用户名: 密码: 验证码:
FRUITFULL调控番茄果实发育与成熟的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果实是植物繁衍后代的重要器官,也是人类膳食结构的重要组成部分,其发育与成熟过程一直备受研究者关注。番茄(Solanum lycopersicum)属于研究浆果类植物发育成熟的模式植物,通过对番茄果实发育成熟突变体的研究,已经鉴定出多个调控果实发育成熟的基因。在这些基因中,MADS-box家族转录因子RIN是一个研究重点,它位于乙烯合成途径上游来调控果实发育成熟,且这种调控在呼吸跃变和非呼吸跃变型果实中呈保守机制。RIN可以通过与互作蛋白形成二聚体或者多聚体来调控成熟相关基因表达,最终调控果实成熟。
     本研究通过酵母双杂交筛选出与RIN的互作蛋白FUL1和FUL2,转基因功能分析发现它们在番茄植物体及果实发育成熟中起着重要的作用。主要研究结果如下:
     1、酵母双杂交和双分子荧光互补实验表明,FUL1和FUL2是RIN的互作蛋白。FUL1和FUL2序列上表现出高度同源性,都具有植物MADS-box蛋白的典型MIKC结构。组织表达谱结果显示,FUL1同RIN一样,更偏向于在果实成熟时期表达;FUL2在除了根系以外所有组织中均有表达。说明FUL1和FUL2在番茄植株生长发育过程中的调控可能存在时空上的异同。
     2、转基因功能分析显示:单独干涉FUL1或FUL2的转基因番茄株系均无明显表型。同时干涉FUL1和FUL2的转基因番茄株系果实成熟后不能正常变红,表现为亮黄色。FUL1/FUL2-RN Ai转基因果实果皮中的类胡萝卜素含量下降一倍以上,八氢番茄红素和番茄红素含量极低。果实中质体数目和体积都比野生型要小,且红熟期转基因果实中质体已经瓦解。分析发现类胡萝卜素合成途径中,催化合成八氢番茄红素的ZDS和催化合成番茄红素的PSY1的表达量在转基因果实中分别降低了一倍以上。
     3、FUL1/FUL2-RNAi转基因果实与乙烯调控的关系分析表明,成熟过程中转基因果实乙烯释放量大量减少,且没有乙烯呼吸高峰。分析乙烯合成途径关键基因的表达,发现ACO1、ACS2和ACS4的表达量在转基因果实中均明显下调。
     4、通常乙烯生成量低的果实贮藏性好,然而FUL1/FUL2-RNAi转基因果实乙烯释放量下降,其采后耐贮性却降低,且失水率比野生型高。分析发现乙烯信号转导途径的受体蛋白ETR4在转基因果实中表达量下调,且对野生型果实施加外源乙烯或者乙烯抑制剂会影响FUL1和FUL2的表达。FUL2-OE转基因果实采后失水率较低,分析发现外果皮表面的角质层密度明显大于野生型。
     5、超量表达FUL1植株无明显表型变化,而超量表达FUL2影响了番茄植株生长发育,包括茎杆变细、叶片变小、果皮变薄及果实形状发生变化。FUL2-OE转基因植株的茎杆及果皮细胞体积均小于野生型。FUL2-OE转基因果实中细胞扩张蛋白SlEXP1的表达量明显被抑制。内源启动子驱动GUS (ProFUL2::GUS)的转基因植株分析发现,FUL2主要在果皮薄壁细胞和茎杆形成层表达。
As the reproductive organ and the important component of human diets, the development and ripening of fruit have been paid significant experimental attention. Many fruit-ripening mutants and ripening-related genes were identified in tomato (Solarium lycopersicum) which is the typical model plant for molecular mechanism research of fresh fruit development. The MADS-box transcription factor MADS-RIN is upstream regulator of ethylene biosynthesis and the regulation is conserved in both climacteric and non-climacteric fruits. Further studies revealed that RIN could form higher order complexes to regulate the expression of ripening related genes during tomato fruit ripening.
     In this study, FUL1and FUL2were screened as the interactor of RIN by yeast two-hybrid systerm. The function analysis suggested that FUL1and FUL2play important roles in tomato development and fruit ripening. The main results were as follows:
     1. FUL1and FUL2were identified as encoding proteins that interact with MADS-RIN in Yeast two-hybrid and BIFC assays. FUL1and FUL2share a high degree of sequence similarity and both of them contain conserved MIKC domains that typify plant MADS-box proteins. Expression patterns of FUL1and FUL2showed that FUL1was mainly expressed in fruit ripening stage. However, FUL2was expressed in all tissues except root, which indicated that FUL1and FUL2might have distinct functions in the regulation of tomato plant growth.
     2. No visible phenotypes changing were observed on either FUL1-RNAi or FUL2-RNAi transgenic tomato lines, however, doubly silenced FUL1and FUL2could result in the bright yellow fruit during ripening. The abundance of phytoene and lycopene reduced dramatically in FUL1/FUL2-RNAi transgenic tomato. Fewer and smaller plastoglobules were observed in FUL1/FUL2doubly silenced pericarp. The transcript abundance of ZDS and PSY1, which respectively responsible for the accumulation of phytoene and lycopene, was approximately50%in FUL1/FUL2-RNAi transgenic tomato.
     3. The fruits from the FUL1/FUL2doubly silenced lines showed a substantial reduction in ethylene production compared with the wild-type, and had no typical peak during ripening. The transcript abundance of ethylene biosynthetic genes ACS2, ACS4and ACO1showed a similar reduction in the FUL1/FUL2doubly silenced fruit.
     4. Lower ethylene release could usually prolong shelf-life of tomato fruit. However, FUL1/FUL2doubly silenced fruits which showed a reduced ethylene production had the shorter shelf-life and faster dehydration. Further analysis indicated that the transcript abundance of ethylene receptor ETR1was higher in the FUL1/FUL2doubly silenced fruit. Exogenous ethylene signal substances such as ethephon and1-MCP could influence the expressions of FUL1and FUL2. For comparison, the slower dehydration of FUL2-OE fruit was mostly due to the denser cuticle layer covered on the surface of fruits.
     5. No visible phenotypes changing were observed on FUL1-OE transgenic tomato lines, however, overexpression of FUL2could influence the development of tomato plant, such as the reduced stem diameter, smaller leaves, thinner pericarp and altered fruit shape. The cell size of both stem and pecicarp was smaller than that of wild-type. The transcript abundance of expansin SIEXP1in FUL2-OE transgenic tomato was significantly lower than that of wild-type. GUS staining of ProFuL2::GUS transgenic plant revealed that the FUL2gene showed high expression in parenchyma in fruit and cambium in stem.
引文
1.程孙亮,周宝利,马迎.红果番茄果实成熟过程中类胡萝卜素含量动态变化研究.安徽农业科学,2007,35:6728-6728
    2.侯政.利用酵母双杂交系统筛选与番茄RIN互作蛋白的初步研究.[硕士学位论文].武汉:华中农业大学图书馆,2009
    3.刘仲齐,薛俊,金凤媚.番茄果实中类胡萝卜素的合成及其调控.天津农业科学,2005,11:6-11
    4.卢刚.番茄果实发育成熟相关基因FUL2的功能分析.[硕士学位论文].武汉:华中农业大学图书馆,2012
    5.欧阳波.几种病程相关蛋白基因转化番茄的研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    6.王桂凤,施季森.杉木木材形成过程中差异表达基因的鉴定与功能分析.南京林业大学,2008
    7.赵建锋,秦进华,孙玉东.番茄畸形果研究进展.安徽农业科学,2007,35:9880-9881
    8. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. JExp Bot,2002,53:2039-2055
    9. Andrade-Souza V, Costa MG, Chen CX, Gmitter FG, Jr., Costa MA. Physical location of the carotenoid biosynthesis genes Psy and beta-Lcy in Capsicum annuum (Solanaceae) using heterologous probes from Citrus sinensis (Rutaceae). Genet Mol Res,2011,10:404-409
    10. Ariel FD, Manavella PA, Dezar CA, Chan RL. The true story of the HD-Zip family. Trends Plant Sci,2007,12:419-426
    11. Barrero LS, Tanksley SD. Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet,2004,109:669-679
    12. Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D. Differential expression of the 1-aminocyclopropane-l-carboxylate oxidase gene family of tomato. Plant J,1996,9:525-535
    13. Barry CS, Llop-Tous MI, Grierson D. The regulation of 1-aminocyclopropane-l-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol, 2000,123:979-986
    14. Bassan A, Borowski T, Schofield CJ, Siegbahn PE. Ethylene biosynthesis by 1-aminocyclopropane-l-carboxylic acid oxidase:a DFT study. Chemistry, 2006, 12:8835-8846
    15. Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto PD, Angenent GC, de Maagd RA. The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening. Plant Cell,2012, doi:10.1105/tpc.112.103283
    16. Benlloch R, d'Erfurth I, Ferrandiz C, Cosson V, Beltran JP, Canas LA, Kondorosi A, Madueno F, Ratet P. Isolation of mtpim proves Tntl a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of API-like functions in legumes. Plant Physiol,2006,142:972-983
    17. Bidonde S, Ferrer MA, Zegzouti H, Ramassamy S, Latche A, Pech JC, Hamilton AJ, Grierson D, Bouzayen M. Expression and characterization of three tomato 1-aminocyclopropane-l-carboxylate oxidase cDNAs in yeast. Eur J Biochem,1998, 253:20-26
    18. Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants. Annu Rev Cell Dev Biol,2000,16:1-18
    19. Blume B, Grierson D. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J,1997,12:731-746
    20. Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell,1989,1:37-52
    21. Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E. Morphological variation in tomato:a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot,2007,58:1339-1349
    22. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell,1999,11:2203-2216
    23. Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N. A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell,2013,25:2070-2083
    24. Busi MV, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E. MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol,2003,52:801-815
    25. Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, Jansonius JN. Structure of 1-aminocyclopropane-l-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol,1999,294:745-756
    26. Chakrabarti M, Zhang N, Sauvage C, Munos S, Blanca J, Canizares J, Diez MJ, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci U S A, 2013,110:17125-17130
    27. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-response gene ETR1:similarity of product to two-component regulators. Science,1993, 262:539-544
    28. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004,303:2022-2025
    29. Cho HT, Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2000, 97:9783-9788
    30. Cho S, Jang S, Chae S, Chung KM, Moon YH, An G, Jang SK. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol,1999,40:419-429
    31. Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, S1AP2a, is a negative regulator of fruit ripening. Plant J,2010,64:936-947
    32. Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet, 2008,40:800-804
    33. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol,2005,6:850-861
    34. Cosgrove DJ. New genes and new biological roles for expansins. Curr Opin Plant Biol,2000,3:73-78
    35. Cosgrove DJ, Bedinger P, Durachko DM. Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA,1997,94:6559-6564
    36. Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J,1996, 15:4330-4343
    37. Davies KM, Grierson D. Identification of cDNA clones for tomato (Lycopersicon esculentum Mill.) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta,1989,179:73-80
    38. de Folter S, Angenent GC. trans meets cis in MADS science. Trends Plant Sci,2006, 11:224-231
    39. de Folter S, Immink RG, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell,2005, 17:1424-1433
    40. de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (S1ARF7) regulates auxin signaling during tomato fruit set and development. Plant J,2009,57:160-170
    41. Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett,2002, 519:30-34
    42. Dogbo O, Laferriere A, D'Harlingue A, Camara B. Carotenoid biosynthesis:Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci U S A,1988,85:7054-7058
    43. Dong H, Deng Y, Mu J, Lu Q, Wang Y, Xu Y, Chu C, Chong K, Lu C, Zuo J. The Arabidopsis Spontaneous Cell Death1 gene, encoding a zeta-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res,2007,17:458-470
    44. Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J,1999,18:5370-5379
    45. Elkins JM, Ryle MJ, Clifton IJ, Dunning Hotopp JC, Lloyd JS, Burzlaff NI, Baldwin JE, Hausinger RP, Roach PL. X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry,2002,41:5185-5192
    46. Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB. Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol, 2004,136:4184-4197
    47. Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell,2003,15:2603-2611
    48. Ferrandiz C, Liljegren SJ, Yanofsky MF. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science,2000,289:436-438
    49. Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell,2004,16:1490-1505
    50. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88
    51. Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol,1999,40:687-698
    52. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG. Schuch W, Bramley PM. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci U S A,2002, 99:1092-1097
    53. Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM. Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression). Plant Physiol,1994,105:405-413
    54. Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol, 1993,22:589-602
    55. Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol, 2011,11:26
    56. Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta,2012,235:1107-1122
    57. Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins. Plant Cell,2014, doi: 10.1105/tpc.113.119453
    58. Gillaspy G, Ben-David H, Gruissem W. Fruits:A Developmental Perspective. Plant Cell,1993,5:1439-1451
    59. Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol,2007,10:283-289
    60. Giovannoni JJ. Genetic regulation of fruit development and ripening. Plant Cell, 2004,16 Suppl:S170-180
    61. Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer:review of the epidemiologic literature. JNatl Cancer Inst,1999,91:317-331
    62. Goh HH, Sloan J, Dorca-Fornell C, Fleming A. Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol, 2012,159:1759-1770
    63. Gomez-Gomez L, Carrasco P. Differential expression of the S-adenosyl-L-methionine synthase genes during pea development. Plant Physiol, 1998,117:397-405
    64. Gonzalo MJ, van der Knaap E. A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet, 2008,116:647-656
    65. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998,125:1509-1517
    66. Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA,2005,102:4908-4912
    67. Hamilton AJ, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci U S A,1991, 88:7434-7437
    68. Hirayama T, Alonso JM. Ethylene captures a metal! Metal ions are involved in ethylene perception and signal transduction. Plant Cell Physiol,2000, 41:548-555
    69. Hirschberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol, 2001,4:210-218
    70. Holdsworth MJ, Bird CR, Ray J, Schuch W, Grierson D. Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res,1987,15:731-739
    71. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001,409:525-529
    72. Hua J, Chang C, Sun Q, Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science, 1995,269:1712-1714
    73. Huala E, Sussex IM. LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development. Plant Cell,1992,4:901-913
    74. Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC. Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics, 2003,268:598-606
    75. Immink RG, Gadella TW, Jr., Ferrario S, Busscher M, Angenent GC. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A,2002,99:2416-2421
    76. Isaacson T, Ronen G, Zamir D, Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell,2002,14:333-342
    77. Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J, 2009,60:1081-1095
    78. Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J,2008, 55:212-223
    79. Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T, Koskimaki JJ, Hohtola A, Haggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol,2010,153:1619-1629
    80. Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell,1994, 6:1211-1225
    81. Johannesson H, Wang Y, Hanson J, Engstrom P. The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol, 2003,51:719-729
    82. Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell, 2011, 23:923-941
    83. Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J,2007,51:458-467
    84. Kinzer SM, Schwager SJ, Mutschler MA. Mapping of ripening-related or-specific cDNA clones of tomato (Lycopersicon esculentum). Theor Appl Genet, 1990, 79:489-496
    85. Kneissl ML, Deikman J. The Tomato E8 Gene Influences Ethylene Biosynthesis in Fruit but Not in Flowers. Plant Physiol,1996,112:537-547
    86. Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell,2012,24:1848-1859
    87. Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development:duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics,1998,149:765-783
    88. Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics,2011,285:245-260
    89. Lee Y, Choi D, Kende H. Expansins:ever-expanding numbers and functions. Curr Opin Plant Biol,2001,4:527-532
    90. Lee Y, Kende H. Expression of beta-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol,2001,127:645-654
    91. Lenhard M, Bohnert A, Jurgens G, Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell,2001,105:805-814
    92. Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato. J Exp Bot,2008,59:2253-2265
    93. Levy J, Bosin E, Feldman B, Giat Y, Miinster A, Danilenko M, Sharoni Y. Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer,1995,24:257-266
    94. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000,404:766-770
    95. Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J, 2008,55:301-310
    96. Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot,2009, 60:3311-3336
    97. Lippman Z, Tanksley SD. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics,2001, 158:413-422
    98. Liu H, Li X, Xiao J and Wang S.2012. A convenient method for simultaneous quantification of multiple phytohormones and metabolites:application in study of rice-bacterium interaction. Plant Methods 8,2.
    99. Liu J, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A,2002, 99:13302-13306
    100. Llop-Tous I, Barry CS, Grierson D. Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol,2000,123:971-978
    101.Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z. A STAY-GREEN protein S1SGR1 regulates lycopene and beta-carotene accumulation by interacting directly with S1PSY1 during ripening processes in tomato. New Phytol, 2013,198:442-452
    102.Mallory AC, Dugas DV, Bartel DP, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol,2004,14:1035-1046
    103.Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet,2006, 38:948-952
    104.Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature,2000,406:910-913
    105.Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol,2011,157:1568-1579
    106.Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JK. Tissue-and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. Plant Cell,2011, 23:3893-3910
    107.Mathieu-Rivet E, Gevaudant F, Cheniclet C, Hernould M, Chevalier C. The Anaphase Promoting Complex activator CCS52A, a key factor for fruit growth and endoreduplication in Tomato. Plant Signal Behav,2010a,5:985-987
    108.Mathieu-Rivet E, Gevaudant F, Sicard A, Salar S, Do PT, Mouras A, Fernie AR, Gibon Y, Rothan C, Chevalier C, Hernould M. Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato. Plant J,2010b,62:727-741
    109.Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene,2003, 316:1-21
    110.Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol, 1990,172:6704-6712
    111.Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J,2003,35:613-623
    112.Munos S, Ranc N, Botton E, Berard A, Rolland S, Duffe P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen M, Brunel D, Causse M. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol,2011,156:2244-2254
    113.Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell,1999,11:145-157
    114.Mutschler E, Langguth P. [Transdermal therapeutic systems]. Fortschr Med,1987, 105:571-574
    115.Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase,1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol,1998,118:1295-1305
    116.Nakatsuka A, Shiomi S, Kubo Y, Inaba A. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol,1997,38:1103-1110
    117.Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ. Control of seed mass by APETALA2. Proc Natl Acad Sci U S A,2005,102:3123-3128
    118.Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell,2002,14:321-332
    119.Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405:200-203
    120.Pellegrini L, Tan S, Richmond TJ. Structure of serum response factor core bound to DNA. Nature,1995,376:490-498
    121.Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003,424:85-88
    122.Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, Lifschitz E. The MADS box gene family in tomato:temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J,1991,1:255-266
    123.Qin G, Wang Y, Cao B, Wang W, Tian S. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J,2012,70:243-255
    124.Ranc N, Munos S, Santoni S, Causse M. A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol,2008,8:130
    125.Ray J, Moureau P, Bird C, Bird A, Grierson D, Maunders M, Truesdale M, Bramley P, Schuch W. Cloning and characterization of a gene involved in phytoene synthesis from tomato. Plant Mol Biol,1992,19:401-404
    126.Rick CM. Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics,1966,53:85-96
    127.Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A,1996a,93:4793-4798
    128.Riechmann JL, Meyerowitz EM. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins API, AP3, PI, and AG is independent of their DNA-binding specificity. Mol Biol Cell,1997a,8:1243-1259
    129.Riechmann JL, Meyerowitz EM. MADS domain proteins in plant development. Biol Chem,1997b,378:1079-1101
    130.Riechmann JL, Wang M, Meyerowitz EM. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res,1996b,24:3134-3141
    131.Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell,2006,18:1819-1832
    132.Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BB, Francis D, van der Knaap E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol,2011, 156:275-285
    133.Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A,2000, 97:11102-11107
    134.Rottmann WH, Peter GF, Oeller PW, Keller JA, Shen NF, Nagy BP, Taylor LP, Campbell AD, Theologis A.1-aminocyclopropane-l-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol,1991,222:937-961
    135.Saddic LA, Huvermann B, Bezhani S, Su Y, Winter CM, Kwon CS, Collum RP, Wagner D. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development,2006, 133:1673-1682
    136.Santelli E, Richmond TJ. Crystal structure of MEF2A core bound to DNA at 1.5 A resolution. J Mol Biol,2000,297:437-449
    137.Scofield S, Murray JA. KNOX gene function in plant stem cell niches. Plant Mol Biol,2006,60:929-946
    138.Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot,2011,62:1179-1188
    139.Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol,2004, 134:1632-1641
    140.Shima Y, Kitagawa M, Fujisawa M, Nakano T, Kato H, Kimbara J, Kasumi T, Ito Y. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Mol Biol, 2013,82:427-438
    141. Smith CJ, Slater A, Grierson D. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein ofmolecular weight 35000. Planta,1986, 168:94-100
    142.Sommer H, Beltran JP, Huijser P, Pape H, Lonnig WE, Saedler H, Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors. EMBO J, 1990,9:605-613
    143.Srinivas A, Behera RK, Kagawa T, Wada M, Sharma R. High pigmentl mutation negatively regulates phototropic signal transduction in tomato seedlings. Plant Physiol,2004,134:790-800
    144.Tang W, Perry SE. Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem,2003,278:28154-28159
    145.Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Garay-Arroyo A, Perez-Ruiz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol,2008,146:1182-1192
    146.Thakare D, Tang W, Hill K, Perry SE. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol,2008,146:1663-1672
    147.Theissen G, Kim JT, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol,1996,43:484-516
    148.Theissen G, Saedler H. Plant biology. Floral quartets. Nature,2001,409:469-471
    149.Thomas D, Surdin-Kerjan Y. SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J Biol Chem,1987,262:16704-16709
    150.Tieman DM, Klee HJ. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol,1999,120:165-172
    151.Tsuchisaka A, Theologis A. Heterodimeric interactions among the 1-amino-cyclopropane-l-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Nall Acad Sci USA,2004a,101:2275-2280
    152.Tsuchisaka A, Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-l-carboxylate synthase gene family members. Plant Physiol,2004b,136:2982-3000
    153.Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell,2009, 21:3041-3062
    154.Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science,2002,296:343-346
    155.Wang S, Chang Y, Guo J, Chen JG. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J,2007,50:858-872
    156.Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell,1992,69:843-859
    157.West AG, Causier BE, Davies B, Sharrocks AD. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res,1998,26:5277-5287
    158.Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ. An ethylene-inducible component of signal transduction encoded by never-ripe. Science,1995, 270:1807-1809
    159.Wolf G. Retinoids and carotenoids as inhibitors of carcinogenesis and inducers of cell-cell communication. Nutr Rev,1992,50:270-274
    160.Wu Y, Thorne ET, Sharp RE, Cosgrove DJ. Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol,2001, 126:1471-1479
    161.Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science,2008,319:1527-1530
    162.Xu J, Zhong X, Zhang Q, Li H. Overexpression of the Gm Gene Accelerates Flowering in. Plant Mol Biol Rep,2010,28:704-711
    163.Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J, 2003,33:47-59
    164.Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature,1990,346:35-39
    165.Yip WK, Dong JG, Kenny JW, Thompson GA, Yang SF. Characterization and sequencing of the active site of 1-aminocyclopropane-l-carboxylate synthase. Proc Natl Acad Sci U S A,1990,87:7930-7934
    166.Zhang Z, Ren JS, Clifton IJ, Schofield CJ. Crystal structure and mechanistic implications of 1-aminocyclopropane-l-carboxylic acid oxidase--the ethylene-forming enzyme. Chem Biol, 2004, 11:1383-1394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700