用户名: 密码: 验证码:
白车身参数化建模与多目标轻量化优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的迅速发展,全球汽车保有量大幅增加。汽车在经济领域以及人类生活中已经发挥着巨大的作用,并以越来越大的影响力改变人类的生活与工作,但随着全球汽车保有量的高速提升,对能源、环境和交通安全带来日益巨大的影响。虽然电动汽车为最好解决方案,但就目前的技术水平来说,任何替代方法都还不如石油燃料经济方便。而对于常规燃料汽车来说,目前的开发研究正向高效能、低能耗和排放发展,这些指标都和汽车质量密切相关,汽车轻量化是当前汽车减少油耗和排放的最有效的方法。
     汽车车身大多由冲压形成件构成,结构复杂且组成零部件繁多,是整个汽车重要的组成部分。其制作费用占汽车公司投资成本的60%左右,质量约占整车质量的30-40%。在空载状况下,整车所造成的油耗约70%是消耗在车身质量上,因此,车身轻量化是整车轻量化的重要组成部分,也是目前汽车工业的主要研究课题之一。
     本文结合国家“十二五”科技支撑计划“汽车关键轻量化技术研发与整车集成应用”的子课题——车身参数化轻量化设计技术研究及其在目标车型上的集成应用项目,以国产某白车身作为研究对象,利用隐式参数化软件SFE-concept分别建立了发动机舱、地板和侧围等车身各几何结构,随之利用映射关系建立各个几何结构之间的参数化装配关系,组成参数化白车身三维实体模型,并通过SFE-concept导出有限元模型。
     在得到初始参数化有限元模型后,对其进行了低阶固有频率(主要是一阶扭转和一阶弯曲固有频率)和车身弯扭静刚度分析,并在白车身参数化有限元模型的基础上组建了整车模型,对整车模型的碰撞安全性进行了仿真分析,通过整车正面100%碰撞仿真结果中各部件吸能量在总能量中所占的比重划分了非安全相关零件和正面碰撞安全相关零件。最终与实车白车身刚度与模态试验以及整车碰撞试验结果进行对比,以此证明了本文所建白车身参数化模型的准确性。
     进行了白车身低阶固有频率以及弯曲和扭转刚度的灵敏度分析,并对难以进行灵敏度分析的车身梁结构形状变量以及安全相关性能进行了贡献度分析,以作为灵敏度分析的代替。确定了主要用于减重的对车身性能不敏感但对减重较敏感的板厚和形状设计变量以及主要用于性能弥补的板厚设计变量,为车身结构多目标轻量化优化设计提供基础。
     根据实际情况,通过对车身非安全件和安全件轻量化优化设计两个步骤完成整个白车身的轻量化优化设计。
     以白车身质量和刚度为目标,低阶固有频率为约束进行了白车身非安全件零件厚度的多目标优化设计,优化采用了NSGA-II方法进行了直接优化设计,最终从得到的非劣解前沿中根据偏好选取出最终解。
     在进行了非安全件轻量化优化设计的基础上,以白车身质量和整车正面碰撞的乘员舱加速度峰值为目标,白车身固有频率和刚度以及一些正面碰撞安全性的相关参数为约束进行了关于安全件零件厚度和形状变量的多目标优化设计。此优化为间接优化设计,通过椭圆基函数神经网络方法得到近似模型,利用该近似模型进行多目标轻量化优化设计。
     进行了两个阶段的轻量化优化设计后,整个白车身的质量由326.22kg降低到了292.95kg,减重效果十分明显,同时该白车身各项性能没有较大的变化,虽然有些性能有小幅降低,但降幅均在7%之内,轻量化系数由初始模型的4.49变化为4.33,结果表明,本文所进行的轻量化优化取得了很好的效果。
With the rapid development of the automotive industry, the car ownership increasedsignificantly in worldwide. The vehicle had played a huge role in human life and economicsphere. The growing influence changed people's life and work. But with the high-speedincreasing in car ownership of the world, it was influenced the energy, the environment andthe traffic safety enormous. Although electric cars was the best solution, at actual technologylevel, any other method could not be more economic than fossil fuel. As for conventionalfuels for cars. Current vehicle research was developing in high efficiency, low energyconsumption and low emissions, which were all close to vehicle quality. So, the vehiclelightweight was most effective ways to reduce the fuel consumption and emissions atpresent.
     The body was an important part of the whole vehicle.Most of the vehicle body weremake up of stamping parts, which had a complex structure and was composed of many parts.is an important part of whole. Its expense occupy almost60%of the investment cost. Thebody mass occupy about30-40%of the whole vehicle. In no-live load condition, about70%of the vehicle’s gas consumption was expended on the vehicle body. Therefore, the bodylightweight was important to the vehicle lightweight, also it was one of the main researchsubjects in vehicle industry.
     The research was developed based on the project “research on the body parameterizedlightweight design technology and its integrated application on the target models”which wasa part of the National Twelfth five-year Science and Technology Support Program “R&D ofthe key lightweight technology and integrated application on the car”. As a Chinese car wasthe research object, using implicit parameterization software SFE-concept, respectivelyestablished the car body geometry structures such as engine class, floor and side wall. Assembly relationship among the structures were established by using mapping rmethod.Composing three-dimensional solid BIW parameterization model, then, export. the FEMmodel in SFE-concept.
     Getting the initial parameterization FEM model, then, the mode and stiffness analysiswere carried out. Based on the BIW model, the whole car was built and the car crashanalysis was carried out. According to the ratio of each parts’ energy absorption to the wholecar’s energy absorption in100%frontal crash of the car, the safety related parts and thenon-safety related parts were distinguished. All of the analysis results were compared withthe experiment. Through the comparison results, the accuracy of the BIW parameterizationmodel was proved.
     The sensitivity analysis of the mode and stiffness were carried out. Because the shapevariables and the safety performance were hard to calculate the sensitivity, the relativityanalysis was used instead of the sensitivity analysis. Finally, the variables which were usedfor reducing the body mass and supplementing the performance were determined. Thosevariables were groundwork for the Multi-objective lightweight optimization design.
     According to the actual situation, The BIW multi-objective lightweight optimizationdesign was divided into two parts. One was non-safety parts lightweight optimization design,the other was safety parts lightweight optimization design.
     As the mass and stiffness of the BIW were the targets, the lower-order naturalfrequency was the constraint, the non-safety parts lightweight optimization design wascarried out. The NSGA-II method was utilized in the optimization. Finally, according to thepreference, the ultimate solution was selected in the Pareto frontier.
     Based on the result of non-safety parts lightweight optimization design, the non-safetyparts lightweight optimization design was carried out, in which the mass and the cabinacceleration peak as the targets and the mode, stiffness and the other safety performences asthe constraints. The optimization was indirect. An approximate model was established byusing the EBFNN method, which was utilized in the multi-objective lightweightoptimization design.
     After the two optimization process, the mass of the BIW was reduced from326.22kg to292.95kg. The lightweight effect was very obviously, while the performences of the BIWwere changed less Simultaneously. Although some of the performance were less reduced,those reduction were within7%. The lightweight coefficient was reduced from4.49to4.33.The results indicated that the optimization obtained a very well effect.
引文
[1]可持续发展与汽车产业面临的机遇与挑战[N],中国工业报,2011年5月27日第A02版
    [2]徐长明.2011年汽车市场分析与预测[R].北京:国家信息中心,2010.
    [3] J. C. Benedyk. Light metals in automotive applications[J]. Light Metal Age,2000,10(1):34-35.
    [4]张勇.基于近似模型的汽车轻量化设计方法[D].博士学位论文.湖南大学,2008
    [5]田浩彬,林建平,刘瑞同,等.汽车车身轻量化及其相关成形技术综述[J].汽车工程,2005,27(3):381-384
    [6]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工,2009(11):11-16.
    [7]黄宜松,陈吉清,龙江启.车身轻量化材料的应用进展[J].中国制造业信息化,2009,38(21):74-78.
    [8]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报,2008,44(6):27-35
    [9]李军,陈云霞,李中兵.汽车轻量化应用技术探讨[J].汽车工艺与材料,2010(2):12-17.
    [10] Waurzyniak, Patrick. Advanced materials in automotive: Newer steels, aluminum,magnesium, and other materials lead to more lightweight, economical vehicles [J].Manufacturing Engineering,2009,143(3)
    [11]燕战秋,华润兰,论汽车轻量化[J],汽车工程,1994,16(6):375-383
    [12] Hong Seok Lim, Yong Woo Kim, Man Hoi Koo, et al. Two-stage design process ofa frame-panel land vehicle structure employing topology and cross sectionoptimization [J]. Journal of Mechanical Science and Technology,2010,24(10):1963-1967
    [13] C. Taylor. PNGV materials accomplishments[J]. Automotive Engineering(Warrendale, Pennsylvania),1996,104(12):39-40.
    [14]敖炳秋.轻量化汽车材料技术的最新动态[J].汽车工艺与材料,2002(8-9):1-21
    [15]许珞萍,邵光杰,李麟,等.汽车轻量化用金属材料及其发展动态[J].上海金属.2002,24(3):1-6
    [16]王宏雁,陈君毅.汽车车身轻量化结构与轻质材料[M].北京:北京大学出版社,2009.
    [17] Porsche Engineering Services, Inc. Ultralight steel auto body final report[R],Bietigheim-Bissingen: Porsche Engineering Services,1998
    [18] Porsche Engineering Services,Inc. ULSAC validation program engineeringreport[R]. Bietigheim-Bissingen: Porsche Engineering Services,2000.
    [19] American Iron and Steel Institute. ULSAB-AVC advanced vehicle concepts:overview report[R].2002.
    [20] M. D. Thorpe, H. Adam. ULSAB-Advanced vehicle concepts-overview anddesign[C]. SAE Technical Paper,2002-01-0036,2002.
    [21] J. Shaw, R. Roth. Achieving and affordable low emission steel vehicle andeconomic assessment of the ULSAB-AVC program design[C]. SAETechnical Paper,2002-01-0361,2002.
    [22]陆匠心,王利,应白桦等,高强度汽车钢板的特性及应用[J],汽车工艺与材料.2004(6):13-15
    [23]冯美斌.汽车轻量化技术中新材料的发展及应用[J].汽车工程,2006,28(3):214-220.
    [24]马鸣图,游江海,路洪洲,等.铝合金汽车板性能及其应用[J].中国工程科学,2010,12(9):4-20
    [25] H. Schretzenmayr. Technical report: the aluminum body of the Audi A8[J].International Journal of Vehicle Design,1999,21(2-3):303-312.
    [26]钱人一. Audi A2车身铝合金空间框架[J].世界汽车,2001(4):8-15
    [27]肖军.现代轿车全铝车身的研究进展[J].上海有色金属,2006,27(1):24-27
    [28] W. S. Miller, L. Zhuang, J. Bottema, et al. Recent development in aluminium alloysfor the automotive industry[J]. Materials Science and Engineering,2000,A280:37-49.
    [29] A. Wrigley. GM's plans for Precept give aluminum shot in the arm[J]. AmericanMetal Market,2000,108(7):6
    [30] R.Koganti, J.Weishaar. Aluminum Vehicle Body Construction and EnablingManufacturing Technologies[C]. SAE Technical Paper,2008-01-1089,2008
    [31] D. Elizer, E. Aghion, F.H. Froes. Magnesium science, technology andapplications[J]. Advanced Performance Material.1998,5(3):201-212
    [32] B. L. Mordike, T. Ebert. Magnesium properties applications potential[J]. MaterialsScience and Engineering,2001,30(2):37-45.
    [33] H. Friedrich, S. Schumann, Research for a "new age of magnesium" in theautomotive industry[J], Journal of Materials Processing Technology,2001,117(3):276-281
    [34]陈军.镁合金在汽车工业中的应用分析[J].材料研究与应用,2010,4(2):81-84
    [35]龙思远,徐绍勇,曹韩学,等.长安汽车轻量化与镁合金应用[J].现代零部件,2010(11):32-36.
    [36]严伯昌.塑料在汽车上的应用现状与趋势[J].橡塑资源利用,2007(1):32-36
    [37]钟世云,杨乔治,塑料在轿车车身部件上的应用[J].中国塑料,2003,17(2):10-14
    [38] B. Gregl, M. Sommer. Weight reduction in the transportation market through lowdensity SMC[C]. SAE.2001-01-3424
    [39] K. Schacht. Die kunststoff karosserie[J]. Kunststoffe,2001,91(3):32-34
    [40] L. Castejon, J. Cuartero, R. Clemente, et al. Energy absorption capability ofcomposite materails applied to automotive crash absorbers design[C], SAE.980964
    [41] Y. Li, Z. Lin, A. Jiang, et al. Experimental study of glass-fiber mat thermoplasticmaterial impact properties and lightweight automobile body analysis[J]. Materialsand Design,2004,25(7):579-585
    [42] R.G. Boeman, N.L. Johnson. Development of a cost competitive, compositeintensive, body-in-white[C]. SAE.2002-01-1905,2002
    [43]施志刚,王宏雁.变截面薄板技术在车身轻量化上的应用[J].上海汽车,2008(8):36-39
    [44]李淑慧,林忠钦,倪军等,拼焊板在车身覆盖件冲压成形中的研究进展[J],机械工程学报,2002,38(2):1-7
    [45] A. Alaswad, K. Y Benyounisa, A. Golabi. Employment of finite element analysisand Response Surface Methodology to investigate the geometrical factors in T-typebi-layered tube hydroforming[J]. Advances in Engineering Software,2011,42(11):917-926.
    [46] Zhang S.H, Wang Z.R, Xu Y, et al. Recent development in sheet hydroformingtechnology[J], Journal of Materials Processing Technology,2004,151(1-3):237-241
    [47] Mathieu A, Shabadi R, Deschamps A, et al. Dissimilar material joining using laser(aluminum to steel using zinc-cased filler wire)[J], Optics and Laser Technology,2007,39(3):652-661
    [48] Schubert E, Klassen M, Zerner C, et al. Light-weight structures produced by laserbeam joining for future applications in automobile and aerospace industry[J],Journal of Materials Processing Technology,2001,115(1):2-8
    [49] Wu Qiang, Gong Jinke, Chen Genyu, et al. Research on laser welding ofvehicle body[J]. Optics and Laser Technology,2008,40:420-426
    [50] M. M.凯默尔,J. A.沃尔夫,陈砺志译.现代汽车结构分析[M].北京:人民交通出版社,1987
    [51]谷安澜.有限元法在汽车设计中的应用[J].国外汽车,1976(4):1-12.
    [52]雷正保,钟志华,汽车碰撞仿真研究发展趋势[J],长沙交通学院学报,1999,15(1):18-22
    [53] R. Winter, M. Mantus, A. B. Pifko. Finite Element Crash Analysis of a Rear EngineAutomobile[C]. SAE Paper,1981,811306.
    [54] D. J.Benson, J. O.Hallquist The application of DYNA3D in large scalecrashworthiness calculations[C]. Proceedings of ASME International Computers inEngineering Conf. Chicago, America.1984:8-12
    [55] G. G. Lim, A. Paluszny. Side impact research[C]. SAE Technical Paper,1989,885055.
    [56] N.K. Saha, S.M. Calso, P. Prasad. Simulation of frontal barrier offset impacts andcomparison of intrusions and decelerations[C]. SAE Technical Paper,1995,950647
    [57] A. D. Kelkar, M. H. Schulz, P. Chaphalkar, et al. Simulation of a car frontal offsetimpact into a fixed deformable barrier[C]. SAE Technical Paper,1996,962485.
    [58]贾宏波.汽车车身结构碰撞性能的计算机模拟、评价与改进[J].吉林工业大学学报,1998,28(2):6-11
    [59] T. A. Omar, A. Eskandarian, N. E. Bedewi. Crash analysis of two vehicles in frontalimpact using adaptive artificial neural networks[J]. American Society of MechanicalEngineers, Applied Mechanics Division,1998(230):115-129.
    [60] N.E. Bedewi, C.D. Kan, S. Summers, et al. Evaluation of car-to-car frontal offsetimpact finite element models using full scale crash data[C]. SAE Technical Paper.1995,950650
    [61]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,200022(2):85-89.
    [62] M. Langseth, O.S.Hopperstad, T. Berstad. Crashworthiness of aluminiumextrusions validation of numerical simulation, effect of mass ratio and impactvelocity[J]. International Journal of Impact Engineering,1999,22(9-10):839-854
    [63] G. H. Daneshi, S. J. Hosseinipour. Experimental study on thin-walled grooved tubesas an energy absorption device[J].Structures and Materials,2002(11):289-298.
    [64] D.A. Galib, A. Limam. Experimental and numerical investigation of static anddynamic axial crashing of circular aluminum tubes[J]. Thin-walled structures.2004,42(8):1103-1137
    [65] Z. Ahmad, D. P. Thambiratnam, A. C. Tan. Dynamic energy absorptioncharacteristics of foam-filled conical tubes under oblique impact loading[J].International Journal of Impact Engineering,2010,37(5):475-488.
    [66] G. M. Nagel, D. R. Thalllbiratnam. A numerical study on the impact response andenergy absorption of tapered thin-walled tubes[J]. International Journal ofMechanical Sciences,2004,46(2):201-216.
    [67] S. Polavarapu. Topology and free-size optimization with multiple loading conditionsfor light weight design of die cast automotive backrest frame[D]. Clemson:Clemson University,Mechanical Engineering,2008.
    [68] P.O. Marklund, L. Nilsson. Optimization of a car body component subjected to sideimpact[J]. Structural and Multidisciplinary Optimization,2001,21(5):383-392
    [69] Y. Zhang, P. Zhu, G. L. Chen. Lightweight Design of Automotive Front Side RailBased on Robust Optimisation[J]. Thin-Walled Structures,2007(45):670-676.
    [70]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件耐撞性优化设计[J].应用力学学报,2003,20(3):61-66
    [71] Cochrane J L, Zeleny M. Multiple criteria decision making[M]. SouthCarolina:University of South Carolina Press, Columbia,1973,1-816
    [72]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004,76-108
    [73] M. Alimardani. Computational Optimum Lightweight Design of An InstrumentPanel Support Structure[D]. Toronto: University of Toronto (Canada),2004.
    [74] N. Cristello. Multidisciplinary design optimization of a zero emission vehiclechassis considering crashworthiness and manufacturability[D]. Kingston,Ontario: Queen's University (Canada),2006.
    [75] A. Londhe, D. Kalani, A. Ali. A systematic approach for weight reduction of BIWpanels through optimization[C]. SAE Paper:2010-01-0389.
    [76] J. Sobieszczanski-Sobieski, S.Kodiyalam, R.Y. Yang. Optimization of car bodyunder constraints of noise, vibration, and harshness (NVH), andcrash[J]. Structural and Multidisciplinary Optimization,2001,22(4):295-306
    [77] S. Kodiyalam, R.J. Yang, L.Gu, et al. Multidisciplinary design optimization of avehicle system in a scalable, high performance computing environment[J].Structural and Multidisciplinary Optimization,2004,26(3-4):256-263
    [78]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,43(8):142-147
    [79]谭耀武,杨济匡,王四文.轿车B柱耐撞性与轻量化优化设计研究[J].中国机械工程,2010,21(23):2887-2892.
    [80]叶辉,胡平,申国哲,等.基于灵敏度和碰撞仿真的汽车车身轻量化优化设计[J].农业机械学报,2010,41(10):18~22
    [81]史国宏,陈勇,杨雨泽,等.白车身多学科轻量化优化设计应用[J].机械工程学报.2012,48(8):110~114
    [82]崔新涛.多材料结构汽车车身轻量化设计方法研究[D].天津:天津大学机械工程学院,2007.
    [83] J. Hilmann, M.Paas, A. Haenschke, et al. Automatic concept model generation foroptimisation and robust design of passenger cars[J]. Advances in EngineeringSoftware,2007,38(11-12):795-801.
    [84] Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting ingenetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248
    [85] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
    [86]刘文卿.试验设计[M].北京:清华大学出版社,2005
    [87]张公绪.新编质量管理学[M].高等教育出版社,1998:210-253
    [88] H. R. Lindman. Analysis of variance in experimental design[C]. New York:Springer-Verlag,1991
    [89] R. N. Kackar. Off-Line Quality Control, Parameter Design, and the TaguchiMethod[J]. Journal of Quality Technology,1985,17:176-188
    [90]方开泰,均匀设计及其应用(III)[J],数理统计与管理,1994,13(3):52-55.
    [91]贾志新,张宏斌,郗安民.基于径向基函数神经网络的电火花线切割机床可靠性数据模拟生成[J].机械工程,2010,46(2):145-149
    [92] MA Yongguang, MA Liangyu, MA Jin. RBF neural net-work based fault diagnosisfor the thermodynamic system of a thermal power generating unit[C]//2005International Conference on Machine Learning and Cybernetics, ICMLC,Guangzhou,2005,8:4738-4743
    [93] Powell M. J. D. Radial basis functions for multivariable interpolation: a review[C].Proc. IMA Conference on Algorithms for Approximation of Functions and Data,Shrivenham, UK,1985.
    [94] Broomhead D S, Lowe D. Multivariable functional interpolation and adaptivenetworks[J]. Complex Systems,1988,2:321-355.
    [95] Moody J, Darken C. Fast learning in networks of locally-tuned processing units.Neural Computation[J].1989,1:281-294.
    [96] Hardy, R. L. Multiquadratic Equations of Topography and Other IrregularSurfaces[J]. Journal of Geophysical Research,1971,(76):1905–1915
    [97] Kansa, E. J.&Hon, Y. C. Circumventing the III Conditioning problem withMultiquadric radial basis functions: Applications to elliptic partial differentialequations[J]. Computers and Mathematics with Applications,2000,(39):123-137.
    [98] Benoit Guillaume, Marine Chanet. Improving the accuracy of large-dimensionresponse surface models: application to the vibration behaviour of a car body[C].2nd International Conference on Engineering Optimization. Portugal,2010:1-10
    [99] Kohonen T. Self-organizing maps[C]. Berlin, Germany: Springier-Verlag,1995.
    [100] Uykan Z, Guzelis C, Celebi M E et al. Analysis of input-output clustering fordetermining centers of radial basis function networks[J]. IEEE Trans. NeuralNetworks.2000,11(4):851-858.
    [101] Karayiannis N B. Reformulated radial basis neural networks trained by gradientdescent[J]. IEEE Trans.Neural Networks,1999,10(3):657-671.
    [102] Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm forradial basis function networks[J]. IEEE Trans. Neural Networks,1991,2(2):302-309.
    [103] Bruno Lüdke, Markus Pfestorf. Functional Design of a “Lightweight Body inWhite”–How to determine Body in White Materials according to structuralRequirements. Niobium Microalloyed Sheet Steels For Automotive ApplicationsEdited by TMS (The Minerals, Metals&Materials Society),2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700