J, et al. (2009) Characterization of BMP 2 gene expression in embryonic and adult Inner Mongolia Cashmere goat (Capra hircus) hair follicles. Canadian Journal of Animal Science 89:457-462.
    9. Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491-497.
    10. Jahoda CA (1992) Induction of follicle formation and hair growth by vibrissa dermal papillae implanted into rat ear wounds:vibrissa-type fibres are specified. Development 115:1103-1109.
    11. Muller-Rover S, Paus R (1998) Topobiology of the hair follicle: adhesion molecules as morphoregulatory signals during hair follicle morphogenesis. Molecular Basis of Epithelial Appendage Morphogenesis RG Landes, Austin: 283-314.
    12. Rutberg SE, Kolpak ML, Gourley JA, Tan G, Henry JP, et al. (2006) Differences in expression of specific biomarkers distinguish human beard from scalp dermal papilla cells. J Invest Dermatol 126:2583-2595.
    13. Pennisi D, Gardner J, Chambers D, Hosking B, Peters J, et al. (2000) Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet 24:434-437.
    14. Hansen LA, Alexander N, Hogan ME, Sundberg JP, Dlugosz A, et al. (1997) Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. Am J Pathol 150:1959-1975.
    15. Hebert JM, Rosenquist T, Gotz J, Martin GR (1994) FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous mutations. Cell 78:1017-1025.
    16. Botchkarev VA, Botchkareva NV, Welker P, Metz M, Lewin GR, et al. (1999) Anew role for neurotrophins:involvement of brain-derived neurotrophic factor and neurotrophin-4 in hair cycle control. FASEB J 13:395-410.
    17. Peters EM, Stieglitz MG, Liezman C, Overall RW, Nakamura M, et al. (2006) p75 Neurotrophin Receptor-Mediated Signaling Promotes Human Hair Follicle Regression (Catagen). Am J Pathol 168:221-234.
    18. Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Sharov AA, et al. (2001) p53 Involvement in the control of murine hair follicle regression. Am J Pathol 158:1913-1919.
    19. Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, et al. (2000) Control of murine hair follicle regression (catagen) by TGF-betal in vivo. FASEB J 14:752-760.
    20. Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, et al. (2004) Epithelial Bmprla regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 131:2257-2268.
    21. Kwack MH, Kim MK, Kim JC, Sung YK (2012) Dickkopf 1 promotes regression of hair follicles. J Invest Dermatol 132:1554-1560.
    22. Sano S, Kira M, Takagi S, Yoshikawa K, Takeda J, et al. (2000) Two distinct signaling pathways in hair cycle induction:Stat3-dependent and-independent pathways. Proc Natl Acad Sci U S A 97:13824-13829.
    23. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533-545.
    24. Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119:391-393.
    25. Lo Celso C, Prowse DM, Watt FM (2004) Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787-1799.
    26. Hu HM, Zhang SB, Lei XH, Deng ZL, Guo WX, et al. (2012) Estrogen leads to reversible hair cycle retardation through inducing premature catagen and maintaining telogen. PLoS One 7:e40124.
    27. Ahn SY, Pi LQ, Hwang ST, Lee WS (2012) Effect of IGF-I on Hair Growth Is Related to the Anti-Apoptotic Effect of IGF-I and Up-Regulation of PDGF-A and PDGF-B. Ann Dermatol 24:26-31.
    28. Tomita Y, Akiyama M, Shimizu H (2006) PDGF isoforms induce and maintain anagen phase of murine hair follicles. J Dermatol Sci 43:105-115.
    29. Kishimoto J, Burgeson RE, Morgan BA (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14:1181-1185.
    30. Sayama K, Kajiya K, Sugawara K, Sato S, Hirakawa S, et al. (2010) Inflammatory mediator TAK1 regulates hair follicle morphogenesis and anagen induction shown by using keratinocyte-specific TAK1-deficient mice. PLoS One 5:e11275.
    31. Hembree JR, Harmon CS, Nevins TD, Eckert RL (1996) Regulation of human dermal papilla cell production of insulin-like growth factor binding protein-3 by retinoic acid, glucocorticoids, and insulin-like growth factor-1. J Cell Physiol 167:556-561.
    32. Kamp H, Geilen CC, Sommer C, Blume-Peytavi U (2003) Regulation of PDGF and PDGF receptor in cultured dermal papilla cells and follicular keratinocytes of the human hair follicle. Exp Dermatol 12:662-672.
    33. Oliver R (1970) The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. Journal of embryology and experimental morphology 23:219-236.
    34. Jahoda C, Home K, Oliver R (1984) Induction of hair growth by implantation of cultured dermal papilla cells.
    35. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, Christiano AM, Jahoda CA (1999) Trans-gender induction of hair follicles. Nature 402:33-34.
    36. Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491-497.
    37. Tobin DJ, Gunin A, Magerl M, Paus R. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle:implications for growth control and hair follicle transformations; 2003. Nature Publishing Group. pp.80-86.
    1. Oliver RF (1970) The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J Embryol Exp Morphol 23:219-236.
    2. Jahoda CA, Home KA, Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311:560-562.
    3. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, Christiano AM, Jahoda CA (1999) Trans-gender induction of hair follicles. Nature 402:33-34.
    4. Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491-497.
    5. Tobin DJ, Gunin A, Magerl M, Paus R (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle:implications for growth control and hair follicle transformations. J Investig Dermatol Symp Proc 8:80-86.
    6. Heinrich C, Keller C, Boulay A, Vecchi M, Bianchi M, et al. (2010) Copine-Ⅲ interacts with ErbB2 and promotes tumor cell migration. Oncogene 29:1598-1610.
    7. Stenn K, Paus R (2001) Controls of hair follicle cycling. Physiological reviews 81:449.
    8. Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007-2021.
    9. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95:605-614.
    10. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557-4568.
    11. Noramly S, Freeman A, Morgan BA (1999) Beta-catenin signaling can initiate feather bud development. Development 126:3509-3521.
    12. Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124:1179-1182.
    13. Hansen LS, Coggle JE, Wells J, Charles MW (1984) The influence of the hair cycle on the thickness of mouse skin. Anat Rec 210:569-573.
    14. Chase HB, Eaton GJ (1959) The growth of hair follicles in waves. Ann N Y Acad Sci 83:365-368.
    15. St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, et al. (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol 8:1058-1068.
    16. Oro AE, Higgins K (2003) Hair cycle regulation of Hedgehog signal reception. Dev Biol 255: 238-248.
    17. Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9:855-861.
    18. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329-1337.
    19. Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, et al. (1998) The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci 111 (Pt 21):3179-3188.
    20. ZHANG Y-j, Yin J, LI J-q, LI C-q (2007) Study on Hair Follicle Structure and Morphogenesis of the Inner Mongolian Arbas Cashmere Goat [J]. Scientia Agriculture Sinica 5:020.
    21. Jahoda CA (1992) Induction of follicle formation and hair growth by vibrissa dermal papillae implanted into rat ear wounds: vibrissa-type fibres are specified. Development 115:1103-1109.
    22. Oliver RF (1967) The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol 18:43-51.
    23. Dhouailly D (1973) Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages. J Embryol Exp Morphol 30:587-603.
    24. Song HK, Sawyer RH (1996) Dorsal dermis of the scaleless (sc/sc) embryo directs normal feather pattern formation until day 8 of development. Dev Dyn 205:82-91.
    25. Kishimoto J, Burgeson RE, Morgan BA (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14:1181-1185.
    26. Alonso L, Fuchs E (2006) The hair cycle. Journal of Cell Science 119:391-393.
    27. Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R (2005) Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-β2 in the dermal papilla. Journal of investigative dermatology 124:1119-1126.
    28. Peters EMJ, Hansen MG, Overall RW, Nakamura M, Pertile P, et al. (2005) Control of Human Hair Growth by Neurotrophins:Brain-Derived Neurotrophic Factor Inhibits Hair Shaft Elongation, Induces Catagen, and Stimulates Follicular Transforming Growth Factor [beta]2 Expression. J Investig Dermatol 124:675-685.
    29. Botchkarev VA, Botchkareva NV, Albers KM, Chen LH, Welker P, et al. (2000) A role for p75 neurotrophin receptor in the control of apoptosis-driven hair follicle regression. FASEB J 14:1931-1942.
    30. Lindner G, Botchkarev VA, Botchkareva NV, Ling G, van der Veen C, et al. (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151:1601-1617.
    31. Panteleyev AA, van der Veen C, Rosenbach T, Muller-Rover S, Sokolov VE, et al. (1998) Towards defining the pathogenesis of the hairless phenotype. J Invest Dermatol 110:902-907.
    32. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, et al. (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098-1106.
    33. Driskell RR, Giangreco A, Jensen KB, Mulder KW, Watt FM (2009) Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136:2815-2823.
    34. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635-648.
    35. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, et al. (2004) Defining the epithelial stem cell niche in skin. Science 303:359-363.
    36. Rompolas P, Mesa KR, Greco V (2013) Spatial organization within a niche as a determinant of stem-cell fate. Nature 502:513-518.
    37. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) (3-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533-545.
    38. Sano S, Kira M, Takagi S, Yoshikawa K, Takeda J, et al. (2000) Two distinct signaling pathways in hair cycle induction:Stat3-dependent and-independent pathways. Proceedings of the National Academy of Sciences 97:13824-13829.
    39. Celso CL, Prowse DM, Watt FM (2004) Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787-1799.
    40. Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER (2003) Transient activation of (3-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes & development 17:1219-1224.
    41. Su R, Zhang W-G, Sharma R, Chang Z-L, Yin J, et al. (2009) Characterization of BMP 2 gene expression in embryonic and adult Inner Mongolia Cashmere goat (Capra hircus) hair follicles. Canadian journal of animal science 89:457-462.
    42. Hwang KA, Hwang YL, Lee MH, Kim NR, Roh SS, et al. (2012) Adenosine stimulates growth of dermal papilla and lengthens the anagen phase by increasing the cysteine level via fibroblast growth factors 2 and 7 in an organ culture of mouse vibrissae hair follicles. Int J Mol Med 29:195-201.
    43. Hembree JR, Harmon CS, Nevins TD, Eckert RL (1996) Regulation of human dermal papilla cell production of insulin-like growth factor binding protein-3 by retinoic acid, glucocorticoids, and insulin-like growth factor-1. J Cell Physiol 167:556-561.
    44. Kamp H, Geilen CC, Sommer C, Blume-Peytavi U (2003) Regulation of PDGF and PDGF receptor in cultured dermal papilla cells and follicular keratinocytes of the human hair follicle. Exp Dermatol 12:662-672.
    45. Plate KH, Breier G, Farrell CL, Risau W (1992) Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 67:529-534.
    46. Siegbahn A, Hammacher A, Westermark B, Heldin CH (1990) Differential effects of the various isoforms of platelet-derived growth factor on chemotaxis of fibroblasts, monocytes, and granulocytes. J Clin Invest 85:916-920.
    47. Takakura N, Yoshida H, Kunisada T, Nishikawa S, Nishikawa SI (1996) Involvement of platelet-derived growth factor receptor-alpha in hair canal formation. J Invest Dermatol 107:770-777.
    48. Hu HM, Zhang SB, Lei XH, Deng ZL, Guo WX, et al. (2012) Estrogen leads to reversible hair cycle retardation through inducing premature catagen and maintaining telogen. PLoS One 7:e40124.
    49. Zhang J, He XC, Tong WG, Johnson T, Wiedemann LM, et al. (2006) Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 24:2826-2839.
    50. Botchkarev VA, Botchkareva NV, Nakamura M, Huber O, Funa K, et al. (2001) Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J 15: 2205-2214.
    51. Sun TT, Cotsarelis G, Lavker RM (1991) Hair follicular stem cells:the bulge-activation hypothesis. J Invest Dermatol 96:77S-78S.
    52. Cotsarelis G, Sun T-T, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit:implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329-1337.
    53. Mou C, Jackson B, Schneider P, Overbeek PA, Headon DJ (2006) Generation of the primary hair follicle pattern. Proceedings of the National Academy of Sciences 103:9075-9080.
    54. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, et al. (2004) Defining the epithelial stem cell niche in skin. Science 303:359-363.
    55. Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, et al. (2005) Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes & development 19:1596-1611.
    56. Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA (2010) beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18:633-642.
    57. Fuchs E (2007) Scratching the surface of skin development. Nature 445:834-842.
    58. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533-545.
    59. Zhang Y, Andl T, Yang SH, Teta M, Liu F, et al. (2008) Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135:2161-2172.
    60. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605-614.
    61. Lo Celso C, Prowse DM, Watt FM (2004) Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787-1799.
    1. Home KA, Jahoda CA, Oliver RF (1986) Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. J Embryol Exp Morphol 97:111-124.
    2. Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H (2007) Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng 13:975-982.
    3. Jahoda CA, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G (1991) Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. J Cell Sci 99 (Pt 3):627-636.
    4. Hunt DP, Morris PN, Sterling J, Anderson JA, Joannides A, et al. (2008) A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 26:163-172.
    1. Xu T, Guo X, Wang H, Hao F, Du X, et al. (2013) Differential gene expression analysis between anagen and telogen of Capra hircus skin based on the de novo assembled transcriptome sequence. Gene 520:30-38.
    2. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.
    3. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511-515.
    4. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562-578.
    5. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, et al. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46-53.
    6. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45.
    7. McNulty JC, Jackson PJ, Thompson DA, Chai B, Gantz I, et al. (2005) Structures of the agouti signaling protein. J Mol Biol 346:1059-1070.
    8. Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124:1179-1182.
    9. Driskell RR, Giangreco A, Jensen KB, Mulder KW, Watt FM (2009) Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136:2815-2823.
    10. Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491-497.
    11. Mecklenburg L, Tobin DJ, Muller-Rover S, Handjiski B, Wendt G, et al. (2000) Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol 114:909-916.
    12. Yano K, Brown LF, Detmar M (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 107:409-417.
    13. Huang X, Brown C, Ni W, Maynard E, Rigby AC, et al. (2006) Critical role for the Ets transcription factor ELF-1 in the development of tumor angiogenesis. Blood 107:3153-3160.
    14. Dube A, Thai S, Gaspar J, Rudders S, Libermann TA, et al. (2001) Elf-1 is a transcriptional regulator of the Tie2 gene during vascular development. Circ Res 88:237-244.
    15. Hu H, Gao X, Sun Y, Zhou J, Yang M, et al. (2005) Alpha-actinin-2, a cytoskeletal protein, binds to angiogenin. Biochem Biophys Res Commun 329:661-667.
    16. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, et al. (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815-1822.
    17. Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3betal integrin. Mol Biol Cell 15:3580-3590.
    18. Tokes AM, Hortovanyi E, Kulka J, Jackel M, Kerenyi T, et al. (1999) Tenascin expression and angiogenesis in breast cancers. Pathol Res Pract 195:821-828.
    19. Kampmann A, Fernandez B, Deindl E, Kubin T, Pipp F, et al. (2009) The proteoglycan osteoglycin/mimecan is correlated with arteriogenesis. Mol Cell Biochem 322:15-23.
    20. Kim JH, Choi DS, Lee OH, Oh SH, Lippman SM, et al. (2011) Antiangiogenic antitumor activities of IGFBP-3 are mediated by IGF-independent suppression of Erk1/2 activation and Egr-1-mediated transcriptional events. Blood 118:2622-2631.
    21. Granata R, Trovato L, Lupia E, Sala G, Settanni F, et al. (2007) Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphKl-dependent mechanisms. J Thromb Haemost 5:835-845.
    22. Liu B, Lee KW, Anzo M, Zhang B, Zi X, et al. (2007) Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis. Oncogene26:1811-1819.
    23. Lofqvist C, Chen J, Connor KM, Smith AC, Aderman CM, et al. (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci U S A 104:10589-10594.
    24. Kozlowska U, Blume-Peytavi U, Kodelja V, Sommer C, Goerdt S, et al. (1998) Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch Dermatol Res 290:661-668.
    25. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, et al. (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098-1106.
    26. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, et al. (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223-1231.
    27. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, et al. (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895-4902.
    28. Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, et al. (2002) Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci U S A 99:10470-10475.
    29. Oh H, Takagi H, Otani A, Koyama S, Kemmochi S, et al. (2002) Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF):a mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci U S A 99:383-388.
    30. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, et al. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245-248.
    31. Xie L, Palmsten K, MacDonald B, Kieran MW, Potenta S, et al. (2008) Basement membrane derived fibulin-1 and fibulin-5 function as angiogenesis inhibitors and suppress tumor growth. Exp Biol Med (Maywood) 233:155-162.
    32. Ribatti D, Marzullo A, Nico B, Crivellato E, Ria R, et al. (2003) Erythropoietin as an angiogenic factor in gastric carcinoma. Histopathology 42:246-250.
    33. Acs G, Acs P, Beckwith SM, Pitts RL, Clements E, et al. (2001) Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res 61:3561-3565.
    34. Souttou B, Raulais D, Vigny M (2001) Pleiotrophin induces angiogenesis:involvement of the phosphoinositide-3 kinase but not the nitric oxide synthase pathways. J Cell Physiol 187: 59-64.
    35. Perez-Pinera P, Chang Y, Deuel TF (2007) Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 6:2877-2883.
    36. Sharma A, Yu C, Leung C, Trane A, Lau M, et al. (2010) A new role for the muscle repair protein dysferlin in endothelial cell adhesion and angiogenesis. Arterioscler Thromb Vase Biol 30:2196-2204.
    37. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434: 786-792.
    38. Clapp C, Martinez de la Escalera G (2006) Aquaporin-1: a novel promoter of tumor angiogenesis. Trends Endocrinol Metab 17:1-2.
    39. O'Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL (1996) The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res 56:2515-2518.
    40. Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13:1037-1049.
    41. Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, et al. (2004) Semaphorin- 3F is an inhibitor of tumor angiogenesis. Cancer Res 64:1008-1015.
    42. Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, et al. (2006) Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17:5163-5172.
    43. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, et al. (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172:5034-5040.
    44. Cao R, Brakenhielm E, Li X, Pietras K, Widenfalk J, et al. (2002) Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors. FASEB J 16:1575-1583.
    45. Lucerna M, Pomyje J, Mechtcheriakova D, Kadl A, Gruber F, et al. (2006) Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Res 66:6708-6713.
    46. Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, et al. (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217:42-53.
    47. Leali D, Inforzato A, Ronca R, Bianchi R, Belleri M, et al. (2012) Long pentraxin 3/tumor necrosis factor-stimulated gene-6 interaction: a biological rheostat for fibroblast growth factor 2-mediated angiogenesis. Arterioscler Thromb Vasc Biol 32:696-703.
    48. Park JA, Lee HS, Ko KJ, Park SY, Kim JH, et al. (2008) Meteorin regulates angiogenesis at the gliovascular interface. Glia 56:247-258.
    49. Seabrook TJ, Littlewood-Evans A, Brinkmann V, Pollinger B, Schnell C, et al. (2010) Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions. J Neuroinflammation 7:95.
    50. Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G (2007) Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 18:4648-4658.
    51. Adluri RS, Thirunavukkarasu M, Zhan L, Dunna NR, Akita Y, et al. (2012) Glutaredoxin-1 overexpression enhances neovascularization and diminishes ventricular remodeling in chronic myocardial infarction. PLoS One 7:e34790.
    52. Zhang L, Zhao Y, Wang CG, Fei Z, Wang Y, et al. (2011) Neuritin expression and its relation with proliferation, apoptosis, and angiogenesis in human astrocytoma. Med Oncol 28: 907-912.
    53. Han D, Qin B, Liu G, Liu T, Ji G, et al. (2011) Characterization of neuritin as a novel angiogenic factor. Biochem Biophys Res Commun 415:608-612.
    54. Takahashi F, Akutagawa S, Fukumoto H, Tsukiyama S, Ohe Y, et al. (2002) Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 98:707-712.
    55. Dai J, Peng L, Fan K, Wang H, Wei R, et al. (2009) Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28:3412-3422.
    56. Muley A, Majumder S, Kolluru GK, Parkinson S, Viola H, et al. (2010) Secreted frizzled-related protein 4:an angiogenesis inhibitor. Am J Pathol 176:1505-1516.
    57. Han Z, Ni J, Smits P, Underhill CB, Xie B, et al. (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15:988-994.
    58. Aharinejad S, Marks SC, Jr., Bock P, Mason-Savas A, MacKay CA, et al. (1995) CSF-1 treatment promotes angiogenesis in the metaphysis of osteopetrotic (toothless, tI) rats. Bone 16:315-324.
    59. Nakayama K, Kanzaki A, Hata K, Katabuchi H, Okamura H, et al. (2002) Hypoxia-inducible factor 1 alpha (HIF-1 alpha) gene expression in human ovarian carcinoma. Cancer Lett 176:215-223.
    60. Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25:1408-1412.
    61. Fukushima T, Kataoka H (2007) Roles of insulin-like growth factor binding protein-2 (IGFBP-2) in glioblastoma. Anticancer Res 27:3685-3692.
    62. Sadanandam A, Rosenbaugh EG, Singh S, Varney M, Singh RK (2010) Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvasc Res 79:1-9.
    63. Lee MS, Yoo SA, Cho CS, Suh PG, Kim WU, et al. (2006) Serum amyloid A binding to formyl peptide receptor-like I induces synovial hyperplasia and angiogenesis. J Immunol 177: 5585-5594.
    64. Mullan RH, Bresnihan B, Golden-Mason L, Markham T, O'Hara R, et al. (2006) Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis Rheum 54:105-114.
    65. Birdsey GM, Dryden NH, Amsellem V, Gebhardt F, Sahnan K, et al. (2008) Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 111:3498-3506.
    66. Azar WJ, Azar SH, Higgins S, Hu JF, Hoffman AR, et al. (2011) IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells. Endocrinology 152:3332-3342.
    67. Khew-Goodall Y, Goodall GJ (2012) A microRNA that limits metastatic colonisation and endothelial recruitment. EMBO J 31:786-787.
    68. Tamaki K, Moriya T, Sato Y, Ishida T, Maruo Y, et al. (2009) Vasohibin-1 in human breast carcinoma: a potential negative feedback regulator of angiogenesis. Cancer Sci 100:88-94.
    69. Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, et al. (2009) Vasohibin-1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy. Diabetes 58:2365-2375.
    70. Puxeddu I, Berkman N, Nissim Ben Efraim AH, Davies DE, Ribatti D, et al. (2009) The role of eosinophil major basic protein in angiogenesis. Allergy 64:368-374.
    71. Shao R, Bao S, Bai X, Blanchette C, Anderson RM, et al. (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24:3992-4003.
    72. Siriwardena BS, Kudo Y, Ogawa I, Kitagawa M, Kitajima S, et al. (2006) Periostin is frequently overexpressed and enhances invasion and angiogenesis in oral cancer. Br J Cancer 95:1396-1403.
    73. Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, et al. (1993) Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J Surg Res 55:446-450.
    74. Florio T, Morini M, Villa V, Arena S, Corsaro A, et al. (2003) Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 144: 1574-1584.
    75. Volpert OV, Tolsma SS, Pellerin S, Feige JJ, Chen H, et al. (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun 217:326-332.
    76. Simantov R, Febbraio M, Silverstein RL (2005) The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol 24:27-34.
    77. Moses MA, Wiederschain D, Wu I, Fernandez CA, Ghazizadeh V, et al. (1999) Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci U S A 96:2645-2650.
    78. Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, et al. (2003) Role of host angiotensin Ⅱ type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112:67-75.
    79. Robinet A, Fahem A, Cauchard JH, Huet E, Vincent L, et al. (2005) Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci 118:343-356.
    80. Zheng K, Li HY, Su XL, Wang XY, Tian T, et al. (2010) Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J Exp Clin Cancer Res 29:31.
    81. Kollmar O, Rupertus K, Scheuer C, Nickels RM, Haberl GC, et al. (2010) CXCR4 and CXCR7 regulate angiogenesis and CT26.WT tumor growth independent from SDF-1. Int J Cancer 126:1302-1315.
    82. Hashimoto Y, Singh R, Munoz D, Lokeshwar B (2011) 1280 WNT SIGNALING PROTEIN (WISP2/CCN5) STIMULATES ANGIOGENESIS AND INVASION IN PROSTATE CANCER. The Journal of Urology 185:e512.
    83. Ling MT, Lau TC, Zhou C, Chua CW, Kwok WK, et al. (2005) Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis 26:1668-1676.
    84. Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, et al. (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF- induced angiogenesis. FASEB J 16:219-221.
    85. Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153-165.
    86. Ivanciu L, Gerard RD, Tang H, Lupu F, Lupu C (2007) Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis. Arterioscler Thromb Vasc Biol 27:310-316.
    87. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, et al. (2003) Regulation of Notch1 and D114 by vascular endothelial growth factor in arterial endothelial cells:implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23:14-25.
    88. Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G, et al. (2000) Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res 60:91-103.
    89. Lasorella A, Rothschild G, Yokota Y, Russell RG, Iavarone A (2005) Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol Cell Biol 25:3563-3574.
    90. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5betal with the central cell-binding domain of fibronectin. Am J Pathol 156:1345-1362.
    91. Nicosia RF, Bonanno E, Smith M (1993) Fibronectin promotes the elongation of micro vessels during angiogenesis in vitro. J Cell Physiol 154:654-661.
    92. Quintrell N, Lebo R, Varmus H, Bishop J, Pettenati M, et al. (1987) Identification of a human gene (HCK) that encodes a protein-tyrosine kinase and is expressed in hemopoietic cells. Molecular and cellular biology 7:2267-2275.
    93. Lowell CA, Berton G (1999) Integrin signal transduction in myeloid leukocytes. J Leukoc Biol 65:313-320.
    94. Jelkmann W (2004) Molecular biology of erythropoietin. Intern Med 43:649-659.
    95. Bodo E, Kromminga A, Funk W, Laugsch M, Duske U, et al. (2007) Human hair follicles are an extrarenal source and a nonhematopoietic target of erythropoietin. FASEB J 21:3346-3354.
    96. LeBaron MJ, Ahonen TJ, Nevalainen MT, Rui H (2007) In vivo response-based identification of direct hormone target cell populations using high-density tissue arrays. Endocrinology 148:989-1008.
    97. Anagnostou A, Liu Z, Steiner M, Chin K, Lee ES, et al. (1994) Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S A 91:3974-3978.
    98. Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, et al. (2006) Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24:217-227.
    99. Murphy-Ullrich JE, Poczatek M (2000) Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 11:59-69.
    100. Ma J, Wang Q, Fei T, Han JD, Chen YG (2007) MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 109:987-994.
    101. Stiles JD, Ostrow PT, Balos LL, Greenberg SJ, Plunkett R, et al. (1997) Correlation of endothelin-1 and transforming growth factor beta 1 with malignancy and vascularity in human gliomas. J Neuropathol Exp Neurol 56:435-439.
    102. Platten M, Wick W, Weller M (2001) Malignant glioma biology:role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401-410.
    103. Kyriakides TR, Zhu YH, Smith LT, Bain SD, Yang Z, et al. (1998) Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 140:419-430.
    104. Hubmacher D, Apte SS (2013) The biology of the extracellular matrix:novel insights. Curr Opin Rheumatol 25:65-70.
    105. Hynes RO (1992) Integrins:versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25.
    106. Ozawa M, Ringwald M, Kemler R (1990) Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A 87:4246-4250.
    107. Teti A (1992) Regulation of cellular functions by extracellular matrix. J Am Soc Nephrol 2: S83-87.
    108. Jones PL, Schmidhauser C, Bissell MJ (1993) Regulation of gene expression and cell function by extracellular matrix. Crit Rev Eukaryot Gene Expr 3:137-154.
    109. Campbell NE, Kellenberger L, Greenaway J, Moorehead RA, Linnerth-Petrik NM, et al. (2010) Extracellular matrix proteins and tumor angiogenesis. J Oncol 2010:586905.
    110. Elliott K, Stephenson TJ, Messenger AG (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number:implications for the control of hair follicle size and androgen responses. J Invest Dermatol 113:873-877.
    111. Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643-653.
    112. Kwack MH, Kim MK, Kim JC, Sung YK (2013) Wnt5a attenuates Wnt/beta-catenin signalling in human dermal papilla cells. Exp Dermatol 22:229-231.
    113. Jamora C, DasGupta R, Kocieniewski P, Fuchs E (2003) Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422:317-322.
    114. Botchkarev VA, Botchkareva NV, Sharov AA, Funa K, Huber O, et al. (2002) Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol 118:3-10.
    115. Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, et al. (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100:4610-4615.
    116. Widelitz RB (2004) Regulating the regulators:routing the Wnt-beta-catenin-Lef signals. J Invest Dermatol 123:VIII-X.
    1. Xu T, Guo X, Wang H, Hao F, Du X, et al. (2013) Differential gene expression analysis between anagen and telogen of Capra hircus skin based on the de novo assembled transcriptome sequence. Gene 520:30-38.
    2. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326: 1208-1212.
    3. Alonso L, Fuchs E (2006) The hair cycle. Journal of Cell Science 119:391-393.
    4. Fang G, Yu H, Kirschner MW (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell 2:163-171.
    5. Katz AM, Rosenthal D, Sauder DN (1991) Cell adhesion molecules. International journal of dermatology 30:153-160.
    6. Soma T, Tajima M, Kishimoto J (2005) Hair cycle-specific expression of versican in human hair follicles. J Dermatol Sci 39:147-154.
    7. de Melker AA, Desban N, Duband JL (2004) Cellular localization and signaling activity of beta-catenin in migrating neural crest cells. Dev Dyn 230:708-726.
    8. Heinrich C, Keller C, Boulay A, Vecchi M, Bianchi M, et al. (2010) Copine-Ⅲ interacts with ErbB2 and promotes tumor cell migration. Oncogene 29:1598-1610.
    9. Jim Leu SJ, Sung JS, Huang ML, Chen MY, Tsai TW (2013) A novel anti-CCN1 monoclonal antibody suppresses Rac-dependent cytoskeletal reorganization and migratory activities in breast cancer cells. Biochem Biophys Res Commun 434:885-891.
    10. Tanaka K, Arao T, Maegawa M, Matsumoto K, Kaneda H, et al. (2009) SRPX2 is overexpressed in gastric cancer and promotes cellular migration and adhesion. Int J Cancer 124:1072-1080.
    11. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, et al. (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098-1106.
    12. Yano K, Brown LF, Detmar M (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 107:409-417.
    13. Duan C, Bauchat JR, Hsieh T (2000) Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I-induced vascular smooth muscle cell proliferation and migration. Circ Res 86:15-23.
    14. Ahn SY, Pi LQ, Hwang ST, Lee WS (2012) Effect of IGF-I on Hair Growth Is Related to the Anti-Apoptotic Effect of IGF-I and Up-Regulation of PDGF-A and PDGF-B. Ann Dermatol 24:26-31.
    15. Nitta A, Zheng WH, Quirion R (2004) Insulin-like growth factor 1 prevents neuronal cell death induced by corticosterone through activation of the PI3k/Akt pathway. J Neurosci Res 76:98-103.
    16. Su HY, Hickford JG, Bickerstaffe R, Palmer BR (1999) Insulin-like growth factor 1 and hair growth. Dermatol Online J 5:1.
    17. Kim DS, Cho HJ, Yang SK, Shin JW, Huh CH, et al. (2009) Insulin-like growth factor-binding protein contributes to the proliferation of less proliferative cells in forming skin equivalents. Tissue Eng Part A 15:1075-1080.
    18. Beattie J, Allan GJ, Lochrie JD, Flint DJ (2006) Insulin-like growth factor-binding protein-5 (IGFBP-5):a critical member of the IGF axis. Biochem J 395:1-19.
    19. Kalus W, Zweckstetter M, Renner C, Sanchez Y, Georgescu J, et al. (1998) Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-Ⅰ receptor interactions. EMBO J 17:6558-6572.
    20. Yamamoto K, Takeshita K, Shimokawa T, Yi H, Isobe K, et al. (2002) Plasminogen activator inhibitor-1 is a major stress-regulated gene:implications for stress-induced thrombosis in aged individuals. Proc Natl Acad Sci U S A 99:890-895.
    21. Schneider DJ, Chen Y, Sobel BE (2008) The effect of plasminogen activator inhibitor type 1 on apoptosis. Thromb Haemost 100: 1037-1040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700