用户名: 密码: 验证码:
不同耕作模式下“小麦/玉米/大豆”套作农田碳平衡特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变化的加剧,减缓温室气体的排放势在必行。陆地生态系统碳循环研究是全球变化研究的热点问题,而农田生态系统是陆地生态系统中最活跃的部分,如何采取有效措施实现农田生态系统的固碳减排成为目前亟待解决的问题之
     一。以垄作和秸秆覆盖为主体的保护性耕作是西南紫色土丘陵区控制水土流失、改善土壤肥力、抗御季节性干旱灾害、实现农田高产稳产的重要途径,开展保护性耕作条件下农田生态系统碳循环规律与碳汇机制研究,对于应对全球气候变化、改善农业生态环境、增进土地可持续生产能力具有十分重要的理论意义和指导价值。本文通过2个生产年度大田试验的实测资料,结合农田生态系统碳源/汇模型,在重庆北碚西南大学试验农场对传统耕作(traditional tillage, T)、垄作(ridge tillage,R)、传统耕作+秸秆覆盖(traditional tillage+straw mulching, TS)、垄作+秸秆覆盖(ridge tillage+straw mulching, RS)、传统耕作+秸秆覆盖+秸秆速腐剂(traditional tillage+straw mulching+decomposing inoculants, TSD)、垄作+秸秆覆盖+秸秆速腐剂(ridge tillage+straw mulching+decomposing inoculants, RSD)6个处理下的西南紫色土丘陵区“小麦/玉米/大豆”三熟农作制度下农田生态系统碳循环规律进行了研究。从作物固碳、土壤排碳以及土壤碳储量角度分析了3种农作物和不同耕作措施对农田碳收支的影响,以土壤-作物系统为边界估算了作物生长季对大气二氧化碳的贡献,同时考虑农田投入造成的碳排放,综合评价以垄作和秸秆覆盖为主的保护性耕作措施下“旱三熟”农田系统的碳固定、碳排放与净碳汇。主要研究结果如下:
     (1)在西南“旱三熟”套作模式下中各作物固碳总量表现为小麦<玉米<大豆,3种作物固碳量占整个系统年固碳总量的比例分别为20.29%、21.29%和58.42%。每种作物在不同生育期表现了不同的固碳速率,呈现出增加—减少—再增加—再减少的“比双峰型”趋势,峰值位置因作物不同而不同,在到达成熟期以后固碳速率由正值变为负值。不同耕作措施对作物固碳速率的影响不显著,但是显著影响固碳总量。T、R、TS、RS、TSD和RSD6个处理下3种作物的年固碳总量分别为39312.250、4375.201、47948.284。47049.809、46518.365和49512.140kg·hm-2,与对照相比,R、TS、RS、TSD和RSD处理下的年固碳总量分别增加了11.29%、21.97%、19.68%、18.33和25.95%。以垄作和秸秆覆盖为主的保护性耕作有利于作物固定更多的碳。
     (2)各作物生长季农田土壤呼吸日均值表现为小麦<玉米<大豆,3种作物土壤呼吸量占土壤呼吸总量的比例分别为16.17%~16.34%、30.48%-33.64%和15.28%~16.35%。在不同耕作方式下,小麦-大豆(w-s)条带土壤呼吸特征表现为T     土壤温度和土壤水分是影响旱地农田土壤呼吸的主要因素,二者分别解释了土壤呼吸季节变化的28.9%~53.7%和13.7%~42.0%。水热因子与土壤呼吸速率的回归分析表明,指数方程较好地模拟了土壤呼吸与10cm土温的关系,土壤呼吸的温度敏感性指标Q10值在2.25~2.69之间;而土壤呼吸与5cm土壤水分的关系以抛物线型函数模拟最优。土壤呼吸对土壤水分的响应阈值为14.94%。土壤动物在土壤呼吸中的作用不容忽视。在小麦农田生态系统中优势类群有弹尾目和螨目,它们与土壤呼吸表现出一定的相关性,其中以对照处理和垄作下相关性高,而有秸秆覆盖的处理土壤呼吸与土壤动物没有明显的相关性。在玉米农田生态系统中优势类群有弹尾目、螨目和双翅目。垄作减少了土壤动物数量,秸秆覆盖有助于土壤动物数量的增加和土壤动物多样性的提高。地表活动的土壤动物越多,土壤呼吸作用就越强,其中处理R的相关系数最高,r=1.000,p=0.017,处理TS的相关系数r=0.915,p=0.029。本研究中,在垄作、秸秆覆盖条件下土壤呼吸仅与活动在地表的土壤动物数量存在一定的关系;而传统耕作下土壤动物数量与土壤呼吸没有明显的关系。在大豆农田生态系统中优势动物类群有弹尾目、螨目和双翅目,干漏斗法、陷阱法捕获的土壤动物与土壤呼吸均无显著相关性,两种方法所得土壤动物数量加总与土壤呼吸进行相关分析,发现处理T相关性达显著水平,r=0.901,p=0.037。
     (3)土壤总碳和各活性碳组分的相互关系研究结果表明:土壤团聚体对不同作物的响应不同,种植玉米有利于土壤水稳性微团聚体的形成。团聚体质量分数受耕作措施和种植作物的双重影响。在20cm的耕层土壤中,5~10cm土层土壤团聚体易受秸秆覆盖的影响。空地-玉米-空地条带的固碳潜力显著高于小麦-大豆条带,充分说明了土壤固碳潜力受到耕作措施和种植作物的双重影响。考虑到土壤团聚体对耕作和作物的不同响应规律,应该加大秸秆覆盖面积,将玉米纳入到种植模式中将有利于土壤的固碳作用。土壤活性有机碳含量在不同保护性耕作措施下差异较大,颗粒有机碳、水溶性有机碳、易氧化有机碳、可矿化有机碳与微生物量有机碳对垄作和秸秆覆盖措施的响应趋势基本一致,大体表现为对垄作处理不敏感,而受秸秆覆盖的影响较大,且差异主要出现在0~5cm土层中。其中颗粒有机碳占总有机碳的35.74%~49.66%,二者显著正相关,均可以作为反映土壤有机碳变化的敏感指标。水溶性有机碳约占土壤总有机碳的0.2%,不同处理间的差异不显著,不具有敏感性。易氧化有机碳占土壤总有机碳的比例为6.29%~8.20%,虽然垄作和秸秆覆盖有利于提高土壤中的易氧化有机碳含量,但是易氧化有机碳占总有机碳的比例在垄作处理下增加而在秸秆覆盖中减少,表明秸秆覆盖有利于土壤有机碳的稳定,垄作则刚好相反。
     (4)农田生态系统碳源/汇特征与设定的系统边界和研究的时空尺度紧密相关,不管是土壤-作物系统还是考虑了人类活动的农田生态系统,均表现为碳汇在作物不同生育期根系呼吸所占比例不同,随着作物生长该比例先升后降。小麦、玉米和大豆田土壤-作物系统碳源/汇规律表现一致,除了在作物生长初期和成熟期表现为碳源特征外其余时间均为碳汇,且R、TS、RS、TSD和RSD处理均高于对照,因此以垄作和秸秆覆盖为主的保护性耕作能显著提高农田生态系统土壤-作物系统的碳汇能力,增汇幅度高达9.93%~30.67%。在耕作方式从传统耕作向保护性耕作转变的过程中,秸秆覆盖措施虽然增加了土壤碳的积累,但是也增加了农田投入碳的排放,综合考虑后表现为大气二氧化碳的“源”。垄作处理不仅减少土壤碳的积累也增加了农田投入碳的排放,同样表现为大气二氧化碳的“源”。作物固碳、土壤呼吸和人类活动对农田生态系统碳固定能力的影响最终体现在土壤有机碳含量的变化上。从长远来看,3个处理的净碳释放量均为正值,即三者均为大气二氧化碳的排放“源”,源强度大小依次为垄作>传统耕作>秸秆覆盖。耕作方式的转变导致的碳累积效应被证明只在一段时间内有效,最终都会达到一个碳累积速率为零的稳定状态。在耕作方式改变的初期土壤碳库会发生变化,而农田投入的碳释放量基本稳定,因此依靠改善农业耕作管理措施增强农固碳减排的潜力还很大。
With the intensification of global change, mitigation of greenhouse gas emissions is imperative. Terrestrial ecosystem carbon cycle is the hot issue of global change research. Agricultural ecosystems are the most active part of terrestrial ecosystems. How to take effective measures to achieve the reduction in farmland ecosystem carbon sequestration has become one of the issues currently solved. Conservation tillage with straw mulching and ridge planting as a mainstay is an important approach to control soil erosion, to improve soil fertility, to guard against seasonal drought and to increase crop productivity in purple hilly regions in southwest China. The research on rules of carbon cycle and mechanism of carbon sink in farmland ecosystems under conservation tillage is of important theoretical significance and practical values for responding to global climate changes, improving agro-ecological environment and promoting sustainable land productivity. In this paper, data in field experiments during two production year had been measured, and farmland ecosystem carbon source/sink model was combed for study on laws of carbon budget in the triple intercropping system of wheat/corn/soybean in purple hilly regions of southwest China. There were six treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage+straw mulching), RS (ridge tillage+straw mulching), TSD (traditional tillage+straw mulching+decomposing inoculants), and RSD (ridge tillage+straw mulching+decomposing inoculants), which were replicated for three times. Form carbon sequestration of crop, soil carbon emissions and soil carbon storage point of view on the effects of three different crops and different farming practices to the carbon cycle. The contribution of atmospheric carbon dioxide from the soil-crop system was estimated in crop growing season. Then considering carbon emissions caused by agricultural inputs, carbon sequestration, carbon emission and net carbon sink was comprehensive evaluated in dry-farmland system under conservation tillage. The main results were as follows:
     1. The total carbon sequestration of crop was wheat     2. The daily average soil respiration rate of each crop was wheat     The experiment also shows that soil temperature and soil moisture content were the two major factors affecting soil respiration, explaining28.9%-53.7%and13.7%-42%of its seasonal variation. Regression analysis of the relationship between soil respiration and soil hydrothermal factors reveals that exponential equation (Rs=0.3lle0.095T) fits well the relationship between soil respiration and soil temperature at10cm in soil depth and the temperature sensitivity index (Q10) of soil respiration was2.25-2.69. However, the relationship between soil respiration and soil moisture content can be best described with a parabolic function. The threshold of soil moisture soil respiration responds to was14.94%. The dominant groups of soil animals were Collembola and Acarina, which were correlated with soil respiration to some extent. The correlation was high under the treatments of T and R, being ranged within0.669-0.921, whereas there was no remarkable correlation under the other treatments. The dominant groups of soil animals in maize field were Collembola, Acarina and Diptera. Compared to the control, ridge tillage reduced the number of soil animals, but straw mulching increased it and improved the index of soil animal diversity. This indicated that soil tillage patterns had great impact on soil animals. Soil respiration was only related with the animals above soil surface. The more was the amount of animals being active above soil surface, the stronger was the soil respiration. In all the treatments, the correlation coefficient of R was the highest (r=1.000, p=0.017), followed by TS (r=0.915, p=0.029). However there was no remarkable relationship between soil animals and soil respiration under traditional tillage. The dominant groups of soil animals in the soybean farmland were Collembola, Acarina and Diptera. There was no significant relationship between soil respiration and soil animals captured by tullgren apparatus and pitfall traps method. The correlation coefficient under T was significant, being r=0.901, p=0.037, when added together two methods for soil animals.
     3. Soil aggregates on the response of different crops were different. It told that planting corn was beneficial to the formation of soil water-stable micro-aggregates. Soil aggregates and organic carbon content were influenced by tillage and planting crops. Straw mulching treatment significantly increased soil organic carbon content in local soil and each particle aggregate both in0-5cm and5-10cm soil layers. The annual change of aggregate indicated that traditional tillage increased water-stable micro-aggregates of organic carbon content, while straw mulching treatment significantly increased organic carbon content of local soil and each particle size aggregate in every soil layers. In the5-10cm soil layer the soil organic carbon content increased slightly, indicating that this soil layer greatly influenced by straw mulching treatment. By estimating the carbon sequestration potential discovered that soil carbon sequestration potential was greater in corn belt than that in wheat-soybean belt. Straw mulching could improve soil carbon sequestration potential and reasonable arrangement of crops also helped enhance the carbon sequestration capacity. It played an important role in soil carbon sequestration and emission reduction by selective planting crops in straw mulching treatment. It suggested that changes in response to TC, POC, DOC, ROC and MBC on tillage measures were consistent:there was no significant response to R treatment but greatly influenced by the straw mulching treatment. The proportion of POC in TC was35.74%-49.66%and there was significant positive correlation between the two. So POC can be used as a sensitive index to reflect the change of soil organic carbon. Water-soluble organic carbon in soil organic carbon accounted for about0.2%, the difference between the different treatments was not significant. So it had no sensitivity. Easily oxidized organic carbon in soil organic carbon in the proportion accounted for6.29%-8.20%. Although the proportion of ridge and straw mulching treatment help improve easily oxidized organic carbon in soil organic carbon, but the proportion in TOC was smaller in ridge tillage treatment than in straw mulching treatment. It was indicated that straw mulching treatment help stabilize the soil organic carbon.
     4. There was a closely relationship between the farmland ecosystem carbon source/sink system characteristics and setting boundaries and spatial and temporal scales. The results showed that the regardless of soil-crop system or the farmland ecosystems of consideration with human activities were expressed as carbon sinks. The proportion of root respiration in total soil respiration was different in different crops at different growth stages. With the crop growing the proportion was first increased and then decreased. The soil-crop system carbon source/sink law consistent performance in wheat, corn and soybean fields. It was carbon source in the initial crop growth and maturity stage but in the rest of the time it was carbon sink. The carbon sequestration in R, TS, RS, TSD and RSD treatments was higher than the control. As a result, the ridge and straw mulch-based conservation tillage can significantly improve farmland ecosystem soil-crop system carbon sink capacity, increasing as much as9.93%-30.67%. In the course of tillage from conventional tillage to conservation tillage of change, despite there was an increased in soil carbon accumulation in straw mulching, but it was also increased carbon emissions from investment in agricultural system. It was also considered the performance of atmospheric carbon dioxide "source." Ridge tillage treatment not only made the accumulation of carbon in the soil reduced but also increased carbon emissions of the investment in agricultural system, so it was performance as the carbon dioxide "source". It was proved that it was valid only for a period of time the cumulative effect of changes in carbon form farming practice changes. It would eventually reach a steady state which there was no carbon accumulation rate. The changes of soil carbon stock would occur in farming practices when it happend initial changes, while carbon emission was stable from agricultural inputs. Therefore it was great to improve farm to enhance carbon sequestration and emission reduction potential relying on farming management practices.
引文
[1]IPCC气候变化2007:综合报告.政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告,2007
    [2]张蕾,蔡志强,牛利民.低碳经济与我国农村发展.生态经济,2010(9):73-76
    [3]Genthon C, Barnola J M, Raynaud D, Lorius C, Jouzel J, Barkov N I, Korotkevich Y S, Kotlyakov V M. Vostok ice core:Climatic response to CO2 and orbital forcing changes over the last climatic cycle.Nature,1987,329:414-418
    [4]孙振钧,周东兴.生态学研究方法.北京:科学出版社,2010:17
    [5]严力蛟.中国生态农业.北京:气象出版社,2003:20-22
    [6]张志强,孙成权.全球变化研究十年新进展.科学通报,1999,44(5):464-477
    [7]赵荣钦,黄爱民,秦明周,杨浩.中国农田生态系统碳曾汇/减排技术研究进展.河南大学学报(自然科学版),2004,34(1):60-65
    [8]林而达.气候变化语农业可持续发展.北京:北京出版社,2001,1-32
    [9]杨林章,孙波.中国农田生态系统养分循环与平衡及其管理.北京:科学出版社,2008:12-13
    [10]罗怀良.川中丘陵地区近55年来农田生态系统植被碳储量动态研究—以四川省盐亭县为‘例.自然资源学报,2009,24(2):251-258
    [11]Johnson J M F, Allmaras R R, and Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grainyield database.Agronomy Journal,2006, 98(3):622-636
    [12]赵荣钦,秦明周.中国沿海地区农田生态系统部分碳源/汇时空差异.生态与农村环境学报,2007,23(2):1-6,11
    [13]覃章才,黄耀.基于模型的农田土壤固碳潜力估算.中国科学:生命科学,2010,40(7):658-676
    [14]魏小波,何文清,黎晓峰,刘恩科,刘爽.农田十壤有机碳固定机制及其影响因子研究进展.中国农业气象,2010,31(4):487-494
    [15]王永强,崔凤娟,郭小刚.农田生态系统土壤呼吸文献综述.内蒙古农业科技.2010(3):65-67
    [16]韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望.植物生态学报,2008,32(3):719-733
    [17]陈述悦,李俊,陆佩玲,王迎红,于强.华北平原麦田土壤呼吸特征.应用生态学报,2004,15(9):1552-1560
    [18]赵荣钦,刘英,丁明磊,焦士兴.河南省农田生态系统碳源汇研究.河南农业科学,2010,7:40-44
    [19]Lai R, Bruce J P. The potential of world crop land soil to sequester sand mitigate the greenhouse effect. Environmental Science & Policy,1999,2 (2):177-185
    [20]Lai R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment.Soil Tillage Research,1997,43:81-107
    [21]Cole C V. Agricultural options for mitigatio n of greenhouse gas emission. Climate Change Impacts, Adaptations and Mitigation of Climate Change:Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,1996:1-27
    [22]韩冰,王效科,逯非,段晓男,欧阳志云.中国农田土壤生态系统固碳现状与潜力.生态学报,2008,28(2):612-619
    [23]West T O, Mar land G A. Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture:comparing tillage practices in the United States. Agriculture, Ecosystems and Environment,2002(91):217-232
    [24]骆亦其,周旭辉,姜丽芬.北京:土壤呼吸与环境.高教出版社,2007
    [25]Feller C, Bernoux M. Historical advances in the study of global terrestrial soil organic carbon sequestration.Waste Management,2008, (28):734-740
    [26]Piao S L, Fang J L, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. The carbon balance of terrestrial ecosystems in China. Nature,2009,458:1009-1013
    [27]Le Quere C, Raupach M R, Canadell J G, Marland G. Trends in the sources and sinks of carbon dioxide. Nature Geoscieces,2009,2:831-836
    [28]张国盛,黄高宝,Chan Y N农田土壤有机碳固定潜力研究进展.生态学报,2005,25(2):351-357
    [29]吴建国.土地利用变化对十壤有机碳的影响:[博士学位论文].北京:中国林业科学研究院森林生态研究所,2002
    [30]Raich J W, Schelesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus,1992,2(44):81-99
    [31]黄承才,葛滢,常杰,卢蓉,徐青山.中亚热带东部三种主要木本群落土壤呼吸的研究.生态学报,1999,19(3):324-328.
    [32]王兵,姜艳,郭浩,赵广东,白秀兰.土壤呼吸及其三个生物学过程研究.土壤通报,2011,42(2):483-489
    [33]Kelting D L,Burger J A,Edwards G S.Estimating root respiration, microbial respiration in the rhizosphere,and root-free soil respiration in forest soils.Soil Biology and Biochemistry,1998,30(7):961-968
    [34]Kuzyakov Y. Separating microbial respiration of exudates from root respiration in non-sterile soils:a comparison of four methods. Soil Biology and Biochemistry,2002,34(11):1621-1631
    [35]曹裕松,李志安,江远清,丁思统.陆地生态系统土壤呼吸研究进展.江西农业大学学报,2004,26(1):138-143
    [36]Wiant, Harry V. Has the contribution of litter decay to forest "soil respiration" been overestimated. Forestry,1967,65:408-409
    [37]孟凡乔,关桂红,张庆忠,史雅娟,屈波,况星.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26(6):992-999
    [38]王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究.土壤肥料,2002,6:13-17
    [39]刘爽,严吕荣,何文清,刘勤.不同耕作措施下旱地农田土壤呼吸及其影响因素.生态学报,2010,30(11):2919-2914
    [40]闫美杰,时伟宇,杜盛.土壤呼吸测定方法述评与展望.水土保持研究,2010,17(6):148-153
    [41]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17(5):469-476
    [42]严俊霞,秦作栋,张义辉,李洪建.土壤温度和水分对油松林土壤呼吸的影响.生态学报,2009,29(12):6366-6376
    [43]宋理洪,武海涛,吴东辉.我国农田生态系统土壤动物生态学研究进展.生态学杂志,2011,30(12):2898-2906
    [44]王移,卫伟,杨兴中,陈利顶,杨磊.我国土壤动物与土壤环境要素相互关系研究进展.应用生态学报,2010,21(9):2441-2448
    [45]Bokhorst S, Huiskes A, Convey P, van Bodegom P M, Aerts R. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology & Biochemistry,2008,40(7):1547-1556
    [46]Convey P, Pugh P J A, Jackson C, Murray A W, Ruhland C T, Xiong F S, Day T A. Response of antarctic terrestrial microarthropods to long-term climate manipulations. Ecology,2002,83(11): 3130-3140
    [47]Kardol P, Reynolds W N, Norby R J, Classen A T. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology,2011,47(1):37-44
    [48]刘继亮,李锋瑞,牛瑞雪,刘长安,刘七军.黑河中游干旱绿洲土壤盐渍化对大型土壤动物群落的影响.应用生态学报,2012,23(6):1551-1561
    [49]孙贤斌,刘红玉,李玉成,张小平.重金属污染对土壤动物群落结构及空间分布的影响.应用生态学报,2007,18(9):2080-2084
    [50]林恭华,赵芳,陈桂琛,陈生云,苏建平,张同作.青海湖北岸不同土地利用方式对大型土壤动物群落的影响.草业学报,2012,21(2):180-186
    [51]吴玉红,蔡青年,林超文,赵欣,程序.四川紫色土丘陵区不同土地利用方式下中型土壤动物群落结构.生态学杂志,2009,28(2):277-282
    [52]朱强根.黄淮海平原土壤节肢动物对耕作和施肥的响应:[博士学位论文].南京:南京林业大学,2010
    [53]Scheu S, Schulz E. Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity and. Conservation,1996,5(2):235-250
    [54]Parrent J L, Morris W F, Vilgalys R. CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology,2006,87(9):2278-2287
    [55]张志丹,董炜华,魏健,盖玉红.土壤动物学研究进展.中国农学通报,2012,28(29):242-246
    [56]张海林,孙国峰,陈继康,陈阜.保护性耕作对农田碳效应影响研究进展.中国农业科学,2009,42(12):4275-4281
    [57]吴金水,童成立,刘守龙.亚热带和黄士高原区耕作土壤有机碳对全球气候变化的响应.地球科学进展,2004,19(1):131-137
    [58]West T O, Six J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climate Change.2007,80:25-41
    [59]Blanco-Canqui H, Lai R. No tillage and soil profile carbon sequestration:an on farm assessment. Soil Science Society of American Journal,2008,72:693-701
    [60]Hermle S, Anken T, Leifeld J, Weisskopf P. The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. Soil Tillage Research,2008,98:94-105
    [61]王成己,潘根兴,田有国,李恋卿,张旭辉,韩晓君.不同施肥下农田表土有机碳含量变化分析:基于中国农业生态系统长期试验资料.中国科学:生命科学,2010,40(7):650-657
    [62]Canadell J G, Mooney H A, Baldocchi D D, Berry J A, Ehleringer J R, Field C B, Gower S T, Hollinger D Y, Hunt J E, Jackson R B, Running S W, Shaver G R, Steffen W, Trumbore S E, Valentini R, Bond B Y. Carbon metabolism of the terrestrial biosphere:A multitechnique approach for improved understanding. Ecosystems,2000,3:115-130
    [63]Ogle S M, Breidt F J, Eve M D, Paustian K. Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Global Change Biology,2003,9:1521-1524.;
    [64]Vandenbygaart A J, Gregorich E G, Angers D A, et al. Uncertainty analysis of soil organic carbon stock change in Canadian cropland from 1991 to 2001. Global Change Biology,2004, 10:983-994
    [65]李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定与固碳潜力分析.土壤学报,2006,43(1):46-52
    [66]韩广轩,周广胜,许振柱.玉米农田生态系统土壤呼吸作用季节动态与碳收支初步估算.中国生态农业学报,2009,17(5):874-879
    [67]Nyborg M, Solberg E D, Malhi S S, et al. Fertilixation N, crop residue, and tillage alter soil C and N content in a decade. In:Lai R, Kimble J, Levine E and Steward B A. Soil Management and Greenhouse Effect:Advance in Soil Science. Lewis Publisher, CRC Press,1995:93-100
    [68]李小刚,崔志军,王玲英.施用秸秆对土壤有机碳组成和结构稳定性的影响.土壤学报,2002,39(3):421-428
    [69]金琳,李玉娥,高清竹,刘运通,万运帆,秦晓波,石锋.中国农田管理土壤碳汇估算.中国农业科学,2008,41(3):734-743
    [70]逢蕾,黄高宝.不同耕作措施对旱地土壤有机碳转化的影响.水土保持学报,2006,20(3):110-113
    [71]高飞,贾志宽,张鹏,王维,路文涛,杨宝平,李永平.秸秆覆盖对宁南旱作农田活性有机质及碳库管理指数的影响.干旱地区农业研究.2011,29(3):107-112
    [72]蔡立群,齐鹏,张仁陟.不同保护性耕作措施对麦-豆轮作土壤有机碳库的影响.中国生态农业学报,2009,17(1):1-6
    [73]Li C S, Frolking S, Grocker G J, Grace P R, Klir J, Korchens M, Poulton P R. Simulating trends in soil organic carbon in long-term experiments using the DNDC model.Geoderma,1997, 81:45-60
    [74]韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力.农村生态环境,2005,21(4):6-11
    [75]王立刚,邱建军,马永良.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响.中国农业大学学报,2004,9(6):15-19
    [76]邱建军,王立刚,李虎,唐华俊,changsheng Li, Eric Van Ranst农田土壤有机碳含量对作物产量影响的模拟研究.中国农业科学,2009,42(1):154-161
    [77]王淑芳,王效科,欧阳志云.密云水库上游地区农田土壤有机碳储量及变化模拟.生态环境学报,2009,18(5):1923-1928
    [78]潘根兴,李恋卿,郑聚峰,张旭辉,周萍.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题.土壤学报,2008,45(5):901-914
    [79]高秀文.华北高产粮区土壤温室气体排放及碳氮平衡研究:[硕士学位论文].北京:中国农业大学,2003
    [80]马玉芳.基于DNDC模型的不同耕作措施下农田士壤碳循环模拟研究:[硕土学位论文].甘肃:甘肃农业大学,2011:4-5
    [81]周萍,潘根兴,李恋卿,张旭辉.南方典型水稻土长期试验下有机碳积累机制:碳输入与土壤碳固定.中国农业科学,2009,42(12):4260-4268
    [82]Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive Production Practices.Nature,2000,418:671-677
    [83]Coleman D C,Crossley D A.Fundamentals of soil ecology.Academic Press, San Diego,CA,USA,1996
    [84]Kuzyakov Y, Domanski G. Carbon input by Plants into the soil Review.Plant Nutrient and soil Science,2000,163:421-431
    [85]Zhang W, Feng J, Parker K. Differences in soil microbial biomass and activity for six Agroecosystems with a management disturbance gradient.PedosPhere,2004,14(4):441-417
    [86]FAO. Conservation Agriculture. Rome,2002.
    [87]刘巽浩.农作学.北京:中国农业大学出版社,2005.
    [88]高焕文,李问盈,李洪文.中国特色保护性耕作技术.农业工程学报,2003.19(3):1-4
    [89]王小彬,蔡典雄,华珞,Hoogmoed W B,Oenema O,Perdok U D土壤保持耕作—全球农业可持续发展优先领域.中国农业科学,2006,39(4):741-749
    [90]高旺盛.论保护性耕作技术的基本原理与发展趋势.中国农业科学,2007,40(12):2702-2708
    [91]Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre K D, Dixon J, Dendooven L.Conservation agriculture and soil carbon sequestration:between myth and farmer reality.Critical Reviews in Plant Sciences,2009,28,(3):97-122
    [92]D'haene K, Sleutel S, Neve S D, Gabriels D, Hofman G. The effect of reduced tillage agriculture on carbon dynamics in silt loam soils. Nutrient Cycling in Agroecosystems,2009, 84:249-265
    [93]张国盛,K Y Chan,G D Li, D P Heenan长期保护性耕作方式对农田表层土壤性质的影响.生态学报,2008,28(6):2722-2728
    [94]田应兵.湿地土壤碳循环研究进展.长江大学学报(自然科学版),2005,2(8):1-4
    [95]林慧龙,王军,徐震.草地农业生态系统中的碳循环研究动态.草业科学,2005,22(4):59-62
    [96]尉海东,马祥庆,刘爱琴,冯丽贞,黄益江.森林生态系统碳循环研究进展.中国生态农业学报,2007,15(2):188-192
    [97]查同刚,张志强,朱金兆,崔令军,张津林,陈军,谭炯锐,方显瑞.森林生态系统碳蓄积与碳循环.中国水土保持科学,2008,6(6):112-119
    [98]芮雯奕,周博,张卫建.长江三角洲水田保护性耕作制度的碳收集效应估算.长江流域资源与环境,2006,15(2):207-212
    [99]罗友进,王子芳,高明,魏朝富.不同耕作制度对紫色水稻十活性有机质及碳库管理指数的影响.水土保持学报,2007,21(5):55-58
    [100]李琳,伍芬琳,张海林,陈阜.双季稻区保护性耕作下土壤有机碳及碳库管理指数的研究.农业环境科学学报,2008,27(1):248-253
    [101]张云兰,王龙昌,邹聪明,胡小东,何遂,朱建国,雷军,罗明亮.高温伏旱区麦/玉/薯三熟制保护性耕作旱地土壤水分动态及产量效应.土壤通报,2011,42(1):16-21
    [102]邹聪明.“旱三熟”种植区保护性耕作的效应及模式研究:[硕士学位论文].重庆:西南大学,2010
    [103]王龙昌,邹聪明,张云兰,张赛,张晓雨,周航飞,罗海秀.西南“旱三熟”地区不同保护性耕作措 施对农田土壤生态效应及生产效益的影响,作物学报,2013,39(10):1880-1890
    [104]董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1996
    [105]尹文英.中国土壤动物检索图鉴.北京:科学出版社,1998
    [106]吴鹏飞,刘兴良,刘世荣.米亚罗林区冬季大型土壤动物空间分布特征.土壤学报,2011,48(3):659-664.
    [107]张赛,王龙昌,保护性耕作对土壤团聚体及其有机碳含量的影响.水土保持学报,2013,27(4):263-267,272
    [108]方华军,杨学明,张晓平,梁爱珍,申艳.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布.生态学报,2006,26(9):2847-2854
    [109]Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000,32:2099-2013
    [110]刘恩科,赵秉强,梅旭荣,HWAT Bing-So李秀英,李娟.不同施肥处理对土壤水稳性团聚体及有机碳分布的影响.生态学报,2010,30(4):1035-1041
    [111]张仕吉,项文化.土地利用方式对土壤活性有机碳影响的研究进展,中南林业科技大学学报,2012,32(5):134-143
    [112]李利利,王朝辉,王西娜,张文伟,李小涵,李生秀.不同地表覆盖栽培对旱地土壤有机碳、无机碳和轻质有机碳的影响.植物营养与肥料学报,2009,15(2):478-483.
    [113]李维,解宏图,何红波,白震,张旭东.颗粒有机质的来源、测定及其影响因素.生态学杂志,2007,26(11):1849-1856
    [114]Quiroga A R, Buschiazzo D E, P einemann N. Sol organic matter size fractions in soils of the semiarid argentinian pampas. Soil Science,1996,161,104-108
    [115]唐光木,徐万里,周勃,梁智,葛春辉.耕作年限对棉田土壤颗粒剂矿物结合态有机碳的影响.水土保持学报.2013,27(3):237-241
    [116]李忠佩,焦坤,吴大付.不同提取条件下红壤水稻土溶解有机碳含量变化.土壤,2005,37(5):512-516
    [117]慈恩,朱洁,彭娟,符卓旺,高明,谢德体.垄作免耕对稻田士壤有机碳活性组分和δ13C的影响.中国农业科学,2013,46(5):978-986
    [118]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999:231-232
    [119]姚槐应,黄昌勇等.土壤微生物生态学及其实验技术.北京:科学出版社,2006:139
    [120]王成己,潘根兴,田有国.保护性耕作下农田表土有机碳含量变化特征分析.农业环境科学学报,2009,28(12):2464-2475。
    [121]郑聚锋,程琨,潘根兴,Smith Peter,李恋卿,张旭辉,郑金伟,韩晓君,杜彦玲.关于中国土壤碳库及固碳潜力研究的若干问题.科学通报,2011,56(26):2162-2173
    [122]Janzen H H, Campbell C A, Jzaurralde R C, Ellert B H, Juma N, Mcgill W B, Zentner R P. Management effects on soil C storage on the Canadian prairies. Soil and Tillage Research,1998, 47(3):181-195
    [123]杨景程,韩兴国,黄建辉,潘庆民.土地利用变化对陆地生态系统碳贮量的影响,应用态学报,2003,14(8):1385-1390
    [124]赵荣钦.农田生态系统碳源汇的时空差异及增汇技术研究:[硕士学位论文].河南:河南大学,2004
    [125]伍芬琳,李琳,张海林,陈阜.保护性耕作对农田生态系统净碳释放量的影响,生态学杂志,2007,26(12):2035-2039
    [126]李洁静.太湖地区稻-油轮作及江西红壤双季稻农田生态系统净碳汇效应及收益评估:[硕士学位论文].南京:南京农业大学,2009
    [127]逯非,王效科,韩冰,欧阳志云,段晓男,郑华.中国农田施用化学氮肥的固碳潜力及其有效性评价.应用生态学报,2008,19(10):2239-2250
    [128]杨士弘.城市绿化树木碳氧平衡效应研究.城市环境与城市生态,1996,9(1):37-39
    [129]Lal R. Carbon emission from farm operations. Environment International,2004,30:981-990
    [130]孙利军.黄土高原半干旱保护性耕作生态与经济适应性评价:[硕士学位论文].甘肃:甘肃农业大学,2006
    [131]魏永霞,张文娥,严昌荣.保护性耕作技术对大豆光合特性、产量及水分利用效率的影响.中国农村水利水电,2009,2:66-69
    [132]Ken J S, Johnson M G. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America Journal,1993,57:200-210
    [133]代快,蔡典雄,王燕,赵全胜,张丁辰,冯宗会,张晓明,王小彬.不同耕作措施对旱作春玉米农田土壤呼吸影响的研究-土壤温度对土壤呼吸速率的影响.中国土壤与肥料,2010,(6):64-69
    [134]陈全胜,李凌浩,韩兴国,阎志丹.水分对土壤呼吸的影响及机理.生态学报,2003,23(5):972-978
    [135]张赛,王龙昌.秸秆还田方式对土壤呼吸和作物生长发育的影响.西南大学学报(自然科学版),2013,35(11):43-48
    [136]王志明,朱培立,黄东迈,刘海琴.水旱轮作条什下土壤有机碳的分解及土壤微生物量碳的周转特征.江苏农业学报,2003,19(1):33-36
    [137]孙小花,张仁陟,蔡立群,陈强强.不同耕作措施对黄士高原旱地土壤呼吸的影响.应用生态学报,2009,20(9):2173-2180
    [138]戴万宏,王益权,黄耀,刘军,赵磊.农田生态系统土壤CO2释放研究.西北农林科技大学学报:自然科学版,2004,32(12):1-7
    [139]严俊霞,李洪建,尤龙凤.玉米农田土壤呼吸与环境因子的关系研究.干旱区资源与环 境,2010,24(3):183-189
    [140]车升国,郭胜利,张芳,李泽,夏雪.黄土区夏闲期十壤呼吸变化特征及其影响因素.士壤学报,2010,47(6):1159-1169
    [141]郑桂姿.北带马尾松林土壤呼吸的模型模拟:[硕十学位论文].武汉:华中农业大学,2012,6
    [142]Luo Y Q,Wan S Q,Hui D F,Wallace L L. Acclimatization of soil respiration to wanning in a tall grass prairie.Nature,2001,413(6856):622-625
    [143]牛新胜,牛灵安,张宏彦,范聚芳,郝晋珉,马永良.玉米秸秆覆盖免耕对土壤呼吸的影响.生态环境,2008,17(1):256-260
    [144]Franzluebbers A J,Hons FM, Zuberer DA. Tillage and crop effects on seasonal dynamics of soil CO2 evolution, water content, temperature, and bulk density. Applied Soil Ecology,1995, 2:95-109
    [145]王同朝,卫丽,田原,马超,杜园园,谭阳.冬小麦-夏玉米一体化垄作覆盖下农田土壤呼吸变化研究.农业环境科学学报,2009,28(9):1970-1974
    [146]Bono A, Alvarez R, Buschiazzo D E, Cantet R J C.Tillage effects on soil carbon balance in a semiarid agroecosystem. Soil Science Society of America Journal,2008,72(4):1140-1149
    [147]官情,王俊,宋淑亚,刘文兆.黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响.应用生态学报,2011,22(6):471-1476
    [148]张庆忠,吴文良,王明新,周中仁,陈淑峰.秸秆还田和施氮对农田土壤呼吸的影响.生态学报,2005,25(11):2883-2887
    [149]胡正华,李涵茂,杨燕萍,陈书涛,李岑子,申双和.UV-B辐射增强与秸秆施用对大豆田土壤呼吸的影响.环境科学,2010,31(7):1638-1642
    [150]郑聚锋,张旭辉,潘根兴,李恋卿.水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化.植物营养与肥料学报,2006,12(4):485-494
    [151]朱咏莉,吴金水,童成立,王克林,王勤学.稻田CO2通量对光强和温度变化的响应特征.环境科学,2008,29(4):1040-1044
    [152]Simmons J A, Fernandez I J, Briggs R D, Delaney M T. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecology and Management,1996, 84(1-3):81-95
    [153]陈全胜,李凌浩,韩兴国.水分对土壤呼吸的影响及机理.生态学报,2003,23(5):972-978
    [154]李虎,邱建军,王立刚.农田土壤呼吸特征及根呼吸贡献的模拟分析.农业工程学报,2008,24(4):14-20
    [155]邹建文,黄耀,宗良纲,郑循华,王跃思.稻田CO2 CH4和N20排放及其影响因素.环境科学学报,2003,23(6):758-764
    [156]孟磊,丁维新,蔡祖聪.长期施肥潮土土壤呼吸的温度和水分效应.生态环 境,2008,17(2):693-698
    [157]Bouma T J, Bryla D R. On the assessment of root and soil respiration for soils of different texture interactions with soil moisture contents and soil CO2 concentrations.Plant and Soil, 2000,227 (1-2):215-221
    [158]张红星,王效科,冯宗炜,宋文质,刘文兆,李双江,朱元骏,庞军柱,欧阳志云.干湿交替格局下黄土高原小麦田土壤呼吸的温湿度模型.生态学报,2009,29(6):3028-3035
    [159]Zhou Z Y, Zhang Z Q, Zha T G, Luo Z K, Zheng J M, Osbert, Sun J X. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biology and Biochemistry,2013,57:135-143
    [160]Tomotsune M, Yoshitake S, Watanabe S, Koizumi H. Separation of root and heterotrophic respiration within soil respiration by trenching, root biomass regression, and root excising methods in a cool-temperate deciduous forest in Japan. Ecological Research,2013,28:259-269
    [161]Balogh J, Pinter K, Foti S, Cserhalmi D, Papp M, Nagy Z. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biology and Biochemistry,2011,43 (5):1006-1013
    [162]Akburak S, Makineci E. Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment,2013,185:3349-3358
    [163]井艳丽,关德新,吴家兵,干安志,袁凤辉.光合作用调控土壤呼吸研究进展.应用生态学报,2013,24(1):269-276.
    [164]周萍,刘国彬,薛萐.草地生态系统土壤呼吸及其影响因素研究进展.草业学报,2009,18(2):184-193
    [165]Smith V R. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island. Soil Boil and Biochemistry,2005,37(1):81-91
    [166]梁晶,方海兰,郝冠军,孙倩.上海城市绿地不同植物群落土壤呼吸及因子分析.浙江农林大学学报,2013,30(1):22-31
    [167]向成华.川西沿海拔梯度典型植被类型士壤活性有机碳分布.生态学报,2010,30(4):1025-1034
    [168]文炯,罗尊长,李明德,张杨珠,曾希柏.土壤活性有机质及其与土壤养分的关系.湖南农业科学,2009,(1):57-60
    [169]万忠梅,郭岳,郭跃.土地利用对湿地十壤活性有机碳的影响研究进展.生态环境学报,2011,20(3):567-570
    [170]李君剑,赵溪,潘恬豪,严俊霞,李洪建.不同土地利用方式对士壤活性有机质的影响.水土保持学报,2011,25(1):147-151
    [171]黄宗胜,喻理飞,符裕红.喀斯特森林植被自然恢复过程中土壤可矿化碳库特征.应用生态 学报,2012,23(8):2165-2170
    [172]胡海清,陆昕,孙龙.土壤活性有机碳分组及测定方法.森林工程,2012,28(5):18-22
    [173]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41(4):6218-6231
    [174]任镇江,罗友进,魏朝福.农田土壤团聚体研究进展.安徽农业科学,2011,39(2):1101-1105
    [175]Jastrow J D.Soil aggregate formation and the accrual of particiculate and mineral-associated organic matter. Soil Biology & Biochemistry,1996,28(4/5):665-676
    [176]何淑勤,郑子成.不同土地利用方式下土壤团聚体的分布及其有机碳含量的变化.水土保持通报,2010,30(1):7-10
    [177]刘中良,宇万太.土壤团聚体中有机碳研究进展,中国生态农业学报,2011,19(2):447-455
    [178]严波,贾志宽,韩清芳,杨宝平,聂俊峰.不同耕作方式对宁南旱地土壤团聚体的影响.干旱地区农业研究,2010,28(3):58-63
    [179]周玉燕,贾晓红,张烜铭,马进琴,陈凤鸣,高艳红.土壤碳矿化潜力对沙坡头人工固沙植被演变的响应.生态学杂志,2013,32(6):1371-1377
    [180]Mazzarion MJ, Oliva L, Abril A. Factors affecting nitrogen dynamics in a semiarid woodland. Plant and soil,1991,138:85-98
    [181]Paul B K, Vanlauwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso T T, Koala S, Lelei D, Ndabamenye T, Six J, Pulleman M M. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop production. Agriculture, Ecosystems and Environment,2013,164:14-22
    [182]Peng S L, Guo T, Liu G C. The effects of arbuscular mycorrhizal hyphal netmorks on soil aggregates of purple soil in southwest China. Soil Biology and Biochemistry,2013,57:411-417
    [183]宋日,刘利,吴春胜,马丽艳.大豆根系分泌物对十壤团聚体大小和稳定性的影响.东北林业大学学报,2009,37(7):84-86
    [184]潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618
    [185]潘根兴,周萍,李恋卿,张旭辉.固碳十壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327-337
    [186]L Zotarelli, B J R Alves, S Urquiaga, R M Boddey, J Six. Impact of tillage and crop rotation on light fraction and intra-aggregates soil organic matter in two Oxisols. Soil and Tillage Research, 2007,95:196-206
    [187]Paulo Cesar Conceicaoa, Jeferson Dieckowb, Cimelio Bayerc.Combined role of no-tillage and cropping system in soil carbon stocks and stabilization. Soil and Tillage Research,2013, 129:40-47
    [188]周萍,宋国菡,潘根兴,李恋卿,张旭辉.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体物理保护作用.土壤学报,2008,45(6):1063-1071
    [189]张金波,宋长春.土地利用方式对士壤碳库影响的敏感性评价指标.生态环境,2003,12(4):500-504
    [190]Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivation and native grassland soils. Soil Science Society of America Journal,1993,57:1071-1076
    [191]姬强.士壤颗粒态有机碳及其活性对不同耕作措施的响应:[硕士学位论文].杨凌:西北农林科技大学,2012:7
    [192]Xu Q, Xu J. Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere,2003,13(8):8
    [193]宋国涵.耕恳下表土有机碳库变化及水稻土有机碳的团聚体分布与结合形态:[博士学位论文].南京:南京农业大学,2005:3-4
    [194]倪进治,徐建民,谢正苗.士壤水溶性有机碳的研究进展.生态环境,2003,12(1):71-75
    [195]Blair G J, Lefroy R DB, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agriculture systems. Australian Journal of Agricultural Research,1995,46:1459-1466
    [196]巫芯宇,廖和平,杨伟.耕作方式对土壤有机碳与易氧化有机碳的影响.农机化研究,2013,1:184-188
    [197]李平儒,任卫东,李志军,史银光,张树兰.长期施肥管理对塿土全碳和易氧化有机碳的影响.西北农业学报,2010,19(12):194-201
    [198]王琳,李玲玲,高立峰,刘杰,罗珠珠,谢军红.长期保护性耕作对黄绵土总有机碳和易氧化有机碳动态的影响.中国生态农业学报,2013,21(9):1057-1063
    [199]罗彩云,沈禹颖,南志标,高崇岳,CHAN Yin,樊丽琴.水土保持耕作下陇东玉米-小麦-大豆轮作系统产量、土壤易氧化有机碳动态.水土保持学报,2005,19(4):84-88
    [200]王晶,解宏图,朱平,李晓云.土壤活性有机质(碳)的内涵和现代化分析方法概述.生态学杂志,2003,22(6):109-112
    [201]吴建国,艾丽,朱高,田自强,苌伟.祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素.草地学报,2007,15(1):20-28
    [202]Martens R. Current methods for measuring microbial biomass C in soil:potentials and limitations. Biology and Fertility of Soils,1995,19:87-99
    [203]曲建升,孙成权,张志强,高峰.全球变化科学中的碳循环研究进展与趋向.地球科学进展,2003,18(6):980-987
    [204]张前兵,杨玲,王进,罗宏海,张亚黎,张旺锋.干旱区不同灌溉方式及施肥措施对棉田土壤呼吸及各组分贡献的影响.中国农业科学,2012,45(12):2420-2430
    [205]李银坤,陈敏鹏,夏旭,梅旭荣,李昊儒,郝卫平.不同氮水平下夏玉米农田土壤呼吸动态变化及碳平衡研究.生态环境学报,2013,22(1):18-24
    [206]黄斌,王敬国,龚元石,Karl Stahr,杨倩.冬小麦夏玉米农田土壤呼吸与碳平衡的研究.农业环境科学学报,2006,25(1):156-160
    [207]Li X D, Fu H, Guo D, Li X D, Wan C G. Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv. Cropland on the Loess Plateau, Northern China. Soil Biology and Biochemistry,2010,42:337-346
    [208]程慎玉,张宪洲.土壤呼吸中根系与微生物呼吸的区分方法与应用.地球科学进展,2003,18(4):597-602
    [209]Jia B R,Zhou G S,Wang F Y, Wang Y H, Yuan W P, Zhou L. Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations. Soil Biology and Biochemistry,2006,38(4):653-660
    [210]Lee M S, Kaneyuki N, Takayuki N, Hiroshi K. Seasinal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil,2003, 255:311-318
    [211]Hanson P J, Edwards N T, Garten C T, Andrews J A. Separating root and soil microbial contributions to soil respiration:A review of methods and observations. Biogeochemistry,2000, 48:115-146
    [212]韩广轩,周广胜,许振柱,杨扬,刘景利,史奎桥.玉米农田土壤呼吸作用的空间异质性及其根系呼吸作用的贡献.生态学报,2007,27(12):5254-5261
    [213]Kou T J, Zhu J G, Xie Z B, Hasegawa T, Heiduk K. Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber.Plant Soil,2007,299:237-249
    [214]Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry,2006,38:425-448
    [215]Hollinger S E, Carl J B, Tilden P M. Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agricultural and Forest Meteorology,2005,130:59-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700