用户名: 密码: 验证码:
基于多源信息融合的马铃薯分级无损检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯内外部品质的检测直接关系到其加工利用率和增值率,同时也是马铃薯工业化生产加工的首要步骤。近年来,虽然机器视觉和近红外光谱技术分别在马铃薯外部和内部品质检测和分级研究中取得了一定的进展,但还存在无法同时对马铃薯内外部品质同时进行检测的问题。针对这一问题,该文利用机器视觉技术和近红外光谱技术,研究了基于多源信息融合技术的马铃薯分级无损检测方法。试验以克新一号马铃薯为研究对象,对畸形、黑心、机械损伤、发芽和合格等5类不同内外部品质的样本进行分级检测研究,研究了多源信息融合技术检测马铃薯品质的图像和光谱特征提取方法以及融合方法,并最终建立了马铃薯分级融合模型。
     1)为有效的避免背景对马铃薯图像分割的干扰,该文提出了视觉显著性与色调维相结合的Saliency-H分割方法,并比较了其与灰度分割法和色调维分割法的分割效果。灰度分割法由于其无法分割出完整的马铃薯区域,故不适用于在线马铃薯图像分割,而色调维分割法和Saliency-H维分割法均能完整分割出马铃薯区域,其中Saliency-H维分割法在分割速度、数据压缩和马铃薯定位等方面较色调维分割法具有较大的优势,色调维分割法平均每幅图像耗时为551.7ms,而Saliency-H法减少了74ms,仅需477.7ms。
     2)针对马铃薯表面灰度不均匀,图像特征难以有效覆盖马铃薯样本集的问题,该文提出了灰度梯度与流形学习组合的方式提取马铃薯图像特征,比较了不同的图像特征组合方式对模型的影响。文中所采用的灰度梯度算法为Freeman链码和方向梯度直方图,流形学习算法为等距映射和主成分分析,在4种算法组合中,方向梯度直方图与主成分分析为最优组合,建模所需图像特征数量最少,仅需23维特征(10维方向梯度直方图特征与13维主成分特征),模型即可达到最优。
     3)建立了基于机器视觉技术的马铃薯分级检测模型。图像灰度梯度与流形学习特征不同的组合方式所建4个模型对马铃薯外部品质(畸形、机械损伤和发芽)的分级能力均高于内部品质(黑心),其中方向梯度直方图与主成分特征组合而成的图像特征所建模型最优,对畸形、机械损伤和发芽样本的识别率分别为93.75%、83.33%和95.45%,而对黑心和合格样本的识别率分别仅为77.27%和71.43%。
     4)建立了基于LabVIEW平台的马铃薯外部品质在线检测系统。以38个不同外部品质的马铃薯样本为检测对象,对长径、短径、高径、薯形(类圆、椭圆、长形)、畸形、机械损伤、发芽和合格8项外部品质指标进行检测,畸形、机械损伤、发芽和合格4项外部品质定性指标的识别率为89.47%,对类圆、椭圆和长形3类马铃薯的识别率为100%,对长径、短径和高径的检测最大误差分别为2.9mm,2.0mm和1.0mm,单幅图像平均耗时为100ms。结果表明该文提出的马铃薯图像分割算法、特征提取方法和模式识别方法可实现马铃薯外部品质多项指标的在线检测。
     5)比较了波段优选算法和流形学习算法的近红外光谱特征提取方法的优劣。文中所采用的波段优选算法为遗传算法和连续投影算法,流形学习算法为拉普拉斯特征映射法、核主成分分析和主成分分析,对于5种近红外光谱特征提取方法所建的马铃薯分级模型,利用主成分分析提取的近红外光谱特征所建模型最优,其最优预处理方法为MSC,最优主成分数量为20,模型对训练集的识别率为97.88%,对测试集的识别率为83.87%,结果表明对于马铃薯近红外光谱特征提取方法,流形学习算法优于波段优选算法,为一个近红外光谱马铃薯分级模型对马铃薯内部品质多项指标的同时检测提供了技术支持。
     6)建立了基于近红外光谱技术的马铃薯分级检测模型,波段优选算法和流形学习算法所建的分级模型对马铃薯内部品质(黑心和发芽)的识别率均高于外部品质(畸形和机械损伤),其中主成分特征所建模型最优,对黑心和发芽2类样本识别率较高分别为90.91%和95.45%,而对畸形、机械损伤和合格样本的识别率分别仅为75.00%、75.00%和76.19%。
     7)利用LabVIEW实现了近红外光谱技术的马铃薯分级检测系统软件,黑心、发芽和合格3项马铃薯内部品质的识别率达到95.45%。在算法执行效率方面,平均每条光谱的预处理耗时为3.4ms,20维主成分提取耗时为14.6ms,建模耗时5137ms,利用模型对单条光谱测试,平均耗时为15.0ms,可实现30条/s的检测效率,为一个近红外光谱模型在线检测马铃薯内部品质多项指标提供了技术支持。
     8)确定了多源信息融合技术检测马铃薯内外部品质的融合方法,比较了不同融合方法所建马铃薯分级检测模型的检测精度。以畸形、机械损伤、黑心和发芽和合格5类马铃薯样本为研究对象,建立马铃薯内外部品质多项指标的多源信息融合模型,决策层融合方面,采用机器视觉和近红外光谱所建支持向量机模型的概率输出为基本概率赋值函数,以DS证据理论为决策层融合方法,建立决策层融合模型,对训练集的识别率为100.00%,对测试集的识别率为93.55%;特征层融合方面,利用方向梯度直方图与主成分分析组合的方式提取图像特征,利用主成分分析提取光谱特征,将图像和光谱特征作为模式识别的输入,分别利用Adaboost和支持向量机建立特征层融合模型。AdaBoost所建模型对训练集的识别率为100.00%,对测试集的识别率为91.40%,支持向量机所建模型对训练集的识别率为100.00%,对测试集的识别率为95.70%。结果表明对于马铃薯内外部品质多项指标的检测,支持向量机特征层融合优于DS决策层融合,DS决策层融合优于AdaBoost特征层融合,那么,支持向量机特征层融合模型为最优的马铃薯分级融合模型。
     9)建立了基于多源信息融合技术的马铃薯分级检测模型,可实现一个融合模型同时检测马铃薯内外部品质多项指标。融合模型对畸形、黑心、机械损伤、发芽和合格样本识别率分别为100.00%、95.45%、91.67%、100.00%和90.48%,相对于机器视觉所建马铃薯分级检测模型,融合模型对畸形、机械损伤、黑心和发芽和合格5类马铃薯样本的识别率分别提高了6.25%、18.18%、8.34%、4.55%、19.05%,而对于近红外光谱所建马铃薯分级检测模型,融合模型对上述5类马铃薯样本的识别率则分别提高了25.00%、4.54%、16.67%、4.55%、14.29%。
     10)利用LabVIEW实现了多源信息融合技术的马铃薯分级检测模型,并对图像分割、图像特征提取、光谱预处理、光谱特征提取、相应指标测取等进行了测试,每个样本的平均总耗时低于140ms,能实现每秒7组图像和近红外光谱数据的处理速度。结果表明,基于多源信息融合的马铃薯分级检测模型的识别率优于单一的机器视觉或近红外光谱所建模型,为利用多源信息融合技术在线检测马铃薯内外部品质多项指标提供了技术支持。
Detection of potato external quality is directly related to the processing and utilization rate and growth rate, and the commercial production and processing of potato is the first step. In recent years, although the machine vision and near infrared spectroscopy has respectively made certain progress in the study of detection and classification for external and internal quality of potato, but the detection is not at the same time. Aiming at this problem, the paper uses the technology of machine vision and near infrared spectroscopy, studied the nondestructive detection method of potato based on multi-source information fusion technique. Using Ke Xin Yi Hao potatoes as the research object,5kinds of sample set include deformity, black heart, mechanical damage, eye and normal. Characteristics extraction method of potato images and spectra,and the fusion method for potato detection, are studied, at the same time the potato fusion classification model is established.
     1) To avoid the interference of background on potato image segmentation, the paper proposed a segmentation method based on visual saliency and the hue dimension, and compared it with the gray segmentation method and the hue dimension segmentation. The gray segmentation method due to its inability complete of potato area, is not suitable for online potato image segmentation. While the hue dimension segmentation and Saliency-H dimension segmentation method can segment the complete potato area, among them Saliency-H dimension segmentation method has great advantage in the segmentation speed, data compression and potato positioning. The simulation on Matlab platform shows, the average time-consuming for hue dimension segmentation method is551.7ms, Saliency-H method reduce74ms, only needs477.7ms.
     2) Because of the uneven gray of potato surface, image features are difficult to be effectively covered potato samples, the paper proposed the gray gradient and manifold learning combination way for extracting potato image features, models which build are compared. The gray gradient algorithm is adopted in this paper for the Freeman chain code and histogram of oriented gradients, isometric mapping and principal component analysis for manifold learning algorithms. Histogram of oriented gradients and principal component analysis is the best combination of image features, which modeling required only23dimensional feature (feature10dimensional direction the gradient histogram features and13dimensional principal component) to achieve the optimal model.
     3) Potato grading and detection model based on machine vision is established. The gray gradient and manifold learning characteristics in different combinations for potato external quality (deformity, mechanical damage and eye) classification capacity is higher than the internal quality (black heart), in which histogram of oriented gradients and principal component features is the best combination for modeling. The recognition rates of deformity, mechanical injury and eye sample were93.75%,83.33%and95.45%, and the recognition rates of black heart and the normal sample were only77.27%and71.43%.
     4)A potato external quality online detection system is builded based on LabVIEW platform. After detect38potato samples with different external quality, identification rate of deformity, mechanical damage, eye and qualified samples was89.47%. Tuber shape is100%, and the long diameter, short diameter and height of the maximum error are respectively2.9mm,2.0mm and1.0mm. Average time for a single image100ms. Results show that the proposed potato image segmentation, feature extraction and pattern recognition methods can realize online detection of potato external quality indicators.
     5) Effects of band selection algorithms and manifold learning algorithms on potato grading model were compared. Band selection algorithms in the paper include genetic algorithm and successive projections algorithm, and manifold learning algorithms include Laplasse feature mapping method, kernel principal component analysis and principal component. Potato grading model using the principal component analysis of spectral feature is the optimal. The optimal pretreatment method is MSC, and the best number of principal components is20. The recognition rate for training set is97.88%, and83.87%for test set. The results shows that for potato spectral feature extraction, manifold learning algorithm is better than the band selection algorithm.
     6) Potato grading and detection model based on near infrared spectrum technique is established. Either Band selection algorithm or manifold learning algorithm, the recognition rate of internal quality for potato (black heart and eye) are higher than the external quality (deformity and mechanical damage), the principal component feature model is the optimal, in which the black heart and eye2types of samples has high recognition rates90.91%and95.45%, while the deformity, mechanical damage and the normal sample were only75%,75%and76.19%.
     7) Use Lab VIEW to establish the potato internal quality detection model based on near infrared spectroscopy. For black heart, eye and qualified potatoes, the identification rate of near infrared reflectance spectroscopy was95.45%. For algorithm execution efficiency, time-consuming of each pretreatment of near infrared reflectance spectroscopy is3.4ms,20dimensional principal component extraction time is14.6ms, the modeling time5137ms. Using the model test of single spectra, average time was15.0ms, the detection efficiency can achieve30/s, which provides technical support for only using a near-infrared spectroscopy model online detection of potato internal quality indicators.
     8) The fusion method for the detection of potato external quality is determined, and effects of different fusion methods on modeling results for potato grading and detection are compared. In decision level fusion, the probability outputs of machine vision and near infrared spectra based on support vector are gained. Using DS evidence theory method for decision level fusion, decision fusion model is established. Recognition rate of training set is100%, for test set is93.55%. In feature level fusion, the combination of histogram of oriented gradients and principal component analysis is the image features extraction method, and the principal component is used for spectral feature extraction, using image and spectral features as the inputs of pattern recognition, feature level fusion models respectively established by Adaboost and support vector machine. For AdaBoost model, recognition rate of training set is100%, of test set is91.40%. For support vector machine model, recognition rate of training set is100%, of test set is95.70%. Results showed that the detection for potato's several quality indexes, support vector machine feature fusion and is better than DS decision fusion, and DS decision fusion outperforms AdaBoost feature level fusion, feature level fusion.
     9) Potato grading and detection model based on multi-information fusion technology is established, which can detect a number of quality indicators of potato. Recognition rates of DS evidence theory model for deformity, black heart, mechanical damage, eye and normal sample are respectively100%,95.45%,83.33%,100%and85.71%. Recognition rates of Adaboost model of deformity, black heart, mechanical damage, eye and normal sample are respectively100%,95.45%,83.33%,100%and76.19%. Recognition rates of support vector machine model for deformity, black heart, mechanical damage, eye and normal sample are respectively100%,95.45%,91.67%,100%and90.48%. Results showed that the fusion model identification for potato were superior to machine vision and near infrared spectra, the support vector machine model is the best, recognition rates of the deformity, black heart, mechanical damage, eye and normal samples reaches more than90%, which providing technical support for multi-source information fusion technology online detection of a number of potato quality indicators.
     10) Using LabVIEW For the testing of image segmentation, feature extraction, image preprocessing, feature extraction, average total time of each sample is less than140ms, can achieve7per second speed of processing image and near infrared spectral data. The results show that, multi-source information fusion identification model is better than machine vision and near infrared spectroscopy, which provides the technical support for potato external quality indicators online detection by using multi-source information fusion technology.
引文
1. 蔡剑华,王先春,胡惟文.基于EMD的十壤有机质含量近红外光谱检测.农业机械学报,2010,41(09):182-186.
    2. 蔡健荣,吕强,张海东,陈全胜.利用近红外光谱技术识别不同类别的茶叶.安徽农业科学,2007,35(14):4083-4084.
    3. 蔡健荣,汤明杰,吕强,赵杰文,陈全胜.基于siPLS的猕猴桃糖度近红外光谱检测.食晶科学,2009a,30(04):250-253.
    4. 蔡健荣,万新民,陈全胜.近红外光谱法快速检测猪肉中挥发性盐基氮的含量.光学学报,2009b,29(10):2808-2812.
    5. 曹乐平,温芝元,沈陆明.基于色调分形维数的柑橘糖度和有效酸度检测.农业机械学报,2010,41(03):143-148.
    6. 曹楠宁,王加华,李鹏飞,韩东海.基于GA和SCMWPLS算法的NIR光谱信息变量提取研究.光谱学与光谱分析,2010,30(04):915-919.
    7. 陈红,夏青,左婷,谭鹤群,边银丙.基于机器视觉的花茹分选技术.农业机械学报,2014,45(01):281-287.
    8. 陈兵旗,孙旭东,韩旭,刘燕德.基于机器视觉的水稻种子精选技术.农业机械学报,2010,41(07):168-173,180.
    9. 陈菁菁,李永玉,王伟,彭彦昆,吴建虎,单佳佳.微量有机磷农药残留近红外光谱快速检测方法.农业机械学报,2010,41(10):134-137.
    10.陈菁菁,李永玉,吴建虎,彭彦昆.基于近红外光谱技术的微量有机磷农药的快速检测.食品安全质量检测技术,2009,1(01):45-50.
    11.陈全胜,赵杰文,蔡健荣,Vittayapadung Saritporn.基于近红外光谱和机器视觉的多信息融合技术评判茶叶品质.农业工程学报,2008,24(03):5-10.
    12.陈全胜,赵杰文,蔡健荣,王新宇.支持向量机在机器视觉识别茶叶中的应用研究.仪器仪表学报,2006a,27(12):1704-1706.
    13.陈全胜,赵杰文,张海东,刘木华.SIMCA模式识别方法在近红外光谱识别茶叶中的应用.食品科学,2006b,27(04):186-189.
    14.陈全胜,赵杰文,张海东,王新宇.基于支持向量机的近红外光谱鉴别茶叶的真伪.光学学报,2006c,26(06):933-937.
    15.陈艳军,张俊雄,李伟,任永新,谭豫之.基于机器视觉的苹果最大横切面直径分级方法.农业工程学报,2012,28(02):284-288.
    16.褚小立,田高友,袁洪福,陆婉珍.小波变换结合多维偏最小二乘方法用于近红外光谱定量分析.分析化学,2006,34(S1):175-178.
    17.崔建丽,童淑敏,郝敏等.边界点矩特征傅里叶描述的马铃薯薯形研究.中国农机化,2012,(2):59-62.
    18.崔永杰,苏帅,王霞霞,田玉凤,李平平,张发年.基于机器视觉的自然环境中猕猴桃识别与特征提取.农业机械学报,2013,44(05):247-252.
    19.代芬,蔡博昆,洪添胜,黄冠勇,林冬霞,刘传艺.漫透射法无损检测荔枝可溶性固形物.农业工程学报,2012a,28(15):287-292.
    20.代芬,洪添胜,罗霞,洪涯,李岩.基于可见-近红外光谱的砂糖橘总酸无损检测.华中农业大学学报,2012b,31(04):518-523.
    21.代芬,洪添胜,岳学军,张昆,洪涯.砂糖橘可溶性总糖可见-近红外光谱无损检测.农业机械学报,2011a,(04):133-138.
    22.代芬,黄冠勇,洪添胜.基于光谱技术的砂糖橘品质无损检测方法研究.中国农业工程学会(CSAE).中国农业工程学会2011年学术年会论文集.中国农业工程学会(CSAE),2011b.
    23.代芬,张昆,洪添胜,洪涯.龙眼表面农药残留的无损检测研究——基于近红外光谱分析.农机化研究,2010,(10):111-114.
    24.邓楠.基于主成分分析的人脸识别研究[硕土毕业论文].西北大学,2006.
    25.丁姣,蔡建荣,张海东,陈全胜.近红外结合Si-ELM检测食醋品质指标.食品与机械,2012,28(01):93-96.
    26.丁筠,殷涌光,王旻.蔬菜中大肠杆菌的机器视觉快速检测.农业机械学报,2012,43(02):134-139,145.
    27.冯青春,王秀,姜凯,周建军,张睿,马伟.花卉幼苗白动移栽机关键部件设计与试验.农业工程学报,2013,29(06):21-27.
    28.高明杰,罗其友,刘洋,朱聪,易晓峰,张晴.中国马铃薯产业发展态势分析.中国马铃薯,2013,27(04):243-247.
    29.高尚兵,严云洋,宗慧等.基于显著性区域的图像分割.2011年江苏省人工智能学术会议论文集.2011:21-23,27.
    30.高晓阳,王泽京,毕阳,张明艳,李红岭,孔彦龙,毛红玉.基于单片机和机器视觉的马铃薯品质分级研究.中国农业工程学会(CSAE)中国农业工程学会2011年学术年会论文集.中国农业工程学会(CSAE).2011:5.
    31.耿朝曦,鲁超,田磊,王加华,韩东海.酿酒葡萄采摘期的近红外光谱预测.中国农业工程学会.农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第四分册.中国农业工程学会.2005:6.
    32.郭俊先,饶秀勤,成芳,应义斌,康玉国,李付堂.近红外光谱用于皮棉杂质含量预测和分类的研究.光谱学与光谱分析,2010,30(03):649-653.
    33.郭文川,王铭海,岳绒.基于近红外漫反射光谱的损伤猕猴桃早期识别.农业机械学报,2013,44(02):142-146.
    34.郭志明,赵杰文,陈全胜,黄星奕.特征谱区筛选在近红外光谱检测茶叶游离氨基酸含量中的应用.光学精密工程,2009a,17(08):1839-1844.
    35.郭志强,杨杰,柳步荫.基于WPT/PCA的特征级融合人脸识别方法.武汉理工大学学报,2009b,31(17):131-134.
    36.韩东海,常冬,宋曙辉,蒋圣楠,赵洪卫.小型西瓜品质近红外无损检测的光谱信息采集.农业机械学报,2013,44(07):174-178.
    37.韩东海,刘新鑫,赵丽丽,涂润林.受损苹果颜色和组织的近红外光谱特性.农业机械学报,2003,34(06):112-115.
    38.郝敏,麻硕士,郝小冬.基于Zernike矩的马铃薯薯形检测.农业工程学报,2010,26(02):347-350.
    39.郝敏.基于机器视觉的马铃薯外部品质检测技术研究[硕士毕业论文].呼和浩特:内蒙古农业大学,2009.
    40.郝勇,孙旭东,高荣杰,潘媛媛,刘燕德.基于可见/近红外光谱与SIMCA和PLS-DA的脐橙品种识别.农业工程学报,2010,26(12):373-377.
    41.何东健,乔永亮,李攀,高瞻,李海洋,唐晶磊.基于SVM-DS多特征融合的杂草识别.农业机械学报,2013,44(02):182-187.
    42.洪涯,洪添胜,代芬,张昆,陈厚文,李岩.连续投影算法在砂糖橘总酸无损检测中的应用.农业工程学报,2010,26(14):380-384.
    43.洪忠亮,裘正军,谢彦广,赵小俊,汪志平.可见/近红外光谱快速鉴别米粉辐照剂量.农业工程学报,2012,28(07):271-274.
    44.胡炼,罗锡文,曾山,张智刚,陈雄飞,林潮兴.基于机器视觉的株间机械除草装置的作物识别与定位方法.农业工程学报,2013,29(10):12-18.
    45.虎晓红,李炳军,席磊.基于多示例图的小麦叶部病害分割方法.农业工程学报,2012,28(13):154-159.
    46.宦克为,刘小溪,郑峰,蔡小龙,于素平,石晓光.基于蒙特卡罗特征投影法的小麦蛋白质近红外光谱测量变量选择.农业工程学报,2013,29(04):266-271.
    47.黄凌霞,吴迪,金航峰,赵丽华,何勇,金佩华,楼程富.基于变量选择的蚕茧茧层量可见-近红外光谱无损检测.农业工程学报,2010,26(02):231-236.
    48.黄文倩,李江波,张驰,李斌,陈立平,张百海.基于类球形亮度变换的水果表面缺陷提取.农业机械学报,2012,43(12):187-191.
    49.黄星奕,姜爽,陈全胜,赵杰文.基于机器视觉技术的畸形秀珍茹识别.农业工程学报,2010,26(10):350-354.
    50.黄星奕,钱媚,徐富斌.基于机器视觉和近红外光谱技术的杏干品质无损检测.农业工程学报,2012,28(07):260-265.
    51.黄亚伟,王加华,李晓云,Jacqueline J Shan,韩东海.基于近红外光谱的人参与西洋参的快速鉴别研究.光谱学与光谱分析,2010,30(11):2954-2957.
    52.贾渊,李振江,彭增起.结合LLE流形学习和支持向量机的猪肉颜色分级.农业工程学报,2012,28(09):147-152.
    53.江辉,刘国海,梅从立,肖夏宏,于霜,丁煜函.基于OC-SVM和近红外光谱的秸秆固态发酵进程监测.农业机械学报,2012,43(10):114-117,166.
    54.蒋焕煜,应义斌,王剑平,饶秀勤,徐惠荣,汪懋华.水果品质智能化实时检测分级生产线的研究.农业工程学报,2002,18(06):158-160.
    55.介邓飞,谢丽娟,饶秀勤,应义斌.近红外光谱变量筛选提高西瓜糖度预测模型精度.农业工程学报,2013,29(12):264-270.
    56.金长江.基于近红外光谱与机器视觉技术的浆果品质检测研究[硕士毕业论文].东北农业大学,2011.
    57.孔彦龙,高晓阳,李红玲等.基于机器视觉的马铃薯质量和形状分选方法.农业工程学报,2012,28(17):143-148.
    58.李寒,王库,曹倩,殷晶晶.基于机器视觉的番茄多目标提取与匹配.农业工程学报,2012,28(05):168-172.
    59.李江波,赵春江,陈立平,黄文倩.基于可见/近红外光谱谱区有效波长的梨品种鉴别.农业机械学报,2013,44(03):153-157,179.
    60.李江波.脐橙表面缺陷的快速检测方法研究[硕士毕业论文].浙江大学,2012.
    61.李锦卫,廖桂平,金晶,虞晓娟.基于灰度截留分割与十色模型的马铃薯表面缺陷检测方法.农业工程学报,2010,26(10):236-242.
    62.李景彬陈兵旗刘阳.棉花铺膜播种机导航路线图像检测方法.农业机械学报,2014,45(01):40-45.
    63.李景彬,陈兵旗,刘阳,查涛.采棉机视觉导航路线图像检测方法.农业工程学报,2013,29(11):11-19.
    64.李军良.基于机器视觉和近红外光谱的水果品质分级研究[硕士毕业论文].南京航空航天大学,2011.
    65.李凯歌,韩东海,孙明.纯牛奶中还原奶的近红外检测判别分析.农机化研究,2008,(08):145-147.
    66.李明喜,毛罕平,张艳诚.基于PCA和区域特性量测的多光谱图像融合.中国农业大学、中国农业工程学会、北京农业信息化学会.“第一届国际计算机及计算技术在农业中的应用研讨会”暨“第一届中国农村信息化发展论坛”论文集.中国农业大学、中国农业工程学会、北京农业信息化学会:2007.
    67.李茗萱,张漫,孟庆宽,刘刚.基于扫描滤波的农机具视觉导航基准线快速检测方法.农业工程学报,2013,29(01):41-47.
    68.李鹏飞,王加华,曹楠宁,韩东海.BiPLS结合GA优选可见/近红外光谱MLR变量.光谱学与光谱分析,2009,29(10):2637-2641.
    69.李水芳,单杨,朱向荣,李忠海.近红外光谱结合化学计量学方法检测蜂蜜产地.农业工程学报,2011,27(08):350-354.
    70.李顺峰,张丽华,刘兴华,李光辉.基于主成分分析的苹果霉心病近红外漫反射光谱判别.农业机械学报,2011,42(10):158-161.
    71.李小昱,陶海龙,高海龙,李鹏,黄涛,任继平.基于多源信息融合技术的马铃薯痂疮病无损检测方法.农业工程学报,2013,29(19):277-284.
    72.李晓丽,程术希,何勇.基于漫反射光谱的初制绿茶含水率无损检测方法.农业工程学报,2010,26(05):195-201.
    73.李晓丽.基于机器视觉及光谱技术的茶叶品质无损检测方法研究[硕士毕业论文].浙江大学,2009.
    74.李昕,李立君,高自成,易春峰,李庆春.改进类圆随机Hough变换及其在油茶果实遮挡识别中的应用.农业工程学报,2013,29(01):164-170.
    75.李昕,李立君,高自成,周健,闵淑辉.基于偏好人工免疫网络多特征融合的油茶果图像识别.农业工程学报,2012,28(14):133-137.
    76.李长勇,曹其新.基于深度图像的蔬果形状特征提取.农业机械学报,2012,43(S1):242-245.
    77.廖宜涛,樊玉霞,成芳,伍学千.连续投影算法在猪肉pH值无损检测中的应用.农业工程学报,2010a,26(13):379-383.
    78.廖宜涛,樊玉霞,伍学千,成芳.猪肉肌内脂肪含量的可见/近红外光谱在线检测.农业机械学报,2010b,41(09):104-107,137.
    79.林颢,赵杰文,陈全胜,蔡健荣,周平.近红外光谱结合一类支持向量机算法检测鸡蛋的新鲜度.光谱学与光谱分析,2010,30(04):929-932.
    80.林伟明,胡云堂.基于YUV颜色模型的番茄收获机器人图像分割方法.农业机械学报,2012,43(12):176-180.
    81.刘锋,苏真伟,乔丽.基于线激光截面成像的棉花白色异性纤维检测方法.农业机械学报,2013,44(03):215-218,256.
    82.刘卉,郭文川,岳绒.猕猴桃硬度近红外漫反射光谱无损检测.农业机械学报,2011,42(03):145-149.
    83.刘洁,李小昱,李培武,王为,周炜,张军.基于近红外光谱的板栗水分检测方法.农业工程学报,2010,26(02):338-341.
    84.刘韶军,王库.基于机器视觉的棉种破损检测技术.农业机械学报,2009,40(12):186-189.
    85.刘同海,滕光辉,付为森,李卓.基于机器视觉的猪体体尺测点提取算法与应用.农业工程学报,2013,29(02):161-168.
    86.刘雪梅,章海亮.基于DPLS和LS-SVM的梨品种近红外光谱识别.农业机械学报,2012,43(09):160-164.
    87.刘燕德,彭彦颖,高荣杰,孙旭东,郝勇.基于LED组合光源的水晶梨可溶性固形物和大小在线检测.农业工程学报,2010,26(11):338-343.
    88.刘燕德,施宇,蔡丽君,周延睿.基于CARS算法的脐橙可溶性固形物近红外在线检测.农业机械学报,2013a,44(09):138-144.
    89.刘燕德,万常斓.芝麻油掺伪的近红外透射光谱检测技术.农业机械学报,2012,43(07):136-140.
    90.刘燕德,熊松盛,吴至境,周衍华,刘德力.赣南脐橙园土壤全磷和全钾近红外光谱检测.农业工程学报,2013,29(18):156-162.
    91.刘燕德,周延睿.基于GA-LSSVM的苹果糖度近红外光谱检测.西北农林科技大学学报(自然科学版),2013b,41(07):229-234.
    92.陆辉山,傅霞萍,谢丽娟,应义斌.可见/近红外光估测完整柑橘水果可溶性固形物含量的研究.光谱学与光谱分析,2007,27(09):1727-1730.
    93.陆尚平,文友先,葛维,彭辉.基于机器视觉的甘蔗茎节特征提取与识别.农业机械学报,2010,41(10):190-194.
    94.吕强,汤明杰,赵杰文,蔡健荣,陈全胜.近红外光谱预测猕猴桃硬度模型的简化研究.光谱学与光谱分析,2009,29(07):1768-1771.
    95.马本学,饶秀勤,应义斌,沈飞,樊玉霞.基于近红外漫反射光谱的香梨类别定性分析.光谱学与光谱分析,2009,29(12):3288-3290.
    96.马世榜,汤修映,徐杨,彭彦昆,田潇瑜,付姓.可见/近红外光谱结合遗传算法无损检测牛肉pH值.农业工程学报,2012a,28(18):263-268.
    97.马世榜,徐杨,彭彦昆,汤修映.基于光谱技术的支持向量机判别牛肉新鲜度.食品安全质量检测学报,2012b,3(06):603-607.
    98.毛罕平,徐贵力,李萍萍.番茄缺素叶片的图像特征提取和优化选择研究.中国农业工程学院.2002农业工程青年科技论坛论文集.中国农业工程学院:2002.
    99.苗玉彬,王浙明,刘秦.水果轮廓特征提取的Zernike矩分水岭分割方法.农业工程学报, 2013,29(01):158-163.
    100.牛晓颖,周玉宏,邵利敏.基于LS-SVM的草莓固酸比和可滴定酸近红外光谱定量模型.农业工程学报,2013,29(25):270-274.
    101.欧阳爱国,谢小强,刘燕德.苹果可溶性固形物近红外在线光谱变量优选.农业机械学报,2014,45(04):220-225.
    102.欧阳海洪.中国马铃薯加工业发展与展望.农产品加工,2013,(04):4-5.
    103.欧阳文,江发潮,彭彦昆,张海云,赵松玮.基于可见/近红外光谱技术的牛肉嫩度快速无损检测.中国农业工程学会(CSAE).中国农业工程学会2011年学术年会论文集.中国农业工程学会(CSAE),2011.
    104.潘安龙,王晶,李典格,徐昆,薛冬桦.利用近红外光谱测定玉米非淀粉组分中纤维素及半纤维素含量.农业工程学报,2011,27(07):349-352.
    105.潘璐,王加华,李凯歌,铃木纯三,韩东海.基于近红外光谱的稻米产地判别研究.中国农业工程学会农产品加工及贮藏工程分会、河北农业大学食品科技学院.2007中国农业工程学会农产品加工及贮藏工程分会学术年会暨中国中部地区农产品加工产学研研讨会论文集.中国农业工程学会农产品加工及贮藏工程分会、河北农业大学食品科技学院,2007.
    106.齐帅,陈全胜.利用便携式可见-近红外光谱系统检测速溶绿茶粉的茶多酚含量.中国食品科学技术学会.科技与产业对接——CIFST.中国食品科学技术学会第十届年会暨第七届中美食品业高层论坛论文摘要集.中国食品科学技术学会,2013.
    107.邱白晶,殷磊.基于近红外光谱技术的叶面药液浓度检测.农业机械学报,2012,43(09):197-201,208.
    108.全燕鸣,黎淑梅,成喜春,林子其.基于机器视觉的果肉多类型异物识别方法.农业工程学报,2011,27(03):162-166.
    109.饶洪辉,刘燕德,孙旭东,卢卓,周华茂,蒋育华.基于机器视觉的水稻种子质量在线检测机.农机化研究,2009,(10):79-81,88.
    110.饶秀勤,应义斌.基于机器视觉的水果尺寸检测误差分析.农业工程学报,2003,19(01):121-123.
    111.沈明霞,李秀智,姬长英.水果品质检测中的模糊阈值分割方法.农业机械学报,2003,34(05):113-115.
    112.石吉勇,殷晓平,邹小波,赵杰文,鞠时光.基于模拟退火波长优化的草莓坚实度近红外光谱检测.农业机械学报,2010,41(09):99-103.
    113.石吉勇,邹小波,赵杰文,毛罕平,王开亮,陈正伟,黄晓玮.近红外光谱技术快速无损诊断黄瓜植株氮、镁元素亏缺.农业工程学报,2011a,27(08):283-287.
    114.石吉勇,邹小波,赵杰文,毛罕平,王开亮,陈正伟.黄瓜叶片叶绿素含量近红外光谱无 损检测.农业机械学报,2011b,42(05):178-182,141.
    115.史波林,赵镭,刘文,汪厚银,朱大洲,尹京苑.苹果内部品质近红外光谱检测的异常样本分析.农业机械学报,2010,41(02):132-137.
    1]6.司永胜,乔军,刘刚,刘兆祥,高瑞.基于机器视觉的苹果识别和形状特征提取.农业机械学报,2009,40(08):161-165,73.
    117.宋海燕,秦刚,韩小平,刘海芹.基于近红外光谱和正交信号-偏最小二乘法对土壤的分类.农业工程学报,2012,28(07):168-171.
    118.苏学素,张晓焱,焦必宁,曹维荃.基于近红外光谱的脐橙产地溯源研究.农业工程学报,2012,28(15):240-245.
    119.孙俊,武小红,张晓东,王艳,高洪燕.基于MFICSC算法的生菜图像目标聚类分割.农业工程学报,2012,28(13):149-153.
    120.孙力,张世庆,林颢,蔡健荣,陈全胜.苹果糖度近红外光谱检测系统参数优化.食品科技,2010,35(07):267-270.
    121.汤修映,牛力钊,徐杨,彭彦昆,马世榜,田潇瑜.基于可见/近红外光谱技术的牛肉含水率无损检测.农业工程学报,2013,29(11):248-254.
    122.汤一平 夏少杰 冯亦军 陈新峰 朱治亮 李陈荣.基于单目多视角机器视觉的珍珠在线分类装置.农业机械学报,2014,45(01):288-292.
    123.陶琳,武中臣,张鹏彦,李良红,刘畅.近红外光谱法快速鉴定干海参产地.农业工程学报,2011,27(05):364-366.
    124.田高友,袁洪福,褚小立,刘慧颖,陆婉珍.结合小波变换与微分法改善近红外光谱分析精度.光谱学与光谱分析,2005,25(04):516-520.
    125.田高友,袁洪福,刘慧颖,陆婉珍.小波变换用于近红外光谱性质分析.分析化学,2004,32(09):1125-1130.
    126.屠振华,朱大洲,籍保平,陈红茜,庆兆坤.基于近红外光谱技术的蜂蜜掺假识别.农业工程学报,2011,27(11):382-387.
    127.万鹏,潘海兵,宗力,陈红.基于机器视觉的鲫鱼和鲤鱼品种识别方法研究.广东农业科学,2012,(17):184-187.
    128.汪成龙,李小昱,武振中,周竹,冯耀泽.基于流形学习算法的马铃薯机械损伤机器视觉检测方法.农业工程学报,2014,30(01):245-252.
    129.王海青,姬长英,顾宝兴,安秋.基于机器视觉和支持向量机的温室黄瓜识别.农业机械学报,2012,43(03):163-167,180.
    130.王海青,姬长英,顾宝兴,田光兆.基于参数自适应脉冲耦合神经网络的黄瓜目标分割.农业机械学报,2013,44(03):204-208.
    131.王辉,雷雨春,康峰,干琦,赵博,张勤.基于机器视觉的樱桃外径检测.农业机械学报,2012,43(S1):246-249.
    132.王加华,陈卓,李振茹,韩东海.洋梨硬度的便携式可见/近红外漫透射检测技术.农业机械学报,2010,41(11):129-133.
    133.王加华,韩东海.基于遗传算法的苹果糖度近红外光谱分析.光谱学与光谱分析,2008,28(10):2308-2311.
    134.王加华,李鹏飞,曹楠宁,韩东海.基于iPLS原理最优化信息区间的桃糖度组合权重PLS模型研究.红外与毫米波学报,2009a,28(05):386-391.
    135.王加华,潘璐,孙谦,李鹏飞,韩东海.遗传算法结合偏最小二乘法无损评价西洋梨糖度.光谱学与光谱分析,2009b,29(03):678-681.
    136.王加华,孙旭东,潘璐,孙谦,韩东海.基于可见/近红外能量光谱的苹果褐腐病和水心鉴别.光谱学与光谱分析,2008,28(09):2098-2102.
    137.王娟,张荣芳,于相友.双孢蘑菇硬度的近红外漫反射光谱无损检测.农业机械学报,2012,43(11):163-168.
    138.王庆,薛卫青,马晗煦,李军会,孙宝启,孙群.近红外光谱技术定量分析玉米杂交种纯度(英文).农业工程学报,2012,28(26):259-264.
    139.王润涛,张长利,房俊龙,王树文,杨方,田磊.基于机器视觉的大豆籽粒精选技术.农业工程学报,2011,27(08):355-359.
    140.王欣,谢锦春,韩东海,夏阿林,韩熹,陈英斌,叶华俊,王健.水果内部品质在线近红外分析仪的研制.现代科学仪器,2009,(06):11-13.
    141.王新忠,毛罕平,林伟明.基于YIQ彩色模型的成熟番茄图像分割识别.中国农业工程学会.农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第三分册.中国农业工程学会,2005.
    142.王银年.遗传算法的研究与应用[硕士毕业论文].江南大学,2009.
    143.王玉亮,刘贤喜,苏庆堂,王朝娜.多对象特征提取和优化神经网络的玉米种子品种识别.农业工程学报,2010,26(06):199-204,389.
    144.王中宇,付继华,孟浩,杨文平.基于灰色关联分析和区域生长的微小缺陷提取.农业机械学报,2008,39(12):166-169.
    145.文韬,洪添胜,李震,罗文辉,龙秀珍,陈海彬.基于机器视觉的橘小实蝇运动轨迹跟踪与数量检测.农业工程学报,2011,27(10):137-141.
    146.吴继华,刘燕德,欧阳爱国.基于机器视觉的种子品种实时检测系统研究.传感技术学报,2005,18(04):742-744.
    147.吴静珠,徐云.基于CARS-PLS的食用油脂肪酸近红外定量分析模型优化.农业机械学报,2011,42(10):162-166.
    148.吴瑞梅,岳鹏翔,赵杰文,黄星奕,陈全胜.特征变量筛选在近红外光谱测定绿茶汤中茶多酚的应用.农业机械学报,2011a,42(12):154-157,163.
    149.吴瑞梅,赵杰文,陈全胜,黄星奕.近红外光谱技术结合特征变量筛选快速检测绿茶滋味品质.光谱学与光谱分析,2011b,31(07):1782-1785.
    150.夏营威,徐大勇,堵劲松,张龙,刘勇,王安.基于机器视觉的烟叶面积在线测量.农业机械学报,2012,43(10):167-173.
    151.肖武,李小昱,李培武,冯耀泽,王为,张军.近红外光谱和机器视觉信息融合的土壤含水率检测.农业工程学报,2009,25(08):14-17.
    152.谢丽娟,刘东红,张宇环,徐惠荣,叶兴乾,应义斌.近红外光谱技术定量测定杨梅汁可溶性固形物.光谱学与光谱分析,2007,27(07):1332-1335.
    153.谢丽娟.转基因番茄的可见/近红外光谱快速无损检测方法[硕士毕业论文].浙江大学,2009.
    154.谢志勇,张铁中,赵金英.基于Hough变换的成熟草莓识别技术.农业机械学报,2007,38(03):106-109.
    155.徐惠荣,陈晓伟,应义斌.基于多元校正法的香梨糖度可见/近红外光谱检测.农业机械学报,2010,41(12):126-129,147.
    156.杨辉华,覃锋,王义明,罗国安.NIR光谱的Isomap-PLS非线性建模方法.光谱学与光谱分析,2009,29(02):322-326.
    157.杨庆华,刘灿,荀一,鲍官军,王志恒,黄鹏程.葡萄套袋机器人目标识别方法.农业机械学报,2013,44(08):234-239.
    158.杨仁杰,刘蓉,徐可欣.二维相关光谱结合偏最小二乘法测定牛奶中的掺杂尿素.农业工程学报,2012,28(06):259-263.
    159.杨蜀秦,宁纪锋,何东健.基于稀疏表示的大米品种识别.农业工程学报,2011,27(03):191-195.
    160.杨燕,聂鹏程,杨海清,何勇.基于可见-近红外光谱技术的蜜源快速识别方法.农业工程学报,2010,26(03):238-242.
    161.杨扬,曹其新,盛国栋,夏春风.基于机器视觉的育苗穴盘定位与检测系统.农业机械学报,2013,44(06):232-235.
    162.殷勇,陶凯,于慧春.基于机器视觉的苹果分级中特征参量选择方法.农业机械学报,2012,43(06):118-121,(12)7.
    163.殷哲,雷廷武,董月群.近红外土壤含水率传感器设计与试验.农业机械学报,2013,44(07):73-77,72.
    164.尹慧敏,吴文福,付瑶,张亚秋,刘兰涛.基于虚拟仪器的谷物成分近红外检测仪设计与试验.农业机械学报,2010,41(05):115-119.
    165.应义斌,付峰.水果品质机器视觉检测中的图像颜色变换模型.农业机械学报,2004,35(01):85-89.
    166.应义斌,景寒松,马俊福,蒋亦元,赵匀.黄花梨品质检测机器视觉系统.农业机械学报,2000,31(02):113-115.
    167.应义斌,景寒松,马俊福,赵匀,蒋亦元.黄花梨果形的机器视觉识别方法研究.农业工程学报,1999a,15(01):198-202.
    168.应义斌,景寒松,马俊福,赵匀,蒋亦元.机器视觉技术在黄花梨尺寸和果面缺陷检测中的应用.农业工程学报,1999b,15(01):203-206.
    169.应义斌,景寒松,马俊福.用计算机视觉进行黄花梨果梗识别的新方法.农业工程学报,1998,14(02):227-231.
    170.应义斌,饶秀勤,马俊福.柑橘成熟度机器视觉无损检测方法研究.农业工程学报,2004,20(02):144-147.
    171.应义斌,王剑平,蒋焕煜.水果直径和缺陷面积的机器视觉检测(英文).农业工程学报,2002,18(05):216-220.
    172.于修烛,张静亚,李清华,许春瑾,高锦明.基于近红外光谱的食用油酸价和过氧化值自动化检测.农业机械学报,2012,43(09):150-154,159.
    173.俞高红,赵匀,李革,史辉.基于机器视觉的蘑菇单体检测定位算法及其边界描述.农业工程学报,2005,21(06):101-104.
    174.虞晓娟,廖桂平,李锦卫,金晶.基于色度域划分的马铃薯绿皮检测方法.农业工程学报,2009,25(13):314-319.
    175.郁志宏,王栓巧,张平,贾超.应用改进遗传神经网络识别种蛋蛋形试验.农业工程学报,2009,25(10):340-344.
    176.詹文田,何东健,史世莲.基于Adaboost算法的田间猕猴桃识别方法.农业工程学报,2013,29(23):140-146.
    177.展慧,李小昱,王为,汪成龙,周竹,黄懿.基于机器视觉的板栗分级检测方法.农业工程学报,2010,26(04):327-331.
    178.展慧,李小昱,周竹,汪成龙,高云.基于近红外光谱和机器视觉融合技术的板栗缺陷检测.农业工程学报,2011,27(02):345-349.
    179.张宝,涂德浴,陈全胜.基于近红外光谱的豆酱鉴别技术研究.现代食品科技,2011,(04):486-489.
    180.张海云,王伟,赵松玮,刘巧巧,彭彦昆.基于近红外光谱的生鲜猪肉水分无损快速检测研究.中国农业工程学会(CSAE).中国农业工程学会2011年学术年会论文集.中国农业工程学会(CSAE),2011.
    181.张辉,吴迪,李想,石品艳,于思寒,冯凤琴,何勇.近红外光谱快速检测食用油必需脂肪酸.农业工程学报,2012,28(07):266-270.
    182.张建波,朱敏琛.基于监督学习的核拉普拉斯特征映射分类方法.福州大学学报(自然科学版),2011,39(01):49-53.
    183.张娟娟,田永超,姚霞,曹卫星,马新明,朱艳.基于近红外光谱的土壤全氮含量估算模型.农业工程学报,2012,28(12):183-188.
    184.张俊雄,武占元,宋鹏,李伟,陈绍江,刘金.玉米单倍体种子胚部特征提取及动态识别方法.农业工程学报,2013,29(04):199-203.
    185.张昆,洪添胜,代芬,尹令,代秋芳.基于人工神经网络的苹果糖度检测波长选取.中国农业工程学会.纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE2009)论文集.中国农业工程学会,2009.
    186.张巧杰,张军.基于小波变换的大米直链淀粉波长选择方法.农业机械学报,2010,41(02):138-142.
    187.张树明,杨阳,梁学军,李景明,倪元颖.葡萄酒发酵过程主要参数近红外光谱分析.农业机械学报,2013,44(01):152-156.
    188.张伟,屠康,刘鹏,潘磊庆,詹歌.基于机器视觉与敲击振动融合的鸭蛋孵化特性检测.农业机械学报,2012,43(02):140-145.
    189.张新伟,赵学观,张健东,焦维鹏,邵志刚,高连兴.基于数据融合的玉米种子内部机械裂纹检测方法.农业工程学报,2012,28(09):136-141.
    190.张亚静,Sakae Shibusawa,李民赞.基于机器视觉的番茄内部品质预测.农业工程学报,2010,26(14):366-370.
    191.张亚秋,吴文福,王刚.基于逐步改变阂值方法的玉米种子图像分割.农业工程学报,2011,27(07):200-204.
    192.张瑶,郑立华,李民赞,邓小蕾,王诗丛,张锋,冀荣华.基于光谱特征分析的苹果树叶片营养素预测模型构建.农业工程学报,2013,29(08):171-178.
    193.张志斌,罗锡文,臧英,厚福祥,徐晓东.基于颜色特征的绿色作物图像分割算法.农业工程学报,2011,27(07):183-189.
    194.张志强,牛智有,赵思明,余佳佳.基于机器视觉技术的淡水鱼质量分级.农业工程学报,2011a,27(02):350-354.
    195.张志强,牛智有,赵思明.基于机器视觉技术的淡水鱼品种识别.农业工程学报,2011b,27(11):388-392.
    196.赵吉文,高尚,魏正翠,汪洋.基于FPGA的西瓜子机器视觉色选系统.农业机械学报,2011,42(08):173-177,163.
    197.赵杰文,陈全胜,张海东,刘木华.近红外光谱分析技术在茶叶鉴别中的应用研究.光谱学与光谱分析,2006a,26(09):1601-1604.
    198.赵杰文,郭志明,陈全胜,吕强.近红外光谱法快速检测绿茶中儿茶素的含量.光学学报,2008a,28(12):2302-2306.
    199.赵杰文,郭志明,陈全胜.基于OSC/PLS的茶叶中EGCG含量的近红外光谱法测定.食品与生物技术学报,2008b,27(04):12-15.
    200.赵杰文,蒋培,陈全胜.雪莲花产地鉴别的近红外光谱分析方法.农业机械学报,2010,41(08):111-114.
    201.赵杰文,刘少鹏,邹小波,石吉勇,殷小平.基于支持向量机的缺陷红枣机器视觉识别.农业机械学报,2008c,39(03):113-115,147.
    202.赵杰文,刘少鹏,邹小波.基于机器视觉和支持向量机的缺陷枣识别研究.中国农业机械学会.农业机械化与新农村建设——中国农业机械学会2006年学术年会论文集(下册).中国农业机械学会,2006b:4.
    203.赵杰文,张燕华,陈全胜,黄林,许慧.光谱和成像融合技术检测猪肉中挥发性盐基氮.激光与光电子学进展,2012,49(06):184-189.
    204.郑冠楠,谭豫之,张俊雄,李伟.基于计算机视觉的马铃薯自动检测分级.农业机械学报,2009,40(04):166-168,156.
    205.郑世茶,毛罕平,胡波,张艳诚.机器视觉识别棉花病害中的形态特征提取.微计算机信息,2007,23(10):290-292.
    206.周超,欧阳爱国,吴继华,刘燕德.基于Matlab语言的杂交水稻品种的颜色特征.生物数学学报,2006,21(04):627-630.
    207.周平,赵春江,王纪华,郑文刚,孙忠富,文友先.基于机器视觉的鸡蛋体积与表面积计算方法.农业机械学报,2010,41(05):168-171,208.
    208.周庆锋.中国马铃薯淀粉产业发展报告.中国食品添加剂生产应用工业协会.第十一届中国国际食品添加剂和配料展览会学术论文集.中国食品添加剂生产应用工业协会,2007.
    209.周万怀,谢丽娟,应义斌.全光谱匹配算法在苹果分类识别中的应用.农业工程学报,2013,29(19):285-292.
    210.周竹,黄懿,李小昱,等.基于机器视觉的马铃薯自动分级方法.农业工程学报,2012a,28(7): 178-183.
    211.周竹,李小昱,高海龙,陶海龙,李鹏.漫反射和透射光谱检测马铃薯黑心病的比较.农业工程学报,2012b,28(11):237-242.
    212.周竹,李小昱,李培武,高云,展慧,刘洁.基于GA-LSSVM和近红外傅里叶变换的霉变 板栗识别.农业工程学报,2011,27(03):331-335.
    213.周竹,刘洁,李小昱,等.霉变板栗的近红外光谱和神经网络方法判别.农业机械学报,2009,40(S1):109-112.
    214.朱倩倩,管劼吴,李旷开,饶秀勤.小型西瓜果实内部糖度分布及其影响因素研究.食品安全质量检测学报,2012,3(06):661-666.
    215.朱韬.流形学习方法在图像处理中的应用研究[硕士毕业论文].北京交通大学,2009.
    216.朱伟兴,江辉,陈全胜,郭建光.梨可溶性固形物含量NIR与变量筛选无损检测.农业机械学报,2010,41(10):129-133.
    217.朱伟兴,江辉,陈全胜.特征波长筛选在近红外光谱测定梨硬度中的应用.农业工程学报,2010,26(08):368-372.
    218.朱咏莉,李萍萍,孙德民,毛罕平.醋糟有机基质含水率的可见/近红外光谱检测.农业机械学报,2010,41(09):178-181.
    219.邹小波,黄晓玮,石吉勇,陈正伟,张德涛.银杏叶总黄酮含量近红外光谱检测的特征谱区筛选.农业机械学报,2012,43(09):155-159.
    220.邹小波.计算机视觉、电子鼻和近红外光谱的苹果品质检测研究.江苏:江苏大学图书馆.2007
    221. Al-Mallahi A, Kataoka T, Okamoto H, Shibata Y. An image processing algorithm for detecting in-line potato tubers without singulation. Comput Electron Agr, 2010, 70(1):239-244.
    222. Almallahi A, Kataoka T, Okamoto H. Discrimination between potato tubers and clods by detecting the significant wavebands. Biosyst Eng, 2008, 100(3):329-337.
    223. Arcenegui V, Guerrero C, Mataix-Solera J. et al.The presence of ash as an interference factor in the estimation of the maximum temperature reached in burned soils using near-infrared spectroscopy. Catena, 2008, 74(3):177-184.
    224. Arefi A, Motlagh AM, Teimourlou RF. Wheat class identification using computer vision system and artificial neural networks. International Agrophysics, 2011,25(4):319-325.
    225. Arribas JI, Sanchez-Ferrero GV, Ruiz-Ruiz G. Leaf classification in sunflower crops by computer vision and neural networks..Computers and Electronics in Agriculture,2011,78(1):9-18.
    226. Atas M, Yardimci Y, Temizel A. A new approach to aflatoxin detection in chili pepper by machine vision. Computers and Electronics in Agriculture,2012, (87):129-141.
    227. Balaban MO, Chombeau M, Gumus B. Quality evaluation of Alaska pollock roe by image analysis. Part I:weight prediction. Journal of aquatic food product technology,2012,21(1/3): 59-71.
    228. Bias MR,Blanke M. Stereo vision with texture learning for fault-tolerant automatic baling. Computers and Electronics in Agriculture, 2011,75(1):159-168.
    229. Blasco J, Aleixos N, Gomez-Sanchis J. Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 2009, 103(2):137-145.
    230. Bossu J, Gcbe Ch, Jones G. Wavelet transform to discriminate between crop and weed in perspective agronomic images.Computers and electronics in agriculture, 2009,65(1):133-143.
    231. Camargo A, Smith JS. Image pattern classification for the identification of disease causing agents in plants.Computers and Electronics in Agriculture, 2009,66(2):121-125.
    232. Canaza-Cayo AW, Cozzolino D, Alomar D. A feasibility study of the classification of Alpaca (Lama pacos) wool samples from different ages, sex and color by means of visible and near infrared reflectance spectroscopy.Computers and Electronics in Agriculture, 2012, (88):141-147.
    233. Chang Chun Liu, Jai Tsung Shaw, Keen Yik Poong Classifying paddy rice by morphological and color features using machine vision. Cereal Chemistry, 2005,82(6):649-653.
    234. Chang YK, Zaman QU, Schumann AW. Development of color co-occurrence matrix based machine Vision algorithms for Wild blueberry fields. Applied Engineering in Agriculture, 2012, 28(3):315-323.
    235. Deck SH, Morrow CT, Heinemann P H, Comparison of a neural network and traditional classifier for machine vision inspection of potatoes.Applied engineering in agriculture, 1995,11(2): 319-326.
    236. Elvira FA, Ana GV, Guerrero Ginel J, Wubbels A, van der Sluis C, van der Meer J. Understanding factors affecting near infrared analysis of potato constituents. J Near Infrared Spec, 2006,14(1):27-35.
    237. Esehaghbeygi A, Ardforoushan M, Monajemi SAH. Digital image processing for quality ranking of saffron peach. International Agrophysics,2010,24(2):115-120.
    238. Faisal Ahmed, Al-Mamun HA, Bari A. Classification of crops and weeds from digital images: a support vector machine approach. Crop Protection,2012, (40):98-104.
    239. Fan Liangzhong, Liu Ying. Automate fry counting using computer vision and multi-class least squares support vector machine.Aquaculture,2013,380/383:91-98.
    240. Ge SS, Yang Y, Lee TH, Hand gesture recognition and tracking based on distributed locallyl inear embedding. Proceedings of IEEE conference on Robotics, Automation and Mechatronics,2006: 1-6.
    241. Granitto PM, Verdes PF, Ceccatto HA. Large-scale investigation of weed seed identification by machine vision. Computers and electronics in agriculture,2005,47(1):15-24.
    242. Grundy AC, Onyango CM, Phelps K. Using a competition model to quantify the optimal trade-off between machine vision capability and weed removal effectiveness. Weed Research, 2005,45(5):388-405.
    243. Guevara-Hernandez F, Gomez-Gil J. A machine vision system for classification of wheat and barley grain kernels.Spanish Journal of Agricultural Research,2011,9(3):672-680.
    244. Hiroshi Okamoto, Tetsuro Murata, Takashi Kataoka. Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biology and Management,2007,7(1):31-37.
    245. Hu Jing, Li Daoliang, Duan Qingling. Fish species classification by color, texture and multi-class support vector machine using computer vision.Computers and Electronics in Agriculture,2012, 88:133-140.
    246. Huang KuoYi.Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and electronics in agriculture,2007,57(1): 3-11.
    247. Huang, YJ, Lee, FF.Classification of Phalaenopsis plantlet parts and identification of suitable grasping point for automatic transplanting using machine vision. Applied Engineering in Agriculture,2008,24(1):89-99.
    248. Kang S, Lee KJ, Son JR. On-line internal quality evaluation system for the processing potatoes. ASABE Annual International Meeting 2008, Rhode Island.2008.
    249. Kang S, Son J, Choi W, Lee K, Lee H. Nondestructive detection of hollow heart in processing potatoes. Proceedings of 2004 CIGR International Conference,2004,2004:1-6.
    250. Khoshroo A, Keyhani A, Rafiee Sh. Pomegranate quality evaluation using machine vision. Acta Horticulturae,2009, (818):347-351.
    251. Komiyama S, Kato J, Honda H, Matsushima K. Development of sorting system based on potato starch content using visible and near-infrared spectroscopy. J Jpn Soc Food Sci,2007,57(6):304-309.
    252. Lefcout, AM, Kim, MS, Chen, YR Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: detection of feces on apples. Computers and electronics in agriculture, 2006,54(1):22-35.
    253. Li DaoLiang, Yang WenZhu, Wang SiLe Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine. Computers and Electronics in Agriculture,2010,74(2):274-279.
    254. Li XL, He Y, Wu CQ. Least square support vector machine analysis for the classification of paddy seeds by harvest year. Transactions of the ASAE,2008,51(5):1793-1799.
    255. Liu Y, Gamble G, Thibodeaux D. UV/visible/near-infrared reflectance models for the rapid and non-destructive prediction and classification of cotton color and physical indices. Transactions of the ASABE,2010,53(4):1341-1348.
    256. Lopez Granados, Francisca, Teresa Gomez Casero M, Pena Barragan, Jose M. Classifying Irrigated Crops as Affected by Phenological Stage Using Discriminant Analysis and Neural Networks. Journal of the American Society for Horticultural Science,2010,135(5):465-473.
    257. Mahesh S, Manickavasagan A, Jayas DS. Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes.Biosystems Engineering,2008,101(1):50-57.
    258. Manickavasagan A, Sathya G, Jayas DS. Comparison of illuminations to identify wheat classes using monochrome images.Computers and electronics in agriculture,2008,63(2):237-244.
    259. Marchant JA, Onyango CM, Street MJ. High speed sorting of potatoes using computer vision. ASAE Paper, No.883540,1988.
    260. Mathanker SK, Weckler PR, Bowser TJ. AdaBoost classifiers for pecan defect classification. Computers and Electronics in Agriculture,2011,77(1):60-68.
    261. Mebatsion HK, Paliwal J, Jayas DS. Automatic classification of non-touching cereal grains in digital images using limited morphological and color features. Computers and Electronics in Agriculture,2013,(90):99-105.
    262. Min TaiGi, Kang Woo Sik.Nondestructive classification between normal and artificially aged corn seeds using near infrared spectroscopy. Korean Journal of Crop Science, 2008, 53(3): 314-319.
    263. Min, TaiGi, Kang Woo Sik.Nondestructive classification of viable and nonviable radish seeds using single seed near infrared spectroscopy. Journal of the Korean Society for Horticultural Science,2008,49(1):42-46.
    264. Mohan LA, Karunakaran C, Jayas DS Classification of bulk cereals using visible and NIR reflectance characteristics. Canadian biosystems engineering,2005,47(0):7-14.
    265. Nakaji, Tatsuro, Noguchi, Kyotaro, Oguma, Hiroyuki Classification of rhizosphere components using visible-near infrared spectral images.Plant and Soil,2008,310(1/2):245-261.
    266. Nayar S, Nene S, and Murase H. Subspace methods for robot vision. IEEE Transactions on Robotics and Automation,1996,12(5):750-758.
    267. Nieuwenhuizen AT, Tang L, Hofstee JW. Colour based detection of volunteer potatoes as weeds in sugar beet fields using machine vision.Precision agriculture,2007,8(6):267-278.
    268. Niu XY, Yu HY, Ying YB. The application of near-infrared spectroscopy and chemometrics to classify Shaoxing wines from different breweries. Transactions of the ASAE, 2008, 51(4): 1371-1376.
    269. Noordam JC, Otten GW, Timmermans AJM, High seed potato grading and quality inspection based on a color vision system. Machine Vision Applications in Industrial Inspection, 2000, 3966(3):206-217.
    270. Safren O, Alchanatis V, Ostrovsky V. Detection of green apples in hyperspectral images of apple-tree foliage using machine vision. Transactions of the ASABE,2007,50(6):2303-2313.
    271.Piron A, Leemans V, Kleynen O. Selection of the most efficient wavelength bands for discriminating weeds from crop.Computers and electronics in agriculture,2008,62(2):141-148.
    272. Piron A, van der Heijden F, Destain MF. Weed detection in 3D images. Precision Agriculture, 2011,12(5):607-622.
    273. Pourreza A, Pourreza H, Abbaspour Fard MH. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture,2012,83: 102-108.
    274. Pydipati R, Burks TF, Lee WS. Identification of citrus disease using color texture features and discriminant analysis. Computers and electronics in agriculture,2006,52(1/2):49-59.
    275. Qiao J, Wang N, Ngadi MO, Singh B. Water content and weight estimation for potatoes using hyperspectral imaging. 2005 ASABE Annual International Meeting,2005, Tampa Florida.
    276. Zandonadi RS, Pinto FAC, Sena DG. Identification of Lesser Cornstalk Borer-attacked Maize Plants using Infrared Images.Biosystems Engineering,2005,91(4):433-439.
    277. Rossel RA. Viscarra, Chappell Caritat P. On the soil information content of visible-near infrared reflectance spectra.European Journal of Soil Science,2011,62(3):442-453.
    278. Rossel RA. Viscarra, Webster R. Discrimination of Australian soil horizons and classes from their visible-near infrared spectra.European Journal of Soil Science,2011,62(4):637-647.
    279. Saeed OMB, Sankaran S, Shariff ARM. Classification of oil palm fresh fruit bunches based on their maturity using portable four-band sensor system. Computers and Electronics in Agriculture, 2012, (82):55-60.
    280. Shin JS, Lee WS, Ehsani R. Postharvest citrus mass and size estimation using a logistic classification model and a watershed algorithm. Biosystems Engineering,2012,113(1):42-53.
    281. Slaughter DC, Obenland DM, Thompson JF. Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest biology and technology,2008, 48(3):341-346.
    282. Slaughter David C, Giles D Ken, Fennimore, Steven A. Multispectral machine vision identification of lettuce and weed seedlings for automated weed control.Weed technology,2008, 22(2):378-384.
    283. Solis Sanchez LO, Castaneda-Miranda R, Garcia Escalante JJ. Scale invariant feature approach for insect monitoring. Computers and Electronics in Agriculture,2011,75(1):92-99.
    284. Subedi PP, Walsh KB. Assessment of potato dry matter concentration using short-wave near-infrared spectroscopy. Potato Res, 2009, 52(1):67-77.
    285. Tao Y. Spherical transform of fruit images for online defect extraction of mass objects. Optical Engineering.1996, 35(2):344-350.
    286. Tenenbaum JB, Silva V, Langford JC. A Global Geometric Gramework for Nonlinear Dimensionality Reduction. Science,2000, (290):2319-1323
    287. Tony, Woodcock, Gerard Downey. Confirmation of Declared Provenance of European Extra Virgin Oiive Oil Samples by NIR Spectroscopy.Journal of Agricultural and Food Chemistry, 2008,56(23):11520-11525.
    288. Unay D, Gosselin B, Kleynen O. Automatic grading of Bi-colored apples by multispectral machine vision. Computers and Electronics in Agriculture,2011,75(1):204-212.
    289. Xiao Chen, Yi Xun, Wei Li. Combining discriminant analysis and neural networks for corn variety identification.Computers and Electronics in Agriculture,2010, (71):48-53.
    290. Xiaobo Z, Jiewen Z, Yanxiao L. Objective quality assessment of apples using machine vision, NIR spectrophotometer, and electronic nose. Transactions of the ASABE, 2010, 53(4): 1351-1358.
    291. Xu Liming, Zhao Yanchao. Automated strawberry grading system based on image processing.Computers and Electronics in Agriculture,2010,71(SUPPL.1):S32-S39.
    292. Zhang Y, Slaughter DC. Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress. Computers and Electronics in Agriculture, 2011,77(1): 95-104.
    293. Zhao Juan, Cheng XiaoPing. Field pest identification by an improved Gabor texture segmentation scheme. New Zealand Journal of Agricultural Research,2007,50(5):719-723.
    294. Zhou L, Chalana V, Kim Y. PC-based machine vision system for real-time computer-aided potato inspection. International Journal of Imaging Systems and Technology,1998,9 (6):423-433.
    295. Zhu L, Zhu SA. Face Recognition Based on Extended Locally Linear Embedding. Proceeding of IEEE Conference on Industrial Electronics and Application,2006:1-4.
    296. Zion B, Alchanatis V, Ostrovsky V. Real-time underwater sorting of edible fish species. Computers and electronics in agriculture,2007,56(1):34-45.
    297. Freeman H. On the encoding of arbitrary geometric configurations, IRE Transactions on Electronic Computers,1961, (10):260-268.
    298. Bribiesca E. A new chain code, Pattern Recognition, 1999,32:235-251.
    299. Sanchez Cruz H, Rodriguez Dagnino RM. Compressing bi-level images by means of a 3-bit chain code. Optical Engineering, 2005,44 (9):1-8.
    300. Liu YK, Zalik B, An efficient chain code with Huffman coding, Pattern Recognition,2005,38 (4): 553-557.
    301. Bracewell RN. The Fourier Transform and Its Applications, 3rd ed, Boston, McGraw Hill, 2000.
    302. Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005, (1):886-893.
    303. Lowe David G. Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision. 1999,1150-1157.
    304. Lowe DG Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004,60(2):91-110.
    305. Belongie S, Malik J. Matching with Shape Contexts. IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL-2O00).2000.
    306. Bergstra James, Bengio Yoshua. Random Search for Hyper-Parameter Optimization. J. Machine Learning Research, 2012,(13):281-305.
    307. Eiben AE. Genetic algorithms with multi-parent recombination. PPSN III:Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature, 1994:78-87.
    308. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks IV.1995:1942-1948.
    309. GuoSheng Hu, FengFeng Zhu, Zhen Ren. Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines. Expert Systems with Applications,2008,35(1-2):143-149.
    310. Corinna Cortes, V Vapnik. Support vector networks. Machine Learning, 1995,20.
    311. Chang CC, Lin CJ. LIBSVM:a library for support vector machines. ACM Transactions on Intelligent Systems and Technology,2011,2(27):1-27.
    312. Farid H, Simoncell EP. Differentiation of discrete multi-dimensional signals, IEEE Trans Image Processing,2004,13(4):496-508.
    313. Tenenbaum JB, Silva V, Langford JC. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science.2000,290(5500):2319-2323
    314. Sam Roweis, Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,2000,290(5500):2323-2326.
    315. Warmuth MK, Kuzmin D. Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension. Journal of Machine Learning Research.2008, (9):2287-2320
    316. Borg I, Groenen P. Modern Multidimensional Scaling: theory and applications. New York: Springer-Verlag.2005:207-212
    317. Li Hongdong, Liang Yizeng, Xu Qingsong, Cao Dongsheng. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta,2009,648(1):77-84.
    318. Araujo MCU, Saldanha TCB, Galvao RKH, Yoneyama T, Chame HC, Visani V, The Successive Projections Algorithm for variable selection in spectroscopic multicomponent. Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.
    319. Galvao RKH, Araujo MCU, Fragoso WD, Silva EC, Jose GE, Soares SFC, Paiva HM. A Variable Elimination Method to Improve the Parsimony of MLR Models Using the Successive Projections Algorithm. Chemometrics and Intelligent Laboratory Systems,2008,92(1):83-91.
    320. Galvao RKH, Araujo MCU, Jose GE, Pontes MJC, Silva EC, Saldanha TCB. A method for calibration and validation subset partitioning. Talanta,2005,67:736-740.
    321. Dempster AP. Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics,1967,38 (2):325-339.
    322. Shafer Glenn. A Mathematical Theory of Evidence, Princeton University Press,1976
    323. Freund Yoav, Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. Journal of Computer and System Sciences,1997,55(1):119-139.
    324. Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization, Annals of Statistics 2004,32(1):56-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700