用户名: 密码: 验证码:
脉冲型地震下考虑支座位移需求的减震—隔震混合控制体系抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的二十年里,隔震技术已经被证明是一种非常有效的抗震技术,在民用建筑、桥梁以及工业建筑中得到了广泛的应用。基础隔震技术是通过在结构底部安装具有较低抗侧刚度的隔震支座,使结构基本自振频率远离地震动的高频成分,从而减小上部结构地震作用的一种被动抗震技术。由此可见,对于能量集中分布在中、高频段的远场地震动,基础隔震技术非常有效。但是,对于包含长周期、大幅值以及高能量输入频率成分的脉冲型地震动,基础隔震技术的有效性则值得商榷。现有的研究已经表明,隔震支座在脉冲型地震作用下可能会发生屈曲、拉裂等破坏,影响上部结构的安全。为此,本文围绕脉冲型地震作用下,隔震支座的位移需求和分别采用调谐质量阻尼器和粘滞阻尼器对隔震支座位移进行控制的减震-隔震混合控制体系的动力响应、能量耗散机理以及抗震性能展开了以下几方面的研究工作:
     (1)对既有关于近断层区域划分以及脉冲型地震动特征的研究工作进行了总结,在此基础上建立了脉冲型地震动的选取准则,利用该选波准则从PEER中选取了本文后续工作所需的脉冲型地震记录,通过对脉冲型地震记录的功率谱进行分析,研究了其频谱特征;对现有普通地震动的合成方法以及速度脉冲的数学模型进行了总结,在此基础上通过对目标响应谱进行拟合得到了脉冲型地震动的高频分量,利用He-Agrawal模型合成速度脉冲分量,将两者进行叠加得到包含高频分量和低频分量的合成脉冲型地震动,通过对合成地震动的功率谱进行分析,探讨了该合成方法的可行性。
     (2)对脉冲型地震作用下隔震支座非弹性位移需求的估算方法进行了研究。建立了隔震结构弹性位移需求谱和等强度位移需求谱的相关方程,运用MATLAB进行编程和求解得到了隔震结构的弹性位移需求谱、等强度位移需求谱和等强度位移比谱;对弹性位移需求谱和等强度位移比谱的谱形特征进行了分析,利用曲线拟合方法得到了弹性位移需求谱和等强度位移比谱的计算公式,通过与真实地震记录的弹性位移需求谱和等强度位移比谱进行对比,探讨了本文所建立计算公式的合理性;最后,将弹性位移需求谱和等强度位移比谱的计算公式进行联立,得到了等强度位移需求谱的计算公式,利用该公式可以快速地估算出隔震支座在脉冲型地震作用下的非弹性位移需求。
     (3)分别研究了调谐质量阻尼器和粘滞阻尼器的安装对隔震支座以及上部结构地震响应的影响。建立了LRB结构、TMD-LRB体系以及Dsup-LRB体系的非线性运动方程,运用MATLAB编程求解了结构在脉冲型地震作用下的动力响应,通过与LRB结构进行对比,分别研究了调谐质量阻尼器和粘滞阻尼器的安装对隔震支座位移响应和上部结构层间位移响应和加速度响应的影响;进一步研究了速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比、调谐质量比、调谐频率比以及由粘滞阻尼器产生的附加阻尼比对隔震支座和上部结构位移响应的影响;最后,建立了LRB结构、TMD-LRB体系以及Dsup-LRB体系的能量平衡方程,运用MATLAB编程求解了结构的能量响应,通过对地震动输入能、结构阻尼耗能以及隔震支座滞回耗能的对比分析,从能量耗散的角度研究了调谐质量阻尼器和粘滞阻尼器的安装能够削弱结构地震响应的原因。
     (4)研究了粘滞阻尼器的安装对上部结构和隔震支座抗震性能的影响。对LRB结构和Dsup-LRB体系进行非线性增量动力分析,得到了上部结构和隔震支座的IDA曲线,对单条IDA曲线和多条IDA曲线的特征进行了分析,经过统计得到上部结构和隔震支座的16%、50%和84%分位IDA曲线,从统计的角度对两者的抗震性能进行了分析;进一步对LRB结构和Dsup-LRB体系进行了地震易损性分析,得到了上部结构和隔震支座在不同极限状态下的地震易损性曲线,从概率的角度对两者的抗震性能进行了评估。
     (5)以串联隔震体系振动台试验为基础,对隔震支座的位移需求进行了动力试验研究。通过对不同强度地震作用下隔震支座的位移响应进行对比分析,研究了地震动强度对隔震支座位移响应的影响:通过与远场地震进行对比,研究了脉冲型地震动对隔震支座位移响应的影响;通过与LRB结构进行对比,研究了粘滞阻尼器的安装对隔震支座位移需求的影响,为数值分析结果提供了试验论据。
In the last two decades, the seismic isolation technology has proved to be a very effective aseismic technology, giving rise to many applications for civil buildings, bridges, and industrial buildings. Base isolation technology is a positive aseismic technology that can keep structural basic frequency away from high frequency components of the seismic ground motion, and reduce the superstructure's seismic action by using isolation bearing having lower lateral stiffness. The isolation bearings are installed at the bottom of the buildings. Thus it can be seen that, isolation technology is very effective under far-field ground motions, which have a large energy distribution especially for medium to high vibration frequencies. However, the effectiveness of the isolation technology is questionable under pulse-like ground motions, which have a long period, large amplitude, and high energy pulse component. Existing studies have shown that near-fault pulse-like ground motions can lead to buckling or rupture of the isolation bearings, and can influence the safety of superstructure. For these above reasons, this paper will study isolator bearing's displacement demand, dynamic response, energy dissipation mechanism and seismic performance of the vibration reduction device-base isolation hybrid control system, as follows:
     (1) Existing studies on division of the near-fault region and characteristics of the pulse-like ground motions were summarized, selection rules of the pulse-like ground motions on the basis of those existing studies was established, and pulse-like ground motion records from PEER strong ground motion database were obtained using the selection rules. Frequency characteristics of the pulse-like earthquake records were studied on the basis of power spectrum. Existing studies on ordinary seismic ground motions'synthetic methods and velocity pulse model were summarized, high frequency component was generated by using spectrum matched technology, velocity pulse component was generated by using He-Agrawal model, and pulse-like ground motions were generated through superposition of the high frequency component and velocity component. Reliability of the synthetic method was studied by analyzing power spectrum of the pulse-like ground motions.
     (2) The estimation method of the isolation bearing's inelastic displacement demand was studied. The equations of motion that related to base isolated structure's elastic displacement demand spectrum and inelastic displacement demand spectrum were established. On the basis of these equations, base isolated structure's elastic displacement demand spectrum, constant yield strength inelastic displacement demand spectrum, and constant yield strength inelastic displacement ratio spectrum using MATLAB were obtained. Spectrum characteristics of the elastic displacement demand spectrum and constant yield strength displacement ratio spectrum were studied, and fitting expressions of the elastic displacement demand spectrum and constant yield strength inelastic displacement ratio spectrum were proposed. Reliability of the fitting expressions was studied by comparing between real spectrum and fitting spectrum. At last, the estimation equation of the constant strength displacement demand spectrum was established, and the displacement demand can be obtained easily by using this equation.
     (3) The effect of the TMD and viscous damper on the seismic response of the supstructure and isolation bearing was studied. Nonlinear equations of motion for the LRB structure, TMD-LRB system and Dsup-LRB system were established, dynamic response of the structure under pulse-like ground motions were solved, and effect of the TMD and viscous damper on the isolation bearing displacement response, superstructure inter-story drift and acceleration response was analyzed. Moreover, influence of the velocity pulse period, bearing yield force, stiffness ratio, mass ratio, frequency ratio and additional damping ratio on superstructural and isolation bearing displacement response was studied. At last, Energy equilibrium equations of the LRB structure, TMD-LRB system and Dsup-LRB system were established, energy responses were solved, and the cause of the structural response's reduction was studied from the perspective of energy dissipation.
     (4) The effect of the viscous damper on seismic performance of the superstructure and isolation bearing was studied. Nonlinear incremental dynamic analysis of the LRB structure and Dsup-LRB system was performed respectively, IDA curves were obtained. Characteristics of the single IDA curve and multiple IDA curves were analyzed.16%,50%and84%fractile IDA curves were obtained through statistical analysis. Seismic performance of the superstructure and isolation bearing was analyzed from the perspective of statistics. Moreover, Seismic fragility analysis of the LRB structure and Dsup-LRB system was conducted, the seismic fragility curves of the superstructure and isolation bearing under different limit states were obtained, and the seismic performance of the superstructure and isolation bearing was assessed from the viewpoint of probabilit.
     (5) On the basis of shaking table test of the series seismic isolation system, displacement demand of the isolation bearing was studied. The effect of the ground motion intensity on displacement response of the isolation bearing was studied through the comparison between the seismic responses under ground motions that have different intensity. The effect of the pulse-like ground motions on displacement response of the isolation bearing was studied through the comparison between far-field seismic responses and the seismic responses under near-fault pulse-like ground motions. The effect of the viscous damper on displacement demand of the isolation bearing was studied through the comparison between the LRB structural seismic responses and the Dsup-LRB system's seismic responses. The test results provided a reference for the results of numerical analysis.
引文
[1]Rupakhety R, Sigurdsson SU, Papageorgiou AS. Quantification of ground motion parameters and response spectra in the near fault region. Bull Earthquake Eng, 2011,9(1):893-930
    [2]Bray JD, Marek AR. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering, 24(11):815-828
    [3]Tong M, Rzhevsky V, Dai JW. Near fault ground motions with prominent acceleration pulses:pulse characteristics and ductility demand. Earthquake Engineering and Engineering Vibration, 2007, 6(3): 215-223
    [4]Saman YS. Detection of pulse like ground motions based on continues wavelet transform. Journal of seismology, 2010, 14(1):715-726
    [5]Baker JW. Quantitative classification of near fault ground motions using wavelet analysis. Bulletin of seismological society of America, 2007, 97(5):1486-1501
    [6]Mollaioli F, Bosi A. Wavelet analysis for the characterization of forward directivity pulse like ground motions on energy basis. Meccanica, 2012,47(1): 203-219
    [7]Bosi A, Mollaioli F, Mariano PM. Wavelet analysis on detecting pulse like earthquakes. In:2008 Seismic Engineering Conference:Commemorating the 1908 Messina and Reggio Calabria Earthquake. Messina,2008,101-103
    [8]Mukhopadhyay S, Gupta VK. Directivity pulses in near fault ground motions-I Identification, extraction and modeling. Soil Dynamics and Earthquake Engineering,2013,2(1):38-52
    [9]Mukhopadhyay S, Gupta VK. Directivity pulses in near fault ground motions-II: Estimation of pulse parameters. Soil Dynamics and Earthquake Engineering,2013, 50(1):38-52
    [10]Menun C, Fu Q. An analytical model for near-fault ground motions and the response of sdof systems. In:US National Conference on Earthquake Engineering. Boston,20020721-20020725
    [11]Mavroeidis GP, Papageorgiou AS. A mathematical representation of near fault ground motions. Bulletin of the seismological society of America, 2003, 93(3): 1099-1131
    [12]He WL, Agrawal AK. Analytical model of ground motion pulses for the design and assessment of seismic protective systems. Journal of Structural Engineering, 2008,134(7):1177-1188
    [13]Moustafa A, Takewaki I. Deterministic and probabilistic representation of near field pulse like ground motion. Soil Dynamics and Earthquake Engineering,2010, 30(1):412-422
    [14]Halldorsson B, Mavroeidis GP, Papageorgiou AS. Near fault and far field strong ground motion simulation for earthquake engineering applications using the specific barrier model. Journal of Structural Engineering,2011,30(1):433-444
    [15]Pitarka A, Somerville P, Fukushima Y. Simulation of near fault strong ground motion using hybrid green's functions. Bulletin of the seismological society of America,2000,90(3):566-586
    [16]Krawinkler H, Alavi B, Zareian F. Impact of near fault pulse on engineering design. Directions in strong motion instrumentation,2005,1(1):83-106
    [17]Sehhati R, Adrian RM, Mohamed E. Effects of near fault ground motions and equivalent pulses on multi-story structures. Engineering Structures,2011,33(1): 767-779
    [18]Mollaioli F, Bruno S, Luis DD. Characterization of the dynamic response of structures to damaging pulse type near fault ground motions. Meccanica,2006, 41(1):23-46
    [19]Bertero VV, Mahin SA, Herrera RA. Aseismic design implications of near-fault San Fernando earthquake records. Earthquake Engineering and Structural Dynamics,1978,6(1):31-42
    [20]Tan P, Agrawal AK, Pan Y. Near-field effects on seismically excited highway bridge equipped with nonlinear viscous dampers. Bridge Structures,2005,1(3): 307-318
    [21]李明,谢礼立,翟长海.近断层地震动区域的划分.地震工程与工程振动,2009,29(5):20-25
    [22]王海云,谢礼立.近断层强地震动的特点.哈尔滨工业大学学报,2006,38(12):2070-2076
    [23]刘启方,袁一凡,金星.近断层地震动的基本特征.地震工程与工程振动,2006,26(1):1-10.
    [24]张冬丽,周正华,陶夏新.震源破裂方式和断层性质对近场强地震动特征的影响.西北地震学报,2009,31(4):311-318
    [25]徐龙军,谢礼立.集集地震近断层地震动频谱特性.地震学报,2005,27(6):656-665
    [26]邢帆,康锐.近断层地震时-频谱特性小波变换分析.福州大学学报(自然科学版),2013,4:765-770
    [27]谢俊举,温增平,高孟潭.2008年汶川地震近断层地震动的非平稳特征.地球物理学报,2011,54(3):728-736
    [28]杨迪雄,王伟.近断层地震动的频谱周期参数和非平稳特征分析.地震工程与工程振动,2009,29(5):26-35
    [29]郭恩,周锡元,彭凌云.近断层地震动记录中速度大脉冲及其影响范围.北京工业大学学报,2012,38(2):243-249
    [30]江辉,慎丹,倪永军.近断层地震地面运动峰值衰减规律研究.北京交通大学学报(自然科学版),2011,(4):83-87
    [31]李新乐,窦慧娟,王丰.近断层长周期地震动前向性效应对峰值影响研究.大连民族学院学报,2012,14(3):251-255
    [32]贺秋梅,闫维明,董娣.震源机制和场地条件对近场强震地面运动特性的影响.地震研究,2006,29(3):256-263
    [33]李英成,陈清军.基于汶川8.0级强震记录的近场地震动特征分析.灾害学,2012,27(1):17-22
    [34]曹晖.近场地震动加速度脉冲的小波变换识别.重庆大学学报(自然科学版),2007,30(8):119-122
    [35]王国新,史家平.随机有限断层法合成地震动及其相干性研究.振动与冲击,2010,29(4):169-172
    [36]李新乐,朱晞.近场地震速度脉冲效应及模拟模型的研究.中国安全科学学报,2003,13(12):48-52
    [37]田玉基,杨庆山,卢明奇.近断层脉冲型地震动的模拟方法.地震学报,2007,29(1):77-84
    [38]Xie Lili, Xu Longjun, Adrian RM. Representation of near fault pulse type ground motions. Earthquake Engineering and Engineering Vibration,2005,4(2): 191-199
    [39]王海云,谢礼立.近断层地震动模拟现状.地球科学进展,2008,23(10):1043-1049
    [40]李杰,李国强.地震工程学导论.北京:地震出版社,1992,68-72
    [41]Elnashai AS, Sarno LD. Fundamentals of earthquake engineering. West Sussex: A John Wiley & Sons, Ltd, Publication,2008,155-161
    [42]Kramer SL. Geotechnical earthquake engineering. New Jersey:Prentice Hall, 1996,340-344
    [43]Borzi B, Calvi GM, Elnashai AS. Inelastic spectra for displacement-based seismic design. Soil Dynamic and Earthquake Engineering,2001,21(5):47-61
    [44]Bozorgnia Y, Hachem MM, Campbell KW. Deterministic and probabilistic predictions of yield strength and inelastic displacement spectra. Earthquake Spectra,2010,26(1):25-40
    [45]Chopra AK, Chintanapakdee C. Inelastic deformation ratios for design and evaluation of structures:single degree of freedom bilinear systems. Journal of Structural Engineering,2004,28(5):1309-1319
    [46]Farrow KT, Kurama YC. SDOF displacement ductility demands based on smooth ground motion response spectra. Engineering Structures,2004,26(5):1713-1733
    [47]Hatzigeorgiou GD. Ductility demand spectra for multiple near and far fault earthquakes. Soil Dynamics and Earthquake Engineering,2010,30(2):170-183
    [48]Iervolino I, Chioccarelli E, Baltzopoulos G. Inelastic displacement ratio of near source pulse like ground motions. Earthquake Engineering and Structural Dynamics,2012,41(3):2351-2357
    [49]Garcia JR. Inelastic displacement ratios for seismic assessment of structures subjected to forward-directivity near-fault ground motions. Journal of Earthquake Engineering,2011,15(5):449-468
    [50]Athanassiadou CJ, Karakostas CZ, Margaris BN. Displacement spectra and displacement modification factors, based on records from Greece. Soil Dynamic and Earthquake Engineering,2011,31(2):1640-1653
    [51]Zamora M, Riddell, R. Elastic and Inelastic Response Spectra Considering Near-Fault Effects. Journal of Earthquake Engineering,2011,15(5):775-808
    [52]黄建文,朱晞.近震作用下单自由度结构的非弹性响应分析研究.中国安全科学学报,2003,13(1):59-65
    [53]夏洪流,李英民,杨溥.罕遇地震作用下SDOF结构位移响应的统计特性分析.重庆建筑大学学报,2000,22(Z1):139-143
    [54]韦承基.弹塑性结构的位移比谱.建筑结构,1997,20(3):40-48
    [55]肖明葵,王耀伟,严涛.抗震结构的弹塑性位移需求谱.重庆建筑大学学报,2000,22(Z1):34-40
    [56]翟长海,李爽,谢礼立.近场脉冲型地震动位移比谱特征研究.土木工程学报,2008,41(10):1-5
    [57]徐福江,钱稼茹.常延性系数弹塑性位移需求谱及其应用.工程力学,2007,24(6):15-20
    [58]易伟建,张海燕.弹塑性反应谱的比较及其应用.湖南大学学报(自然科学版),2005,32(2):42-45
    [59]翟长海,李爽,谢礼立.抗震结构非弹性位移比谱.哈尔滨工业大学学报,2009,41(2):1-4
    [60]翟长海,公茂盛,谢礼立.工程结构等强度位移比谱影响因素分析.哈尔滨工业大学学报,2005,37(4):455-458
    [61]施卫星,李正升,汪大绥.基础隔震位移反应谱及其应用.同济大学学报,2000,28(1):29-33
    [62]曹加良,施卫星,刘文光.长周期结构相对位移反应谱研究.振动与冲击,2011,30(7):63-70
    [63]黄海荣,朱玉华.基础隔震结构反应谱研究.结构工程师,2010,26(3):123-129
    [64]李恒,李龙安,冯谦.用位移反应谱研究长周期设计地震反应谱.地震工程与工程振动,2012,23(4):47-53
    [65]Hall JF, Heaton TH, Halling MW. Near-Source Ground Motion and its Effects on Flexible Buildings. Earthquake Spectra,1995,11(4):569-605
    [66]Jangid RS, Kelly JM. Base isolation for near fault motions. Earthquake Engineering and Structural Dynamics,2001,30(1):691-707
    [67]Jangid RS. Optimum lead rubber isolation bearings for near fault motions. Engineering Structures,2007,29(1):2503-2513
    [68]Ozdemir G, Akyuz U. Dynamic analyses of isolated structures under bi-directional excitations of near field ground motions. Shock and Vibration, 2012,19(1):505-513
    [69]Mazza F, Vulcano A. Effects of near fault ground motions on the nonlinear dynamic response of base isolated rc framed buildings. Earthquake Engineering and Structural Dynamics,2012,41(1):211-232
    [70]Vassiliou MF, Tsiavos F, Stojadinovic B. Dynamics of inelastic base-isolated structures subjected to analytical pulse ground motions. Earthquake Engineering & Structural Dynamics,2013,42(14):2043-2060
    [71]杨迪雄,赵岩.近断层地震动破裂向前方向性与滑冲效应对隔震建筑结构抗震性能的影响.地震学报,2010,32(5):579-587
    [72]杨迪雄,赵岩,李刚.近断层地震动运动特征对长周期结构地震响应的影响分析.防灾减灾工程学报,2007,27(2):133-140
    [73]杨迪雄,李刚,程耿东.近断层脉冲型地震动作用下隔震结构地震反应分析.地震工程与工程振动,2005,25(2):119-124
    [74]叶昆,李黎.LRB基础隔震结构在近断层脉冲型地震作用下的动力响应研究.工程抗震与加固改造,2009,31(2):32-42
    [75]谭平,黄东阳,陈娟.近场地震动对隔震结构的影响分析.四川建筑科学研究,2009,35(6):195-196
    [76]贺秋梅,李小军.近断层速度脉冲型地震动作用基础隔震建筑反应分析.土木建筑与环境工程,2010,32(Z2):408-410
    [77]党育,霍凯成.近断层地震各因素对基础隔震结构的影响.武汉理工大学学报,2009,31(14):72-77
    [78]韩淼,段燕玲,孙欢.近断层地震动特征参数对基础隔震结构地震响应的影响分析.土木工程学报,2013,46(6):8-13
    [79]杜永峰,王小虎,朱翔.近断层地震作用下隔震结构基底碰撞响应分析及倾覆倒塌模拟.建筑结构,2013,(2):56-59
    [80]杜永峰,徐超,李慧.近断层地震作用下基础隔震结构抗倾覆性能分析.兰州理工大学学报,2012,38(5):111-115
    [81]耿方方,丁幼亮,谢辉.近断层地震动作用长周期结构的地震动强度指标东南大学学报(自然科学版),2013,43(1):203-208
    [82]包华,洪俊青.近断层地震作用下基础隔震结构的振动分析.工程抗震与加固改造,2011,33(6):38-44
    [83]李黎,胡紫东,聂肃非.基于近断层地震LRB桥梁支座屈服力优化.振动与冲击,2011,30(6):134-138
    [84]中华人民共和国住房和城乡建设部.建筑抗震设计规范.北京:中国建筑工业出版社,2010,149-167
    [85]Palazzo B, Petti L, Ligio MD. Response of base isolated systems equipped with tuned mass dampers to random excitations. Journal of Structural Control,1997, 4(1):9-22
    [86]Nam H, Yozo F, Pennung W. Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures,2008,30(3):707-715
    [87]Yang JN, Agrawal AK. Semi-active hybrid control systems for nonlinear buildings against near field earthquakes. Engineering Structures,2002,24(1): 271-280
    [88]Taniguchi T, Kiureghian AD, Melkumyan M. Effect of tuned mass damper on displacement demand of base isolated structures. Engineering Structures,2008, 30(1):3478-3488
    [89]Providakis CP. Effect of supplemental damping on LRB and FPS seismic isolators under near fault ground motions. Soil Dynamics and Earthquake Engineering,2009,29(1):80-90
    [90]Providakis CP. Effect of LRB isolators and supplemental viscous damper on seismic isolated buildings under near fault excitations. Engineering Structures, 2008,30(1):1187-1198
    [91]Mazza F, Vulcano A. Nonlinear dynamic response of rc framed structures subjected to near fault ground motions. Bull Earthquake Eng,2010,8(1): 1331-1350
    [92]Mehrparvar B, Khoshnoudian F. Efficiency of active systems in controlling base isolated buildings subjected to near fault earthquakes. The structural design of tall and special buildings,2011,20(1):1019-1034
    [93]陈通,翁大根,胡岫岩.考虑近断层地震的隔震结构增设粘滞阻尼器效果分析.结构工程师,2013,29(1):92-99
    [94]韩淼,姜岳,郭俸铭.近断层地震作用下基础隔震层弹簧软限位分析.福州大学学报(自然科学版),2013,41(4):617-621
    [95]韩淼,沙千里,温增平.近断层区橡胶支座隔震结构限位研究.世界地震工程,2013,29(1):74-79
    [96]Bertero RD, Bertero VV. Performance-based seismic engineering:the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics,2002,31(3):627-652
    [97]Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics,2002,31(3):491-514
    [98]Vamvatsikos D, Cornell CA. Applied Incremental Dynamic Analysis. Earthquake Spectra,2004,20(2):523-553
    [99]Mahdavi N, Ahmadi HR, Mahdavi H. A comparative study on conventional push-over analysis method and incremental dynamic analysis (IDA) approach. Scientific Research and Essays,2012,7(7):751-773
    [100]Allahyari H, Keramati A, Behbahani AAT. Performance evaluation of special and intermediate moment-resisting reinforced concrete frames using pushover and incremental dynamic analysis. The Structural Design of Tall and Special Buildings,2013,22(7):584-592
    [101]Asgarian B, Khazaee H, Mirtaheri M. Performance evaluation of different types of steel moment resisting frames subjected to strong ground motion through incremental dynamic analysis. International Journal of Steel Structures,2012, 12(3):363-379
    [102]Asgarian B, Sadrinezhad A, Alanjari P. Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. Journal of Constructional Steel Research,2010,66(2):178-190
    [103]Asgarian B, Yahyai M, Mirtaheri M. Incremental dynamic analysis of high-rise towers. The Structural Design of Tall and Special Buildings,2010,19(8): 922-934
    [104]周颖,吕西林,卜一.增量动力分析法在高层混合结构性能评估中的应用.同济大学学报(自然科学版),2010,38(2):183-187
    [105]汪梦甫,曹秀娟,孙文林.增量动力分析方法的改进及其在高层混合结构地震危害性评估中的应用.工程抗震与加固改造,2010,32(1):104-109
    [106]汪梦甫,汪帜辉,刘飞飞.增量动力弹塑性分析方法的改进及其应用.地震工程与工程振动,2012,32(1):30-35
    [107]侯炜,史庆轩.不同地震作用方向下混凝土核心筒基于增量动力分析的抗震性能评估.振动与冲击,2013,32(14):116-121
    [108]王秋维,史庆轩,侯炜.型钢混凝土框架结构基于增量动力分析的抗震性能评估.世界地震工程,2011,27,(1):34-40
    [109]李慧,常燕玲,杜永峰.超长隔震结构抗震性能与抗倒塌能力研究.工程抗震与加固改造,2013,35(4),93-98
    [110]Jeong SH, Mwafy AM, Elnashai AS. Probabilistic seismic performance assessment of code-compliant multi-story RC buildings. Engineering Structures, 2012,34(2):527-537
    [111]Cimellaro GP, Reinhorn AM, Ambrisi AD. Fragility Analysis and Seismic Record Selection. Journal of Structural Engineering,2011,137(3):379-390
    [112]Borekci M, Kircil MS. Fragility analysis of R/C frame buildings based on different types of hysteretic model. STRUCTURAL ENGINEERING AND MECHANICS,2011,39(6):795-812
    [113]Kiril S, Murat, Zekeriya P. Fragility analysis of mid-rise R/C frame buildings. Engineering Structures,2006,28(8):1335-1345
    [114]Murcia DJ, Shing PB. Fragility1 analysis of reinforced masonry shear walls. Earthquake Spectra,2012,28(4):1523-1547
    [115]Akbari R. Seismic fragility analysis of reinforced concrete continuous span bridges with irregular configuration. STRUCTURE AND INFRASTRUCTURE ENGINEERING,2012,8(9):873-889
    [116]Park J, Towashiraporm P, Craig J. Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures,2009,31(1):125-137
    [117]Lagaros ND. Probabilistic fragility analysis:A tool for assessing design rules of RC buildings. Earthquake Engineering and Engineering Vibration,2008,7(1): 45-56
    [118]Kafali C, Grigoriu M. Seismic fragility analysis:Application to simple linear and nonlinear systems. Earthquake Engineering and Structural Dynamics,2007, 36(13):1885-1900
    [119]Hueste MBD, Bai JW. Seismic retrofit of a reinforced concrete flat-slab structure:Part Ⅱ-seismic fragility analysis. Engineering Structures,2007,29(6): 1178-1188
    [120]Shinozuka M, Lee J, Naganuma T. Statistical analysis of fragility curves. Journal of Engineering Mechanics,2000,126(12):1224-1231
    [121]吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析.地震工程与工程振动,2012,32(5):19-25
    [122]吴巧云,朱宏平,樊剑.基于性能的钢筋混凝土框架结构地震易损性分析.工程力学,2012,29(9):117-124
    [123]朱健,谭平,卜国雄.钢筋混凝土低层框架结构易损性分析.华中科技大学学报(自然科学版),2010,38(5):109-112
    [124]文波,牛荻涛.大型变电站主厂房地震易损性研究.上木工程学报,2013,46(2):19-23
    [125]何益斌,李艳,沈蒲生.基于性能的高层混合结构地震易损性分析.工程力学,2013,30(8):142-147
    [126]刘晶波,刘阳冰,闫秋实.基于性能的方钢管混凝土框架结构地震易损性分析.土木工程学报,2010,43(2):39-47
    [127]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析.自然灾害学报,2006,15(2):107-114
    [128]周奎,李伟,余金鑫.地震易损性分析方法研究综述.地震工程与工程振动,2011,31(1):106-113
    [129]刘鹏飞,刘伟庆,王曙光.基础隔震结构的性能水准与设防目标.工程抗震与加固改造,2008,30(6):55-59
    [130]邓雪松,郭永恒,周云.基础隔震结构性能的设防水准和性能日标研究.广州大学学报(自然科学版),2008,7(5):84-88
    [131]谢礼立,马玉宏,翟长海.基于性态的抗震设防与设计地震动.北京:科学出版社,2009,105-235
    [132]姚振纲,刘祖华.建筑结构试验.上海:同济大学出版社,2008,8-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700