用户名: 密码: 验证码:
甜瓜α-甘露糖苷酶基因的克隆、表达特性及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜是具有重要商业价值的园艺作物,对于消费者来说,它的品质是一个重要的质量属性。甜瓜果实中含有香味挥发物、可溶性糖、有机酸、色素、次生代谢物等,可以提供很多人类的日常饮食营养,因此受到人们的喜爱。甜瓜果实不耐贮运,货架期相对较短,在运输和销售过程中伴随着果实的成熟和软化,损失加剧。而且,采摘后果实过度软化引起皱缩、干燥和霉变,严重降低了甜瓜果实的质量和感观性状。
     α-甘露糖苷酶(α-mannosidase)是一类关键性糖苷酶,由很多成员组成。它的功能是修剪糖蛋白糖链中的不同甘露糖基,它不仅在糖蛋白的形成过程中发挥重要作用,并且参与果实的成熟与软化。
     为了研究甜瓜α-甘露糖苷酶基因(α-Man)在果实发育成熟中的功能,本论文以甜瓜品种河套蜜瓜为研究材料,克隆了甜瓜果实中的α-Man基因全长cDNA。测定了甜瓜根、茎、叶、子房等不同组织和不同发育时期的果实中α-甘露糖苷酶活性,结果表明在子房中的酶活性最低,根、茎、叶组织中的酶活性较高,约为子房中活性的3~5倍。授粉后10~30d的果实中,其活性显著下降,而授粉后40d果实果皮颜色变黄,其活性有所增加。RT-qPCR分析结果显示,α-Man基因在叶片中的表达量最高,子房中表达量最低,叶片中表达量约为子房中的表达量的6倍,授粉后10-30d α-Man基因表达量显著下降,而授粉后40d果皮颜色变黄,其表达量有所回升
     利用农杆菌介导的瞬时表达技术,分别将含α-Man基因的超表达载体pPZP221-Man、RNAi载体pART-Manl和pART-Man2的农杆菌菌液注射至成熟期甜瓜果实,进行瞬时表达,并对其进行了表达特性分析。3-5天时,注射超表达载体菌液的果实在注射部位出现了提前变黄的表型。5-7天时,注射RNAi载体菌液的果实在注射部位仍保持绿色(推迟变黄)。α-甘露糖苷酶活性测定结果显示,与非注射部位相比,注射超表达载体的组织α-甘露糖苷酶活性较高,而注射RNAi载体的组织α-甘露糖苷酶活性较低。RT-qPCR分析表明,在瞬时超表达α-Man基因的果实组织中,α-Man基因和ACS6等成熟相关基因表达水平增高,而在瞬时抑制α-Man基因表达的果实组织中,这些基因表达水平有所下降,表明α-Man基因具有促进果实成熟的功能。
     应用花粉管通道法转化技术,分别将pPZP221-Man (Oe-Man)和pART-Man1俾(Ri-Man)载体导入甜瓜,经PCR检测证明外源基因已经整合到受体植物的基因组中,分别获得了T1代和T2代转基因植株。与未转基因对照甜瓜相比,转Oe-Man T1代甜瓜果实提前10d成熟,α-Man基因及成熟相关基因表达量显著提高,α-甘露糖苷酶活性也显著升高;转Ri-Man1T2代甜瓜果实成熟期和采后贮藏期显著延长,α-Man基因和成熟相关基因表达量以及α-甘露糖苷酶活性下降。结果表明,甜瓜α-Man基因在甜瓜果实耐贮藏基因工程中具有重要应用价值。
Melon is a commercially important fruit crop, and its texture is an important quality attributes for consumers.
     Melon fruit contains aroma volatiles, soluble sugar, organic acids, pigments, and other secondary metabolites, which provides the human daily diet with valuable nutrients. Therefore it is one of the most vital fruits for human.
     Melon fruit is not suitable for storage and transportation. Excessive softening exacerbates the damage incurred during handling and sales process, and decreases the shelf life of fruits. The excessive softening causes drying, shrinkage, and pathological disorders, so that it severely reduces the quality and acceptability of melon fruits.
     Alpha-mannosidase (a-Man) is a key glycosidase enzyme. The enzyme family consists of many members. The enzyme function is cutting different mannose in the glycoprotein carbohydrate chains, which play an important role not only in the formation process of glycoproteins, but also in the fruit ripening and softening.
     The function of a-mannosidase gene was analyzed during fruit ripening in melon. The full-length cDNA of a-Man was cloned.
     Activity of the a-mannosidase was analyzed in different organization of melon (roots, stems, leaves, ovary) and in fruit of different development stages. The results showed that a-mannosidase activity was about3-5times higher in the root, stem, leaf tissue than that in the ovary. The enzyme activity was significantly decreased10-30days after pollination (DAP) in melon fruit. When the fruit peel changed into yellow color on the40DAP, the enzyme activity increased.
     The real-time quality PCR (RT-qPCR) analysis showed that a-Man was highly expressed in the leaves. The level of the expression was the highest (6times highest) in the leaves. However it was the lowest in the ovary. The level of expression in the fruits was significantly decreased at10-30DAP in melon fruit. When the fruit peel was changed into yellow color at40DAP, the expression increased.
     The function of a-mannosidase gene was analyzed during melon fruit ripening by transient expression system. The full-length target gene was constructed into overexpression vector pPZP221and two target gene fragments were constructed into RNAi vector pART27, then transformed into mature green melon fruits by Agrobacterium respectively. The injection site of the fruit transformed by overexpression vector emerged yellow phenotype from3to5days after injection. The fruits injected bacteria RNAi vectors remain green at the injection site (delayed yellowing) from5to7days after injection. Analysis of a-mannosidase activity showed that the enzyme activity in the tissue transformed by overexpression vector was higher than the non-injected tissue, and it was lower in the tissue transformed by RNAi vectors.
     RT-qPCR analysis showed that the expression of the a-Man and ACS6etc. genes related to fruit ripening was increased in the injection site of fruit tissues transformed by overexpression vector. However, these genes expression level decreased in the injection site of fruits transformed by RNAi vectors. These results indicated that a-Man gene can promote melon fruit ripening.
     pPZP221-Man (Oe-Man) and pART-Manl (Ri-Man) vectors were transformed into melon by pollen tube pathway transformation. It was initially confirmed that the foreign gene was integrated into the genome of the recipient plant by PCR. T1-and T2-generation transgenic plants were obtained. Fruit of Oe-Man T1-generation fully matured earlier10days than non-transgenic fruit. RT-qPCR analysis indicated that the expression of a-Man gene and ripening-related gene was significantly higher than non-transgenic controls. The fruit ripening and postharvest storage period of Ri-Man T2melon fruit have significantly longer, while the a-Man gene expression and a-Man activity decreased correspondingly.
     These results showed that a-Man gene could play an important role in genetic engineering of melon fruit storability
引文
[1]Mworia E Q Yoshikawa T, Salikon N, etc. Low-temperature-modulated fruit ripening is independent of ethylene in'Sanuki Gold'kiwifruit [J]. Journal of Experimental Botany,2012, 63(2):963-971
    [2]Payasi A, Mishra N N, Chaves A L S, etc. Biochemistry of fruit softening: an overview [J]. Physiology and Molecular Biology of Plants,2009,15 (2):103-113
    [3]Hobson G Polygalacturonase in normal and abnormal tomato fruit [J]. Biochemical Journal, 1964,92(2):324
    [4]Hobson G Firmness of tomato fruit in relation to polygalacturonase activity [J]. Journal of Horticultural Science & Biotechnology,1965,40(1):66-70
    [5]方建雄,华雪增,刘愚.贮藏温度和气体状况对苹果果胶, 多聚半乳糖醛酸酶变化的影响[J].植物生理学报,1991,17(1):99-104
    [6]Rana S S A.辣椒多聚半乳糖醛酸酶基因(CaPG)在茄科植物上的表达与功能分析[D].西北农林科技大学,2012.
    [7]李曜东, 魏玉凝, 顾淑荣.PG与番茄果实成熟的关系[J]。 植物学通报,2004,21(1):79-83
    [8]Quesada M A, Blanco-Portales R, Pose S, etc. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening [J]. Plant Physiology,2009,150(2):1022-1032
    [9]陆胜民, 席玙芳, 张耀洲.梅果采后软化与细胞壁组分及其降解酶活性的变化[J].中国农业科学,2003,36(5):595-598
    [10]吴明江, 张忠恒, 于萍, 等.苹果软化过程中质壁互作的生理和结构研究[J].园艺学报,1995,22(2):181-182
    [11]Xue Y, Kubo Y, Inaba A, etc. Effects of humidity on ripening and texture in banana fruit [J]. Journal of the Japanese Society for Horticultural Science.1995,64.
    [12]Pressey R, Avants J. Multiple forms of pectinesterase in tomatoes [J]. Phytochemistry, 1972,11(11):3139-3142
    [13]Delincee H. Thin-layer isoelectric focusing of multiple forms of tomato pectinesterase [J]. Phytochemistry,1976,15(6):903-906
    [14]Warrilow A G, Turner R J, Jones M G. A novel form of pectinesterase in tomato [J]. Phytochemistry,1994,35(4):863-868
    [15]李正国.果实成熟的基因调控[J].生物工程进展,2000,20(3):30-34
    [16]Tucker G A, Robertson N G, Grierson D. Purification and changes in activities of tomato pectinesterase isoenzymes [J]. Journal of the Science of Food and Agriculture,1982, 33(4):396-400
    [17]Koch J L, Nevins D J. Tomato fruit cell wall I. Use of purified tomato polygalacturonase and pectinmethylesterase to identify developmental changes in pectins [J]. Plant Physiology,1989, 91 (3):816-822
    [18]Harriman R W, Tieman D M, Handa A K. Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits [J]. Plant Physiology,1991,97(1):80-87
    [19]Tieman D M, Harriman R W, Ramamohan G, etc. An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit [J]. The Plant Cell Online,1992, 4(6):667-679
    [20]Hall L N, Bird C R, Picton S, etc. Molecular characterisation of cDNA clones representing pectin esterase isozymes from tomato [J]. Plant molecular biology,1994, 25(2):313-318
    [21]Castillejo C, Fuente J I, Iannetta P, etc. Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform [J]. Journal of Experimental Botany,2004, 55(398):909-918
    [22]薛炳烨, 毛志泉, 束怀瑞.草莓果实发育成熟过程中糖苷酶和纤维素酶活性及细胞壁组成变化[J].植物生理与分子生物学学报,2006,32(3):363-368
    [23]Youssef S M, Amaya I, Lopez-Aranda J M, etc. Effect of simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening [J]. Molecular Breeding,2013,31(2):313-322
    [24]Chun Q, Xing Guo Z, Guo Lu L. Progress in studying genes related to strawberry (Fragaria ananassa Duch.) fruit ripening and softening [J]. China Vegetables,2009,22:6-12
    [25]Lashbrook C C, Giovannoni J J, Hall B D, etc. Transgenic analysis of tomato endo-β-1,4-glucanase gene function. Role of cell in floral abscission [J]. The Plant Journal, 1998,13(3):303-310
    [26]Brummell D A, Hall B D, Bennett A B. Antisense suppression of tomato endo-1, 4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening [J]. Plant Molecular Biology.1999,40(4):615-622
    [27]Smith D L, Abbott J A, Gross K C. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening [J]. Plant Physiology.2002,129(4):1755-1762
    [28]Lerouge P, Cabanes-Macheteau M, Rayon C, etc. N-glycoprotein biosynthesis in plants: recent developments and future trends [J]. Plant Molecular Biology.1998,38(1-2):31-48
    [29]Liebminger E, Hiittner S, Vavra U, etc. Class I α-Mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana [J]. The Plant Cell Online,2009, 21(12):3850-3867
    [30]Berninsone P M. Carbohydrates and glycosylation [J]. Worm Book: The Online Review of C. elegans Biology,2005
    [31]Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides [J]. Annual Review of Biochemistry,1985,54(1):631-664
    [32]Boisson M, Gomord V, Audran C, etc. Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development [J]. The EMBO journal.2001,20(5):1010-1019
    [33]Gillmor C S, Poindexter P, Lorieau J, etc. a-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis [J]. The Journal of cell biology,2002, 156(6):1003-1013
    [34]Moremen K W, Molinari M. N-linked glycan recognition and processing:the molecular basis of endoplasmic reticulum quality control [J]. Current Opinion in Structural Biology.2006, 16(5):592-599
    [35]Kornfeld S, Sly W. I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization [J]. The metabolic and molecular bases of inherited disease,8th edn McGraw-Hill, New York.2001:3469-3482
    [36]Hiittner S, Strasser R. Endoplasmic reticulum-associated degradation of glycoproteins in plants [J]. Frontiers in Plant Science,2012,3
    [37]Strasser R. Localization of plant N-glycan processing enzymes along the secretory pathway [J]. Plant Biosystems,2009,143(3):636-642
    [38]Strasser R, Mucha J, Schwihla H, etc. Molecular cloning and characterization of cDNA coding for β1,2N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum [J], Glycobiology,1999,9(8):779-785
    [39]Leroy J G. Congenital disorders of N-glycosylation including diseases associated with O-as well as N-glycosylation defects [J]. Pediatric Research,2006,60(6):643-656
    [40]Priem B, Gitti R, Bush C A, etc. Structure of ten free N-glycans in ripening tomato fruit (arabinose is a constituent of a plant N-glycan) [J]. Plant Physiology,1993,102(2):445-458
    [41]Priem B, Gross K C. Mannosyl-and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening [J]. Plant Physiology,1992,98(1):399-401
    [42]Yunovitz H, Gross K C. Effect of tunicamycin on metabolism of unconjugated N-glycans in relation to regulation of tomato fruit ripening [J]. Phytochemistry,1994,37(3):663-668
    [43]Cobucci-Ponzano B, Conte F, Strazzulli A, etc. The molecular characterization of a novel GH38 a-Mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins [J]. Biochimie,2010,92(12):1895-1907
    [44]De Marchis F, Bellucci M, Pompa A. Traffic of human a-Mannosidase in plant cells suggests the presence of a new endoplasmic reticulum-to-vacuole pathway without involving the Golgi complex [J]. Plant Physiology,2013,161 (4):1769-1782
    [45]刘红霞,苏卫,张连峰.α-甘露糖苷酶研究进展[J].中国比较医学杂志,2006,16(11):697-702
    [46]王姗姗,徐向军,路浩,等.α-甘露糖苷酶研究进展[J].动物医学进展,2012,33(1):92-97
    [47]Moremen K, Trimble R B, Herscovics A. Glycosidases of the asparagine-linked oligosaccharide processing pathway [J]. Glycobiology,1994,4(2):113-125
    [48]Park J K. Purification and characterisation of a novel alkalophilic a-D-mannosidase from Pseudomonas fluorescens [J]. Biocontrol Science and Technology,2013,23(11):1324-1335
    [49]Hosokawa N, Wada I, Hasegawa K, etc. A novel ER a-mannosidase-like protein accelerates ER-associated degradation [J]. EMBO reports,2001,2(5):415-422
    [50]Kumar G, Pohlentz G, Mormann M, etc. Characterization of a-mannosidase from Dolichos lablab seeds: Partial amino acid sequencing and N-glycan analysis [J]. Protein Expression and Purification.2013,89(1):7-15
    [51]Suits M D, Zhu Y, Taylor E J, etc. Structure and kinetic investigation of Streptococcus pyogenes family GH38 a-mannosidase [J]. Public Library of Science One,2010,5(2):1-11
    [52]Ghosh S, Meli V S, Kumar A, etc. The N-glycan processing enzymes a-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum [J]. Journal of Experimental Botany,2011,62(2):571-582
    [53]Meli V S, Ghosh S, Prabha T, etc. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes [J]. Proceedings of the National Academy of Sciences,2010, 107(6):2413-2418
    [54]Strasser R, Schoberer J, Jin C, etc. Molecular cloning and characterization of Arabidopsis thatiana Golgi a-mannosidase Ⅱ, a key enzyme in the formation of complex N-glycans in plants [J]. The Plant Journal,2006,45(5):789-803
    [55]Rose D R. Structure, mechanism and inhibition of Golgi a-mannosidase Ⅱ [J]. Current Opinion in Structural Biology,2012,22(5):558-562
    [56]Jagadeesh BH, Prabha TN, Srinivasan K. Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.): implication in fruit ripening [J]. Plant Science.2004,166(6):1451-1459
    [57]Yashoda H, Prabha T, Tharanathan R. Mango ripening-Role of carbohydrases in tissue softening [J]. Food chemistry.2007,102(3):691-698
    [58]Nakamura K, Inoue M, Yoshiie T, etc. Changes in structural features of free N-glycan and endoglycosidase activity during tomato fruit ripening [J]. Bioscience, Biotechnology and Biochemistry,2008,72(11):2936-2945
    [59]Hossain M A, Nakamura K, Kimura Y. Alpha-mannosidase involved in turnover of plant complex type N-glycans in tomato(Lycopersicum esculentum) fruits [J]. Bioscience, Biotechnology and Biochemistry,2009,73(1):140-146
    [60]罗川,曹丽军,赵彩平,等.桃沙红果实α-甘露糖苷酶基因(α-Man)克隆及其在软化过程中的表达分析[J]. Journal of Agricultural Biotechnology,2013,21(9):1060-1067
    [61]Orzaez D, Mirabel S, Wieland W H, etc. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit [J]. Plant Physiology.2006,140(1):3-11.
    [62]徐恒,黎万奎,谢志健,等.苜蓿愈伤组织诱导及GUS基因瞬时表达[J].四川大学学报,2001,38(6)905-908
    [63]Kapila J, De Rycke R, Van Montagu M, etc. An Agrobacterium-mediated transient gene expression system for intact leaves [J]. Plant Science,1997,122(1):101-108
    [64]Janssen B J, Gardner R C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium [J]. Plant Molecular Biology,1990,14(1):61-72
    [65]Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves [J]. The Plant Journal,2000,22(6):543-551
    [66]Wroblewski T, Tomczak A, Michelmore R. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis [J]. Plant Biotechnology Journal,2005,3(2):259-273
    [67]Twyman R M, Stoger E, Schillberg S, etc. Molecular farming in plants:host systems and expression technology [J]. TRENDS in Biotechnology,2003,21(12):570-578
    [68]Klein T M, Wolf E, Wu R, etc. High-velocity microprojectiles for delivering nucleic acids into living cells [J]. Nature,1987,327(6117):70-73
    [69]Maas C, Werr W. Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts [J]. Plant Cell Reports.1989,8(3):148-151
    [70]Rossi L, Escudero J, Hohn B, etc. Efficient and sensitive assay for T-DNA-dependent transient gene expression [J]. Plant Molecular Biology Reporter,1993,11(3):220-229
    [71]Fischer R, Vaquero-Martin C, Sack M, etc. Towards molecular farming in the future: transient protein expression in plants [J]. Biotechnology and Applied Biochemistry. 1999, 30(2):113-116
    [72]Lindsey K, Jones M G Transient gene expression in electroporated protoplasts and intact cells of sugar beet [J]. Plant Molecular Biology.1987,10(1):43-52
    [73]王华忠,陈雅平,陈佩度.植物瞬间表达系统与功能基因组学研究[J].生物工程学报.2007,23(3):367-374
    [74]Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants [J]. Proceedings of the National Academy of Sciences.1999,96(24):14147-14152
    [75]Burch-Smith T M, Schiff M, Liu Y, etc. Efficient virus-induced gene silencing in Arabidopsis [J]. Plant Physiology,2006,142(1):21-27
    [76]Sohi H H, Jourabchi E, Khodabandeh M. Transient expression of human growth hormone in potato (Solaum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration [J]. Iranian Journal of Biotechnology,2005,3(2):109-113
    [77]李静,陈敏,刘现伟,等.莴苣高效瞬时表达体系的建立[J].园艺学报,2006,33(2):405-407
    [78]Santos-Rosa M, Poutaraud A, Merdinoglu D, etc. Development of a transient expression system in grapevine via agro-infiltration [J]. Plant Cell Reports,2008,27(6):1053-1063
    [79]Zottini M, Barizza E, Costa A, etc. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells [J]. Plant Cell Reports,2008,27(5):845-853
    [80]Hoffmann T, Kalinowski G, Schwab W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria ananassa) by agroinfiltration: a rapid assay for gene function analysis [J]. The Plant Journal,2006,48(5):818-826
    [81]Kim M J, Baek K, Park C M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis [J]. Plant Cell Reports,2009, 28(8):1159-1167
    [82]Shang Y, Schwinn KE, Bennett M J, etc. Methods for transient assay of gene function in floral tissues [J]. Plant Methods,2007,3(1):1
    [83]Wills R H, Lee T, Graham D, etc. Postharvest:An introduction to the physiology and handling of fruit and vegetables. Granada,1981.
    [1]Gray J, Picton S, Shabbeer J, etc. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Molecular Biology,1992,69-87
    [2]Ezura H, Owino W O. Melon, an alternative model plant for elucidating fruit ripening [J]. Plant Science,2008,175(1):121-129
    [3]Lerouge P, Cabanes-Macheteau M, Rayon C, etc. N-glycoprotein biosynthesis in plants: recent developments and future trends [J]. Plant Molecular Biology.1998,38(1-2):31-48
    [4]Liebminger E, Hiittner S, Vavra U, etc. Class Ⅰ α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana [J]. The Plant Cell Online,2009, 21(12):3850-3867
    [5]Park J K. Purification and characterisation of a novel alkalophilic a-D-mannosidase from Pseudomonas fluorescens [J]. Biocontrol Science and Technology,2013,23(11):1324-1335
    [6]Ghosh S, Meli V S, Kumar A, etc. The N-glycan processing enzymes a-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum [J]. Journal of Experimental Botany,2011,62(2):571-582
    [7]Meli V S, Ghosh S, Prabha T, etc. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes [J]. Proceedings of the National Academy of Sciences.2010, 107(6):2413-2418
    [8]Jagadeesh B H, Prabha T N, Srinivasan K. Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.):implication in fruit ripening [J]. Plant Science,2004,166(6):1451-1459
    [9]Yashoda H, Prabha T, Tharanathan R. Mango ripening-Role of carbohydrases in tissue softening [J]. Food Chemistry,2007,102(3):691-698
    [10]薛炳烨,毛志泉,束怀瑞.草莓果实发育成熟过程中糖苷酶和纤维素酶活性及细胞壁组成变化[J].植物生理与分子生物学学报,2006,32(3):363-368
    [11]Strasser R, Schoberer J, Jin C, etc. Molecular cloning and characterization of Arabidopsis thaliana Golgi a-mannosidase Ⅱ, a key enzyme in the formation of complex N-glycans in plants [J]. The Plant Journal,2006,45(5):789-803
    [12]Priya S K, Prabha T, Tharanathan R. Post-harvest biochemical changes associated with the softening phenomenon in Capsicum annuum fruits [J]. Phytochemistry,1996,42(4):961-966
    [13]Ogawa H, Fukumoto H, Yamamoto K, etc. Purification and characterization of alpha-mannosidase from kiwifruit [J]. Journal of the Japanese Society for Food Science and Technology,1990,37
    [14]萨姆布鲁克J,拉塞尔D W(著);黄培堂等(译).分子克隆实验指南[M].第三版.北京:科学出版社,2002.
    [15]Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method [J]. Methods,2001,25(4):402-408
    [16]Jagadeesh B H, Prabha T N, Srinivasan K. Activities of p-hexosaminidase and a-mannosidase during development and ripening of bell capsicum (Capsicum annuum variata) [J]. Plant Science,2004,167(6):1263-1271
    [17]Prabha T, Bhagyalakshmi N. Carbohydrate metabolism in ripening banana fruit [J]. Phytochemistry,1998,48(6):915-920
    [1]Giovannoni J. Molecular biology of fruit maturation and ripening [J], Annual Review of Plant Biology,2001,52(1):725-749
    [2]Giovannoni J J. Genetic regulation of fruit development and ripening [J]. The Plant Cell Online,2004,16(1):170-180
    [3]Adams-Phillips L, Barry C, Giovannoni J. Signal transduction systems regulating fruit ripening [J]. Trends in Plant Science,2004,9(7):331-338
    [4]Seymour G B, Manning K, Eriksson E M, et al. Genetic identification and genomic organization of factors affecting fruit texture [J]. Journal of Experimental Botany,2002, 53(377):2065-2071
    [5]Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Cell Walls,2001,311-340
    [6]Vicente A R, Saladie M, Rose J K, etc. The linkage between cell wall metabolism and fruit softening: looking to the future [J]. Journal of the Science of Food and Agriculture.2007, 87(8):1435-1448
    [7]Causier B, Kieffer M, Davies B. MADS-Box genes reach maturity [J]. Science,2002, 296(5566):275-276
    [8]Brummell D A. Cell wall disassembly in ripening fruit [J]. Functional Plant Biology,2006, 33(2):103-119
    [9]Huber D J. The role of cell wall hydrolases in fruit softening [J]. Horticultural Reviews, 1983,5:169-219
    [10]Fischer R L, Bennett A. Role of cell wall hydrolases in fruit ripening [J]. Annual review of plant biology.1991,42(1):675-703
    [11]Harker F R, Redgwell R J, Hallett I C, etc. Texture of fresh fruit [J]. Horticultural Reviews,1997,20(4):121-159
    [12]Wakabayashi K. Changes in cell wall polysaccharides during fruit ripening [J]. Journal of Plant Research,2000, (3):231-237
    [13]Rose J K, Bennett A B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls:parallels between cell expansion and fruit ripening [J]. Trends in plant science.1999, 4(5):176-183
    [14]Rose J K, Catala C, Gonzalez-Carranza Z H, etc. Cell wall disassembly [J]. Annual Plant Reviews,2003,8:264-324
    [15]刘红霞,苏卫,张连峰.α-甘露糖苷酶研究进展[J].中国比较医学杂志,2006,16(11):697-702
    [16]Jagadeesh B H, Prabha T N, Srinivasan K. Activities of β-hexosaminidase and a-mannosidase during development and ripening of bell capsicum(Capsicum annuum variata) [J]. Plant science,2004,167(6):1263-1271
    [17]Meli V S, Ghosh S, Prabha T, etc. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes [J]. Proceedings of the National Academy of Sciences,2010, 107(6):2413-2418
    [18]Priem B, Gitti R, Bush CA, etc. Structure of ten free N-glycans in ripening tomato fruit (arabinose is a constituent of a plant N-glycan) [J]. Plant Physiology,1993,102(2):445-458
    [19]Priem B, Gross K C. Mannosyl-and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening [J]. Plant Physiology,1992,98(1):399-401
    [20]Yashoda H, Prabha T, Tharanathan R. Mango ripening-Role of carbohydrases in tissue softening [J]. Food Chemistry,2007,102(3):691-698
    [21]Ghosh S, Meli V S, Kumar A, etc. The N-glycan processing enzymes a-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum [J]. Journal of Experimental Botany,2011,62(2):571-582
    [22]薛炳烨,毛志泉,束怀瑞.草莓果实发育成熟过程中糖苷酶和纤维素酶活性及细胞壁组成变化[J].植物生理与分子生物学学报,2006,32(3):363-368
    [23]Orzaez D, Mirabel S, Wieland W H, etc. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit [J]. Plant Physiology.2006,140(1):3-11
    [24]Liu Y, Schiff M, Dinesh-Kumar S. Virus-induced gene silencing in tomato [J]. The Plant Journal,2002,31(6):777-786
    [25]Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method [J]. Methods,2001,25(4):402-408
    [26]赵文婷,魏建和,刘晓东.植物瞬时表达技术的主要方法与应用进展[J].生物技术通讯,2013,(2):294-300
    [27]Yang L P, Jin T C, XuH W, etc. A new agroinoculation technology for foreign gene expression in plants by means of transient expression [J]. Hereditas,2013,35(1):111-117
    [28]王亚红,赵燕, 彭彦等.5'UTR序列对DR5::GUS基因瞬时表达的影响[J].湖南农业大学学报:自然科学版,2012,38(2):146-149
    [1]Katzir N, Harel-Bega R, Protnoy V, etc. Melon fruit quality:a genomic approach. Pitrat M. Cucurbitaceae 2008, Proceedings of the Ⅸth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon (France),2008,231-240
    [2]Ayub R, Guis M, Amor M B, etc. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits [J]. Nature Biotechnology,1996,14(7):862-866
    [3]Nunez-Palenius H G, Cantliffe D J, Huber D J, etc. Transformation of a muskmelon 'Galia'hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene [J]. Plant Cell Reports,2006,25(3):198-205
    [4]哈斯阿古拉.甜瓜耐贮藏基因工程研究[D].呼和浩特:内蒙古大学,2004
    [5]哈斯阿古拉,牛一丁,张丽等.花粉管通道法转基因技术在甜瓜品种河套蜜瓜上的应用[J].内蒙古大学学报:自然科学版,2007,38(4):419-423
    [6]郝金凤.无载体无选择标记转基因耐贮藏甜瓜的培育[D]:内蒙古大学;2010
    [7]高峰.甜瓜果实发育相关基因的鉴定,表达特性及功能分析:内蒙古大学;2013
    [8]Ghosh S, Meli V S, Kumar A, etc. The N-glycan processing enzymes a-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum [J]. Journal of Experimental Botany,2011,62(2):571-582
    [9]Yashoda H, Prabha T, Tharanathan R. Mango ripening-Role of carbohydrases in tissue softening [J]. Food chemistry,2007,102(3):691-698
    [10]Meli V S, Ghosh S, Prabha T, etc. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes [J]. Proceedings of the National Academy of Sciences,2010, 107(6):2413-2418
    [11]Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 △△CTMethod [J]. Methods,2001,25(4):402-408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700