用户名: 密码: 验证码:
同步辐射光束线水平偏转压弯机构关键技术研究及性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步辐射装置是一种大科学装置,能同时容纳数百人进行科学和技术实验。主要由光源、光束线和实验站构成。根据实验站对光束的要求,光束线对同步辐射光源产生的同步辐射光进行偏转、准直、分光和聚焦等处理,并将同步光传输到实验站。
     第三代同步辐射光源具有很小的电子束发射度,使得光束以很小的掠入射角入射在光学元件上,导致成像镜面在光束传播方向的长度大幅增加,达到甚至超过1米。采用传统的磨制镜直接加工,很难得到高精度的面形。相比之下,压弯镜具有半径可调,表面精度高和易于制造等优点,从而得到广泛的应用。第三代同步辐射光源的主要特点是大量使用插入件,以波荡器为主。同步辐射装置上常规使用的压弯镜多是水平放置、光束垂直偏转,反射面朝上或者朝下。但是对于波荡器光源来说,从保持光源的横向相干性和亮度的角度看,水平偏转压弯镜更具优势,此外水平偏转压弯镜还可以在K-B聚焦镜装置中用作水平方向聚焦镜。第三代同步辐射光源对光束线的压弯准直聚焦镜提出了很高的要求,开展水平偏转压弯机构关键技术研究及性能测试,在提高压弯机构性能的同时,有助于提高光束线的通量和能量分辨率,具有极其重要的现实意义。
     本论文以上海光源建设中所需的水平偏转压弯镜为目标,重点研究了包括高性能水平偏转压弯机构压弯机理、补偿机制及热缓释技术等在内的关键技术,并对水平偏转压弯机构的性能测试方法进行了研究。具体研究内容如下:
     1)水平偏转压弯机构的受力情况较为复杂,相对于镜子所要求的极小面形误差和定位误差,镜子的性能对受力的变化是非常敏感的。本论文在研究压弯机构压弯理论的基础上,根据水平偏转压弯机构的设计指标,确定了压弯方式及压力点,使用点槽面支撑系统来实现其空间位置调节,提出了针对压弯镜自重和压弯机构自身重力的平衡补偿装置,并进行了水平偏转压弯机构的设计。
     2)水平偏转压弯镜压弯过程中,除了受到自身重力、平衡力和压弯力矩之外,还受到压弯机构本身结构、接触部分的摩擦以及局部变形产生的影响。这些因素导致工程分析结果与实际试验结果存在着较大的误差。为了提高分析精度,本文构建了从驱动机构、夹持机构到压弯光学元件的整体有限元分析模型,引入非线性分析的方法,模拟了水平偏转压弯机构的压弯过程,并针对压弯机构的压辊和镜面、驱动杆和动力轴等关键接触部位进行了分析,得到的模拟结果更接近实际情况。
     3)第三代同步辐射光源的高亮度给光束线设备带来的问题是极高的辐射功率和极高的功率密度,如何保证光学元件不受损伤并且稳定地正常工作,是需要解决的关键技术之一。对水平偏转压弯镜在热负载下的变形进行系统的分析,将热传导、热对流及热辐射三种热传递方式进行综合考虑,最大限度地模拟了该结构在热载下的真实状态。在此基础上确定了冷却方案,不仅削弱了热载效应,水平偏转压弯镜达到热平衡的时间得到大幅缩短,在提高实验效率的同时能够获得稳定有效的实验结果。
     4)水平偏转压弯机构的检测与安装是整个光束线安装调试的一个重要环节,而水平偏转压弯镜面形精度要求之高以及镜长的增加,都提高了检测的难度。使用上海光源自行研制的LTP-1200对水平偏转压弯镜在压弯状态下的面形进行测试,同时采用激光干涉仪、分光镜和反光镜等,搭建了一套离线检测方案对其运动精度进行精确的测量,运行稳定,各项指标均符合设计要求。
     本文重点针对提高水平偏转压弯机构性能的关键技术及性能检测方法进行了研究。在整个研究过程中,完成了水平偏转压弯机构的设计,对重力影响、压弯机构本身以及热载影响等做了具体的探讨和研究,并利用有限元软件模拟了系统的压弯过程与热力学过程。本文的研究成果对压弯机构的设计具有很好的参考价值,为后期光束线的工程设计提供了重要的理论依据。
Synchrotron Radiation Facility is one kind of large scientific platforms thathundreds of people can do science and technology experimentations simultaneously. Itmainly composes of a light source, beam lines and experimental stations. Accordingto the requirements of experimental stations, beamline deflects, collimates, spectral,and focuses the synchrotron radiation light. Finally, it transmits the synchrotronradiation light to the experimental stations.
     For the third generation synchrotron radiation, the grazing angle is so small thatit needs longer mirror. Generally, the length of the mirror is up to1meter. It’s hard forus to use the traditional grinding method to process this kind of mirror with highprecision surface shape. Compared with the grinding mirror, the bending mirror hasmore advantages, for example, the bending radius can be adjusted, higher precisionsurface shape and so on. Currently, more and more large mirrors using the bendingtechniques are used on synchrotron radiation facility. The third synchrotron radiationfacility is equipped with lots of insertion devices, which mainly is dominated byUndulator. Usually, the bending mirrors used in synchrotron radiation facility areplaced horizontally with the reflect face up or down and the beam deflects vertically.But for the undulator sources, horizontal deflection bender has more advantages. Onthe other hand, horizontal deflection mirrors can be used in K-B focusing system. Thethird generation synchrotron radiation proposes higher requirements on thecollimating and focusing mirrors. So it is a practical and useful subject to study thekey technology of horizontal deflection bender and doing the performance testing,which not only can improve the bender’s performances, but also can improve the flux and energy resolution of the beamline.
     In this paper, based on the horizontal deflection bender demanded in theconstruction of SSRF, we researched the key technology of horizontal deflectionbender including the bending theory, compensating mechanism and the thermalreleasing technology. After this, we did some corresponding performance testing. Themain research contents and conclusions can be listed as follows:
     1) The horizontal deflection bender has more complex stress condition thanvertical deflection bender. The performance of the mirror is very sensitive to the stressrelative to the small slope errors and location errors. Based on the research of bendingtheory, the bending mode and pressure points are determined according to therequirements of the horizontal deflection bender. A point-grove-plane adjustmentsystem are used to realize the adjusting the spatial location of the horizontal deflectionbender. Then, a scheme of gravity compensation aiming at the gravity of mirror-selfand bender are proposed. Finally, the design was carried out.
     2) During the process of bending, the bending mirror undertakes the gravity ofmirror-self, counterbalancing force and bending moment, in addition, the bender-self,contact friction parts and local deform have influences on the bending, which result inthat the analysis results have errors with the practical results. In order to improve theaccuracy the analysis, the finite element model including the drive mechanism, theclamping mechanism and the mirror is constructed. Nonlinear contact analysismethods are applied to study the process of the bending, and the results are muchcloser to the actual situation.
     3) The third synchrotron radiation has high brightness, which impose highradiation power and power density on equipments used in beamline. How to protectthese optical elements from damage caused by heat and work well is one of the mainkey technologies that need to solve. Based on heat-release method, thermal-structuralcoupling analysis which considers thermal conduction, thermal radiation and thermalconvection together is carried out. The reasonable cooling method is adopted toreduce the heating loads and the time to reach thermal equilibrium, not only canimprove the experiments efficiency, but also can obtain better results.
     4) The installing and testing of the horizontal deflection bender is very important.Because the accuracy requirements of the bending mirror is very high and the mirroris so big, it is difficult to test. We used LTP-1200to test the radius and slope errors ofthe bending mirror during the process of bending. And an off-line performance testing scheme for horizontal deflection bender is designed to analyze the motion precision ofthe bender.
     The thesis mainly did the key technology research and performance testing of thehorizontal deflection bender. During the whole process of the study, we realized thedesign of horizontal deflection bender and did a specific study and research on theinfluence of gravity, bender-self, heating loads and so on. Then finite elementsoftware is used to simulate the bending and thermodynamic processes of the system.These results have very important significance and provide relevant theoreticalreference for the further engineering design of beamline.
引文
[1]马礼敦,杨福家.同步辐射应用概论[M].复旦大学出版社,2005.
    [2]冼鼎昌.同步辐射的现状和发展[J].中国科学基金,2005,19(6):321-325.
    [3]冼鼎昌.同步辐射应用在中国的发展[J].物理,1999,28(11):641-647.
    [4]卢启鹏,马磊,彭忠琦.变包含角平面光栅单色器扫描转角精度的检测[J].光学精密工程,2010,18(7):1548-1553.
    [5]高飒飒,卢启鹏,彭忠琦.等.超高真空精密四刀狭缝的结构原理及有限元分析[J].光学精密工程2013,21(7):1741~1747.
    [6]卢启鹏.同步辐射软X射线束线单色器[J].光机电信息,2001,9:35-39.
    [7]马礼敦.同步辐射装置-上海光源及其应用[J].理化检验(物理分册).2009,45(11):717-723.
    [8]卢启鹏,高飒飒,彭忠琦.同步辐射水平偏转压弯镜面形误差分析与补偿[J].光学精密工程,2011,19(11):2644-2650.
    [9]卢启鹏,彭忠琦.压弯机构在同步辐射光束线中的应用[J].光机电信息,2011,28(6):8.
    [10]朱丽娟,薛松,卢启鹏.等.基于梁弯曲理论的聚焦镜压弯技术研究[J].机械设计与制造.2006(12).
    [11] SOKOLOVA, TERNOV I. Synchrotron radiation [M].1968.
    [12] FREUND AK. Third-generation synchrotron radiation X-ray optics [J]. Structure,1996,4(2):121-125.
    [13]卢启鹏,李勇军,彭忠琦.等.六杆并联机构运动学正解研究及其在同步辐射光束线中的应用[J].光学精密工程,2008,16(10):18742-1879.
    [14] EBASHI S, KOCH M, RUBENSTEIN E. Handbook on synchrotron radiation [J].1991.
    [15]唐福元.同步辐射的发现,特性及其应用领域的开拓[J].物理与工程,2004,14(3):34-39.
    [16]赵传荣,赵屹东.同步辐射技术应用发展简介[J].呼伦贝尔学院学报,2006,14(2):57-59.
    [17]谭伟石,蔡宏灵,吴小山.同步辐射光源简介[J].常熟理工学院学报,2006,2(2).
    [18]冼鼎昌.神奇的光:同步辐射[M].湖南教育出版社,1994.
    [19] CHEN S, XU H. Current status of the proposed shanghai synchrotron radiationfacility; proceedings of theAPAC, F,1998[C].
    [20]薛松,邵景鸿,卢启鹏.等. NSRL软X射线磁性圆二色光束线[J].核技术,2005,28(10):738-741.
    [21]李勇军,卢启鹏,彭忠琦.等.同步辐射光束线六杆并联机构的逆运动学精确求解及应用[J].核技术.2008(07).
    [22]上海同步辐射装置工程初步设计.国家上海同步辐射中心(筹),2001,1-16.
    [23]朱丽娟.同步辐射光束线聚焦镜压弯机构研究[D].[硕士论文],长春:中国科学院长春光学精密机械与物理研究所,2006.
    [24]王纳秀.同步辐射光束线热缓释技术研究及冷却技术的应用[D].[博士论文],中国,2006.
    [25]李志怀,张映箕,徐洪杰.同步辐射光束线聚焦镜压弯机制研究[J].核技术,2001(01).
    [26]刘绍义,徐朝银,潘国强.等. X射线环面聚焦镜压弯调整与面形测量[J].核技术,2001,24(7):571-574.
    [27]黄志刚,董晓浩,高飞.等. X射线衍射和散射光束线环面聚焦镜的面形精度与像差分析[J].光学精密工程,2004,12(1):26-30.
    [28]周泗忠,杨晓许,时惠霞.压弯聚焦镜自重的平衡[J].核技术,2005,28(3):180-182.
    [29]邓小国,周泗忠,熊仁生.等.超环面聚焦镜压弯装置的优化设计[J].光子学报,2006,35(5):797-800.
    [30] LV Q-T, XUE S, ZHU W-Q. et al. Pull-rod bent focusing mirror subassemblyengineering analysis based on contact nonlinear analysis method; proceedings of theInternational Symposium on Photoelectronic Detection and Imaging2009, F,2009
    [C]. International Society for Optics and Photonics.
    [31]刘鸿文,林建兴,曹曼玲.高等材料力学[M].高等教育出版社,1985.
    [32] HOWELLS M R, CAMBIE D, DUARTE R M. et al. Theory and practice ofelliptically bent x-ray mirrors [J]. Optical Engineering,2000,39(10):2748-2762.
    [33]徐朝银,潘国强. X射线衍射和散射光束线设计[J].中国科学技术大学学报,1999,29(2):181-188.
    [34]李志怀.同步辐射光束线聚焦镜压弯机制研究[D].[硕士论文],上海:中国科学院原子核研究所,1999.
    [35]邓小国.高热负载水冷弧矢聚焦双晶单色器研究[D].[博士论文],西安:中国科学院西安光学精密机械研究所,2008.
    [36] FREUND A K. X-ray optics at the European Synchrotron Radiation Facility;proceedings of the SPIE's1995International Symposium on Optical Science,Engineering, and Instrumentation, F,1995[C]. International Society for Optics andPhotonics.
    [37] KAMACHI N, ENDO K, OHASI H. et al. Characteristics ofMechanically-Bent-Shaped Mirror; proceedings of the2nd International workshop onMechanical Engineering Design of Synchrotron Radiation Equipment andInstrumentation (MEDSI02),Argonne, lllinois, USA, F,2002[C].
    [38] LEIGH J B, ROSENBAUM G. Synchrotron x-ray sources: a new tool inbiological structural and kinetic analysis [J]. Annual Review of Biophysics andBioengineering,1976,5(1):239-270.
    [39] TIMOSHENKO S, WOINOWSKY-KRIEGER S, WOINOWSKY S. Theory ofplates and shells [M]. McGraw-hill New York,1959.
    [40]傅远,祝万钱,薛松.上海光源光束线压弯机构研制[J].核技术,2010,33(10):725-729.
    [41] CHAO W, HARTENECK B D, LIDDLE J A. et al. Soft X-ray microscopy at aspatial resolution better than15nm [J]. Nature,2005,435(7046):1210-1213.
    [42] PADMORE H A, HOWELLS M R, IRICK S C. et al. New schemes forproducing high-accuracy elliptical x-ray mirrors by elastic bending; proceedings ofthe SPIE's1996International Symposium on Optical Science, Engineering, andInstrumentation, F,1996[C]. International Society for Optics and Photonics.
    [43] LIENERT U, HARTLAUB S, FREUND A K. Experimental shape optimizationof bent crystals; proceedings of the Optical Science, Engineering andInstrumentation'97, F,1997[C]. International Society for Optics and Photonics.
    [44] BEYNON T, KIRK I, MATHEWS T. Gabor zone plate with binary transmittancevalues [J]. Optics letters,1992,17(7):544-546.
    [45] ZETTL B, SZYSZKOWSKI W, ZHANG W. Accurate low DOF modeling of aplanar compliant mechanism with flexure hinges: the equivalent beam methodology[J]. Precision Engineering,2005,29(2):237-245.
    [46]曲艳峰,吕丽军.同步辐射仪器中柔性铰链压弯机的研究[J].光学精密工程,2002,10(2).
    [47] SUSINI J. Design parameters for hard x-ray mirrors: the European SynchrotonRadiation Facility case [J]. Optical engineering,1995,34(2):361-376.
    [48]柳晖,高雪官.一种新型调节装置——点槽面机构的机械设计[J].上海师范大学学报(自然科学版),2005,2.
    [49]李勇军.同步辐射光束线六杆并联调节机构的研究[D].[硕士论文],长春:中国科学院长春光学精密机械与物理研究所,2008.
    [50]柳晖,高雪官,曹冲振.等.一种新颖的同步辐射单色器镜箱调节装置——点槽面机构[J].红外,2007,(7)
    [51]张众,王占山,秦树基.等.宽角度X射线超反射镜的设计[J].光子学报,2003,32(2).
    [52]孙福权,傅远,祝万钱.等.压弯镜系统自重平衡多点调节方法的研究[J].核技术,2011,34(4):246-250.
    [53] BOLEY B A, WEINER J H. Theory of thermal stresses [M]. DoverPublications.com,2012.
    [54] Malcolm R. Howells, David L. Lunt. Design considerations for adjustable-curvature, high-power, x-ray mirrors based on elastic bending [J]. OpticalEngineering,1993,32(8):1981-1989.
    [55] Jean Susini. Design parameters for hard X-ray mirrors: The EuropeanSynchroton Radiation Facility case.[J]. Optical Engineering,1995,34(2):361-376.
    [56]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].机械工业出版社,2004.
    [57] PEARSON R K, OGUNNAIKE B A. Nonlinear process identification [J].Nonlinear process control,1997,11-109.
    [58] KIHAS D, MARQUEZ H J. Computing the distance between a nonlinear modeland its linear approximation: an approach [J]. Computers&chemical engineering,2004,28(12):2659-2666.
    [59]吕清涛,薛松,彭忠琦.等.拉杆式压弯聚焦镜组件线性与接触非线性方法的比较[J].光学精密工程,2010,18(8).
    [60] GALL K, HORSTEMEYER M, MCDOWELL D L. et al. Finite elementanalysis of the stress distributions near damaged Si particle clusters in cast Al–Sialloys [J]. Mechanics of Materials,2000,32(5):277-301.
    [61] LEE K, CHO C, LEE S W. An assumed strain formulation of geometricallynonlinear nine-node solid shell elements with improved performance [J]. AIAA the42nd SDM paper,2001,1042.
    [62] LOHMILLER W, SLOTINE J-J E. On contraction analysis for non-linearsystems [J].Automatica,1998,34(6):683-696.
    [63]李建勋,西安力学学会.工程应用力学手册[M].陕西人民教育出版社,1994.
    [64]曾攀.有限元分析及应用[M].清华大学出版社有限公司,2004.
    [65]凌道盛,徐兴.非线性有限元及程序[M].浙江大学出版社,2004.
    [66]张晓松,胡仁喜,康世廷. ANSYS12.0有限元分析从入门到精通.北京:机械工业出版社,2010,4.
    [67]小砜工作室.最新ANSYS及Workbench教程[M].电子工业出版社,2004.6
    [68]王庆五,左昉,胡仁喜,等.ANSYS10.0机械设计高级应用实例[M].机械工业出版社.2006,1.
    [69]博弈创作室.APDL参数化有限元分析技术及其应用实例,2004,北京:中国水利水电出版社.
    [70]黄晓铭.ANSYS先进接触分析技术.安世亚太媒体文章.
    [71]李黎明.ANSYS有限元分析实用教程[M],2005,北京:清华大学出版社
    [72] ANSYS document: Swanson Analysis System.1999, Inc., Champain, Illinois,USA.
    [73]周宁,ANSYS机械工程应用实例.北京:中国水利水电出版社.2006.
    [74] David Benfield, Walied Moussa. Mutiphysics Makes Spinal Surgery Safer.ANSYSAdvantage,2007,(1):6-9.
    [75]王勖成.有限单元法[M].1.北京:清华大学出版社,2006:309-320
    [76]鲁世强.三维接触问题有限元解法的单元选取初析.南昌航空工业学院报,1994(1):5-12.
    [77] Zhao Zhen-Tang, Xu Hong-Jie, Ding Hao. Construction status of the SSRFproject[J]. Proc. EPAC06, Edinburgh,2006, June26-30.
    [78] CHEN S Y, XU H J. Current Status of the Proposed Shanghai SynchrotronRadiation[J]. Facility. Proc.1998, OfAPAC98Tsukuba.
    [79] LENARDI C, MALVEZZI A M. Thermal effects on optical performances of aprefocussing mirror for high-resolution soft-X-ray beamlines [J]. Nuclear Instrumentsand Methods in Physics Research Section A: Accelerators, Spectrometers, DetectorsandAssociated Equipment,1990,291(1):332-336.
    [80] GOELA J S, PICKERING M A, BURNS L E. Chemical-vapor-deposited SiC forhigh heat flux applications; proceedings of the SPIE's1996International Symposiumon Optical Science, Engineering, and Instrumentation, F,1996[C]. InternationalSociety for Optics and Photonics.
    [81] WANG Z, KUZAY T M, GRACE T. et al. X‐ray optical analyses with x‐rayabsorption package (XRAP)[J]. Review of scientific instruments,1995,66(2):2263-2266.
    [82] ZONTONE F, COMIN F. Heat load and anticlastic effect compensation on anESRF monochromator: An exhaustive ray‐tracing study for a meridional‐sagittalgeometry [J]. Review of scientific instruments,1992,63(1):501-504.
    [83]王纳秀,朱毅,傅远.液氮间接冷却晶体单色器第一晶体热变形模拟计算[J].高能物理与核物理,2006,30(8):802~805.
    [84] WINICK H. Overview of synchrotron radiation facilities outside the USA [J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors andAssociated Equipment,1990,291(1):487-492.
    [85] D. H. Bilderback, A. K. Freund, G. S. Knapp et al.. The historical development ofcryogenically cooled monochromators for third-generation synchrotron radiationsources[J]. Journal of Synchrotron Radiation,2000,7:53~60.
    [86]马磊.变包含角平面光栅单色器关键技术与性能检测方法研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2012.
    [87] ZHANG L, LEE W-K, WULFF M. et al. The performance of a cryogenicallycooled monochromator for an in-vacuum undulator beamline [J]. Journal ofSynchrotron Radiation,2003,10(4):313-319.
    [88] MERON M, JASKI Y R, SCHILDKAMP W. Novel design for a high-heat-loadcryogenic Bragg monochromator crystal [J]. High heat flux and synchrotron radiationbeamlines:28-29July1997, San Diego, California,1997,3151(188).
    [89] TONNESSEN T W, ARTHUR J R. Cooled silicon crystal monochromator testresults; proceedings of the San Diego'92, F,1993[C]. International Society for Opticsand Photonics.
    [90] JOKSCH S, MAROT G, FREUND A. et al. Liquid nitrogen cooling ofmonochromator crystals exposed to intense synchrotron radiation [J]. NuclearInstruments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors andAssociated Equipment,1991,306(1):386-390.
    [91] OYANAGI H, KUWAHARA Y, YAMAGUCHI H. A directly water‐cooledsilicon crystal for high power insertion devices [J]. Review of scientific instruments,1995,66(9):4482-4486.
    [92] SCHILDKAMP W, H BILDERBACK D. Helium cooling of x-ray optics duringsynchrotron heating [J]. Nuclear Instruments and Methods in Physics ResearchSection A: Accelerators, Spectrometers, Detectors and Associated Equipment,1986,246(1):437-439.
    [93] BERMAN L E, HART M. Performance of water jet cooled siliconmonochromators on a multipole wiggler beam line at NSLS [J]. Nuclear Instrumentsand Methods in Physics Research Section A: Accelerators, Spectrometers, DetectorsandAssociated Equipment,1991,300(2):415-421.
    [94] MOCHIZUKI T, KOHMURA Y, AWAJI A. et al.Cryogenic coolingmonochromators for the SPring-8undualtor beamlines [J]. Nuclear Instruments andMethods in Physics Research Section A: Accelerators, Spectrometers, Detectors andAssociated Equipment,2001,467(647-649.
    [95] TANAKA T, KITAMURA H. SPECTRA: a synchrotron radiation calculationcode [J]. Journal of synchrotron radiation,2001,8(6):1221-1228.
    [96]安世亚太.ANSYS热分析指南[M],2007,9
    [97] M.N.奥齐西克著,俞昌铭译.热传导[M],北京:高等教育出版社,1983年,p1-21.
    [98]张朝晖.ANSYS热分析教程与实例解析[M].中国铁道出版社,2007.
    [99]张建峰,王翠玲,吴玉萍.等. ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004,23(5):9-12.
    [100]张德兴,有限元素法新编教程[M],上海:同济大学出版社,1989.
    [101]余昌铭,热传导及其数值分析[M],北京:清华大学出版社,1981.
    [102]高飒飒,卢启鹏,彭忠琦.等. X射线干涉光刻偏转聚焦系统热载影响与分析[J].光学学报,2012,32(12):299-305.
    [103]吕清涛.拉杆式压弯聚焦镜系统[D].[博士论文],上海:中国科学院上海应用物理研究所,2010.
    [104] KHOUNSARY A M, CHOJNOWSKI D, ASSOUFID L. et al. Thermal contactresistance across a copper-silicon interface; proceedings of the SPIE, F,1997[C].
    [105] ASANO M, OGATA J, YOSINAGA Y. Quantitative evaluation of contactthermal conductance in a vacuum as a result of simulating the effect of cooling;proceedings of the San Diego'92, F,1993[C]. International Society for Optics andPhotonics.
    [106] DORMIANI M. Finite element analysis of a SiC mirror receiving synchrotronradiation [J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1988,266(1):507-512.
    [107]董晓浩,凤良杰,徐朝银. NSRL-U7C双晶单色器热载影响与计算分析[J].核技术,2006,29(1):6-10.
    [108]王俊文,陈文元,张卫平等.一种用于同步辐射光束线上的压弯机构的设计与试验.机械设计与研究,2004(6):52-55.
    [109]张俊平. X射线光束线用小型椭圆弯曲型反射镜的预调节[J].光机电信息,1996,13(6):4-7.
    [110]罗红心,王劼,肖体乔.同步辐射用光学元件的检测[J].中国激光,2009,36(s2):134.
    [111]肖体乔,夏绍建,余笑寒.长程面形仪[P]:发明专利, ZL02110541[P/OL].2005-.
    [112]上海光源.水平方向偏转大型压弯镜装置测试报告.
    [113]匡萃芳,冯其波,刘斌.滚转角测量方法综述[J].光学技术,2004,30(6):699-702.
    [114]周红峰,宫爱玲.小角度测量的光学方法[J].测量与设备,2006(7):17-19.
    [115] Xiaoli Dai, Osami Sasaki, John E. Greivenkamp, Takamasa Suzuki.Measurementof small rotation angles by using a parallel interference pattern[J].Applied Optics.1995,34(28):6380-6388.
    [116]浦昭邦,陶卫,张琢.角度测量光学方法[J].光学技术,2002,28(2),168-171.
    [117]燕必希,施涌潮.大角度激光干涉测角方法研究[J].北京机械工业学院学报,1998,13(3):85-88.
    [118] Richard Jabconaki. Angle interferometer measurement[A]. Processing ofInternational Synposium on Metrology for Quality Control in Production Tokyo[C].1984.184-189.
    [119]冯忠尧,林德教,殷纯永,等.高精度滚转角干涉仪[J].光学技术,2002,28(4):332-336.
    [120]胡风.激光干涉仪[J].现代计量测试,3(2):41-43.
    [121] IKRAM M, HUSSAIN G. Michelson interferometer for precision anglemeasurement [J].Applied optics,1999,38(1):113-120.
    [122]柯明,于成浩.关节测量臂在上海光源元件标定中的应用[J].强激光与粒子束,2009,21(12):1885-1888.
    [123]甘霖,李晓星.激光跟踪仪现场测量精度检测[J].北京航空航天大学学报,2009,35(5):612-614.
    [124]李广云. LTD500激光跟踪测量系统原理及应用[J].测绘工程,2001,10(4):3-8.
    [125]郭洁瑛,刘笑,王伟.激光跟踪仪水平与垂直角对测量精度影响的试验研究[J].航天器环境工程,2010,27(5):643-645.
    [126] Omri R, Vladimir R. Analytical Methods in Anisotropic Elasticity: withSymbolic Computational Tools [M].2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700