用户名: 密码: 验证码:
连杆断裂剖分过程数值模拟及主要裂解缺陷分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机连杆裂解加工以断裂力学、应力集中理论及裂纹技术为基础,通过人造起裂源及其可控扩展实现连杆本体与盖端的快速断裂分离,利用获得的三维凹凸断裂面实现连杆体/盖合装时的精确定位及完美啮合,从而大幅度简化连杆加工工艺流程、降低制造成本,提高产品的装配质量及承载能力。
     连杆裂解加工的核心工序主要包括预制切口、断裂剖分(也称胀断)及装配螺栓。连杆裂解加工要求断裂剖分时不能产生过大的塑性变形,并保证断裂面形态良好,以满足连杆工作时的定位精度及承载能力。然而,就力学角度而言,连杆裂解是一个三维裂纹萌生、扩展直至断裂的过程,断裂瞬间完成,影响因素复杂,易发生裂解缺陷且较难控制。
     本文基于切口件断裂及小范围屈服线弹性断裂理论,利用Ansys/Ls-dyna软件数值模拟连杆断裂剖分过程,通过研究断裂过程中力学量场的变化、捕捉起裂点位置及裂纹扩展路径,系统分析了连杆断裂的影响因素、裂解缺陷的产生原因,并提出相应的控制手段及改善措施;基于逆向工程技术重构断裂面三维形貌,通过对断裂面的量化分析给出断裂面缺损的控制范围,为裂解缺陷控制及质量评价提供科学依据。
     论文主要研究内容及取得成果如下:
     (1)基于连杆裂解断裂模式及断裂力学理论,分析连杆切口裂纹萌生的原因及小范围屈服条件下裂纹尖端应力分布特点,确定最大主应力准则为连杆断裂的判据。
     基于切口件断裂理论,分析了连杆切口裂纹萌生原因。在胀断载荷作用下,当切口附近的局部高应力达到材料损伤断裂应力时微裂纹萌生,符合传统强度理论。基于小范围屈服修正的线弹性断裂理论,分析了裂纹尖端附近的应力场。裂纹扩展时因塑性变形导致裂尖钝化并引起应力松弛效应,使应力分布有界。
     结合连杆裂解断裂模式分析及断口微观形貌表明,切口裂纹萌生与钝裂纹扩展的微观断裂机制相同,最大主应力是引起断裂的主要因素,依此确定最大主应力准则作为数值模拟分析时裂纹萌生与扩展的统一判据。
     (2)数值模拟研究连杆断裂剖分过程,系统分析裂纹萌生与扩展中的应力、应变、位移场,及载荷作用特点,明确了高应力范围、起裂点位置、塑性变形发生时刻及区域,为裂解质量控制提供理论依据。
     构建连杆断裂剖分三维有限元分析模型,实验获取高碳微合金非调质钢C70S6的力学性能参数,并对连杆断裂过程中的应力、应变、位移场,及裂纹萌生与扩展特点进行数值分析。结果表明,在胀断载荷作用下,切口引入应力集中及三向拉应力,使连杆在低应力状态下实现准脆性断裂分离,起裂时局部高应力被限制在以切口顶端为中心的0.5mm范围内;由于连杆大头自由端面与厚度中面三维约束度不同,导致应力状态差异,中面切口顶端次表层处于较高的三向拉应力状态,裂纹萌生于此。
     起裂前是为微裂纹萌生积蓄能量的阶段,故载荷作用时间相对较长,导致塑性变形主要发生在裂纹萌生前,集中位于切口顶端0.25mm范围内;而裂纹扩展至断裂所需时间极短暂,产生的断裂面边缘塑性变形量微小。塑性变形的发生,使连杆大头孔产生沿连杆轴线方向伸长、垂直轴线方向收缩的失圆现象。
     (3)分析切口几何对应力集中程度、裂解力、起裂时间及塑性变形的影响,给出了切口几何参数的设计原则或优选范围。
     切口系人为预制起裂源,其参数设计直接影响连杆断裂剖分精度及产品质量。数值模拟研究表明,切口深度h和曲率半径r对连杆断裂影响显著,随着切口深度h的增加或曲率半径r的减小,应力集中程度提高、裂解力降低、起裂时间提前、塑性区范围缩小;切口张角α对其影响相对较弱,当α等于30°左右时,裂解质量最佳。
     结合实际提出切口深度的设计原则,即保证断裂分离后大头孔变形量在公差允许范围内(切口深度最小值)并满足大头孔精镗余量要求(切口深度最大值);给出参数优选范围,其中r=0.1mm~0.2mm,α=30°~60°,对于轿车连杆h=0.4mm~0.5mm。
     (4)分析螺栓孔及其加工位置对断裂剖分的影响,给出了螺栓孔位置设计的参考范围。
     钻铰螺栓孔是连杆加工中必不可少的加工工序。研究表明,螺栓孔的存在,改变了面内约束效应,对连杆断裂过程的影响有利有弊。一方面,降低裂解力、减少两端面及大头孔壁塑性变形,并使切口顶端在中面位置上出现应力峰值点,有利于保证连杆在预定位置精确剖分;另一方面,增大了中面切口根部塑性区范围,引入断裂面孔边缘塑性变形,产生了消极影响。
     综合分析结果,给出了螺栓孔位置设计的参考范围,即保证中面切口顶端至螺栓孔壁间厚度大于2mm条件下,螺栓孔偏向大头端内侧加工,可有效发挥螺栓孔对裂解加工的积极作用。
     (5)研究断裂面质量缺陷的产生原因与易发生位置,提出了改善措施。
     三维断裂面是连杆体/盖合装的定位基准,其质量好坏直接影响连杆装配精度及使用性能。基于断裂过程三维数值模拟分析,借助APDL进行后处理二次开发,提取裂纹扩展前缘信息,捕捉裂纹扩展路径并计算各阶段裂纹扩展速度,明确断裂面质量缺陷,如爆口、台阶、掉渣、裂纹分叉等的产生原因及易出现位置。
     由于裂纹绕过螺栓孔后的重新汇合以及裂纹扩展中的压应力,使螺栓孔至连杆大头端外侧区域极易出现断裂面质量缺陷,如果保留大头端外侧圆弧状轮廓(即制坯过程中的锻造表面),尤其是在外缘轮廓与螺栓孔近乎形成等距曲线的条件下胀断,可降低断裂面质量缺陷的发生几率。
     (6)研究连杆Ⅰ-Ⅱ复合型断裂过程,分析断裂线偏移的产生原因,并提出控制措施;分析断裂线偏移量与裂纹角的关系,给出轿车连杆许可偏载范围。
     断裂线偏移是裂解加工中常见缺陷之一,影响连杆承载能力。数值模拟分析表明,发生断裂线偏移的根本原因是偏载导致理论裂纹面上出现剪应力,使连杆裂解由Ⅰ型断裂变为Ⅰ-Ⅱ复合型断裂,据此提出实际生产中的控制措施。进而研究偏载条件下断裂时起裂角、断裂线偏移量与裂纹角之间的关系,随着裂纹角的减小,起裂角绝对值及断裂线偏移量增大,据此给出轿车连杆允许的偏载范围,即载荷偏离连杆轴线应控制在2°范围内。
     (7)基于逆向工程技术开发断裂面形貌三维重构软件,量化分析断裂面面积,提出断裂面缺损的规范方法;引入粗糙度参量,进一步探索实用化规范手段。
     针对生产实践中对断裂面缺损(断裂面大面积颗粒脱落)尚缺乏科学规范依据的现状,将实验与逆向工程技术相结合,基于MFC程序框架,利用OpenGL核心函数开发了连杆断裂面重构软件,再现断裂面三维形貌,进而定量分析断裂面面积,与机加工平面相比,断裂剖分面积增幅在13%以上,据此提出以不降低连杆承载能力为前提来规范断裂面缺损尺寸,并给出轿车连杆断裂面缺损尺寸的许可范围,为合理评价断裂面质量提供科学依据。
     为简化断裂面缺损规范过程,引入粗糙度参数,建立断裂面缺损许可范围与轮廓线粗糙度之间的函数关系,方便不同种类连杆断裂面缺损控制标准的制定及生产中应用。
Fracture splitting processing technology for engine connecting rod is based on theprinciple of fracture mechanics, stress concentration theory and crack technology.Connecting rod body and cap are made high-speed fracture separation by artificial cracksources and controlled propagation. At the same time, the three-dimensional concave andconvex shape fracture surface is obtained. This natural fracture surface is chosen as thelocating datum when connecting rod body and cap is assembled, and accurate positioningand perfect meshing are realized. Accordingly connecting rod machining process issimplified greatly, the manufacturing cost is reduced. The assembly quality of product andcarrying capacity are improved.
     The key process of connecting rod fracture splitting mainly includes notching,directional splitting and assembling bolt. Among them, it is required that directional splittingprocedure could not produce large plastic deformation, and it must be ensured that thefracture surface morphology is good. So the positioning accuracy and load capacity can besatisfied when the connecting rod works. While there are complex factors and incidentfracture splitting defects in directional splitting procedure. In terms of mechanics, theconnecting rod fracture splitting is a three-dimensional process, including crack initiation,crack growth, crack propagation, and fracture. The whole process is difficult to control.
     In the paper, based on part notched fracture and small scale yielding linear elasticfracture mechanics, connecting rod fracture process is simulated numerically using theAnsys/Ls-dyna. Through studying the changes of the mechanical field in fracture splittingprocess, crack initiation position and crack propagation path were achieved. Then, itsystematically analyzed the factors of fracture splitting process, the reason for fracturesplitting defects. The corresponding control measures and improvement measures wereproposed. The three-dimensional fracture surface morphology was reconstructed based onreverse engineering technology. The control range of fracture surface defects was giventhrough descripting the fracture surface quantitatively, which provided a scientific basis forcracking defect control and quality evaluation.
     Main research contents and results of the paper are as follows:
     (1) Based on the connecting rod fracture splitting model and fracture mechanics theory, the reason of connecting rod notch crack initiation and the crack tip stress distribution on thecondition of small scale yield were analyzed. It was determined that maximum principalstress was the criterion of connecting rod fracture splitting.
     Based on fracture theory of notched parts, the law of connecting rod notch crackinitiation was analyzed. Under the fracture splitting load, the micro-crack produced when thelocal high stress near the notch reached the material damage fracture stress, whichconformed to the traditional strength theory. Based on the modified linear elastic fracturetheory of small scale yield, stress field near the crack tip was analyzed. The crack tip waspassivated due to the plastic deformation during crack propagation and the stress relaxationeffect, and stress distribution was bounded.
     Combining the connecting rod fracture splitting pattern with fracture microstructureanalysis, it made clear that the micro fracture mechanism of notch crack initiation was thesame as the one of blunt crack propagation. The maximum principal stress was a major causeof fracture. And the maximum principal stress criterion was determined as the unifiedcriterion for crack initiation and propagation while doing numerical simulation analysis.
     (2) Connecting rod fracture process was researched through numerical simulation. The crackinitiation and stress, strain, displacement field during propagation, and load characteristicswere analyzed systematically. The high stress range, crack initiation position, plasticdeformation time and area were determined. A theoretical basis was provided for fracturesplitting quality control.
     The three-dimensional finite element analysis model of the connecting rod fracture wasconstructed. The mechanics performance parameters of high carbon micro-alloynon-quenched and tempered steel C70S6were obtained by experiment. And the stress, strain,displacement field, and the crack initiation and propagation characteristics during connectingrod fracture splitting were analyzed numerically. The results showed that under the fractureload, the notch introduced stress concentration and three-dimensional tensile stress, whichmade the connecting rod achieve quasi brittle fracture at low stress. When the fracturesplitting was beginning, the local high stress was limited in range of0.5mm from the top ofthe notch as the center; Since the three dimensional constraints between the large end freesurface of connecting rod and the thickness middle surface was different, it led to differencesin stress state. The subsurface of the top of middle surface notch where the crack initiatedwas at a higher three dimensional tensile stress state.
     In addition, energy was accumulated for micro-crack initiation before fracture initiation,so functioning time of fracture splitting force was relatively long, which made plasticdeformation occur intensively before crack initiation, and the plastic deformation zone was located in range of0.25mm from the top of the notch. Propagation time after crack initiationwas very short, and plastic deformation at the fracture surface edge was small. Because ofplastic deformation, out-of-roundness phenomenon appeared which meant the large end boreextended in the connecting rod axis direction and shrunk along the vertical axis.
     (3) The influences of the notch geometric parameters on stress concentration, fracturestrength, fracture initiation time and plastic deformation were analyzed. The design principleof notch geometric parameters or optimal range was given.
     Notch was the prefabricated fracture initiation source, and design in notch parameterdirectly affected the connecting rod fracture subdivision accuracy and product quality.Numerical simulation analysis showed that notch depth and curvature radius had significanteffects on fracture splitting. With the increase of notch depth or with the decrease of thecurvature radius, the degree of stress concentration was increased, fracture splitting strengthwas reduced, fracture initiation time was to bring forward, and plastic zone range was shrunk.The impact of notch angle on the fracture splitting process was relatively weak, and whennotch angle was equal to about30°, fracture splitting quality was optimum.
     The design principle of notch depth was proposed to ensure the deformation of the largeend bore after fracture separation in the range of allowable tolerances (the minimum notchdepth) and met the requirement of the large end bore precision boring allowance (themaximum notch depth). Optimized parameter range was given with practice, that iscurvature radius was equal to0.1mm~0.2mm and notch angle was equal to30°~60°.Notch depth for cars connecting rod should be controlled within0.4mm to0.5mm.
     (4) The influence of the bolt hole and its processing position on the fracture splittingprocessing was analyzed, and the reference range of bolt hole position design was given.
     Drilling bolt hole was the essential procedure before fracture splitting processing. Theexistence of the bolt hole changed the in-plane constraint effect, and the influencing on theconnecting rod fracturing splitting processing had both advantage and disadvantage. On theone hand, the splitting force, the plastic deformation of the two end surface and large endbore wall was reduced, and the peak stress points appeared on the middle surface of the topof the notch, which ensured the accuracy fracture on the predetermined splitting location; Onthe other hand, the plastic zone range on the middle surface of the notch root was increased,and plastic deformation of the hole edge of fracture surface was introduced. This had anegative effect.
     By comprehensive analysis results, the reference range of designing bolt hole positionwas presented. The bolt hole should be processed near to the inside of big head end and under the condition that the wall thickness between the middle surface of the top of notchand the bolt hole was larger than2mm, which could guarantee the bolt hole effectivelyplayed a positive role on the fracture splitting processing.
     (5) The causes of the fracture surface quality defects and incident positions were analyzed,and the ameliorative measures were proposed.
     Three-dimensional fracture surface is the locating datum when connecting rod body andcap are assembled, and its quality directly affects the connecting rod assembly precision andperformance. In this paper, the APDL language was used to program the secondarydevelopment order in the post processing of the simulation software. The information ofcrack propagation front edge was extracted, the crack propagation path was captured and thedifferent stages of crack growth rate were calculated. The causes of fracture surface qualitydefects, such as cracking-off, step, slag and crack bifurcation, etc., and incident positionswere analyzed.
     Because of the confluence after cracks bypassing the bolt hole and the compressivestress in crack propagation, fracture surface quality defects appeared easily in the area fromthe bolt hole to the outer end of large end. If the outer end of large end arc shape profile (thatis the forging surface in the process of blocking) was reserved, especially under thecondition that the outer contour and the bolt hole almost formed equidistant curve whenfracturing, the risk of such defects could be reduced.
     (6) By studying I-II combined fracture, the reason for the fracture line deviation and therelationship between fracture line deviation and crack angle were analyzed. Permissivepartial load range of connecting rod for passenger cars was obtained, and the fracture linedeviation of control measures were proposed for production practice.
     Fracture line deviation is one of the common defects in fracture splitting process, whichwill influence the connecting rod bearing capacity. The basic reason for fracture linedeviation is that partial load cause shear stress appearing on the theoretical crack surface, thetype of connecting rod fracture changes from mold I fracture into I-II combined fractureunder shear stress. According to the simulation result, the control measures in practicalproduction were proposed. Then the relationship among fracture initiation angle, fractureline deviation and the crack angle when I-II complex fracture occurred was studied. Withthe decrease of the crack angle, the absolute value of crack initiation angle and the offset offracture lines increased. According it, the car connecting rod permissive partial load rangewas given. Namely, the offset between load and connecting rod axis should be controlledwithin2°range.
     (7) Based on fracture surface three-dimensional reconstruction software developed byreverse engineering technology, the area of fracture surface were quantitatively analyzed,specification method for fracture surface defect were proposed. Further practicalspecification and measurement method was explored by the introduction of the roughnessparameters.
     According to the problem that there was a lack of effective detection methods andscientific standardized basis on the fracture surface defect (fracture surface large area shedparticles) in production practice, the connecting rod fracture reconstruction software wasdeveloped based on MFC application framework by combining fracture splittingexperiments with reverse engineering technology and using OpenGL core functions. Thefracture surface three-dimensional topography reappeared numerically in this software. Thefracture surface area was calculated quantitatively. Compared with the machined surface, thearea was increased above13%. Therefore, the method of evaluating fracture surface defectssize was proposed on the premise of not reducing the connecting rod bearing capacity, andthe permission scope of connecting rod fracture surface defect size for passenger cars wasgiven, which provided a scientific basis for reasonable evaluation of fracture surface quality.
     To simplify the specification process of the fracture surface defects, the roughnessparameters were introduced. And the function relation between the fracture surface defectpermission range and the contour roughness was established which was convenient forformulating control standards of different connecting rod fracture surface detect and actuallyapplying in production.
引文
[1] Yasuo Takagi, Teruyuki Itoh, Shigeo Marunaka. Simultaneous attainment of low fuelconsumption, high output power and low exhaust emissions in direct injection SI engines[J]. SAE Technical PaperSeries:980149.
    [2]连刚.中外汽车发动机合资企业核心竞争力研究[D].哈尔滨:哈尔滨工程大学,2006.
    [3] Gu Z, Yang S, Ku S, et al. Fracture splitting technology of automobile engine connectingrod [J]. The International Journal of Advanced Manufacturing Technology,2005,25(9-10):883-887.
    [4] Shenoy P S, Fatemi A. Dynamic analysis of loads and stresses in connecting rods [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2006,220(5):615-624.
    [5]清华大学工程系《汽车构造》编写组.汽车构造[M].北京:人民邮电出版社,2000.
    [6]于永仁.连杆裂解工艺[J].汽车工艺与材料,1998(9):9-11.
    [7] Zhang X, Cai Q, Zhou G, et al. Microstructure and mechanical properties of V-Ti-Nmicroalloyed steel used for fracture splitting connecting rod [J]. Journal of materialsscience,2011,46(6):1789-1795.
    [8]陈国华.内燃机平切口式连杆结构的最优化设计[J].内燃机学报,1983,1(1):51-62.
    [9]陈家瑞.汽车构造(上册)[M].长春:吉林科技出版社,2001.
    [10] Henzler P, Tengler A. Method and installation for machining machine parts having abearing eye: U.S. Patent5,263,622[P].1993-11-23.
    [11] Becker LT. Method of cracking a connecting rod: U.S. Patent5,274,919[P].1994-1-4.
    [12] H hnel M, Wisniewski H. Device for separating the rod and cap of a connecting rod bybreaking: U.S. Patent6,457,621[P].2002-10-1.
    [13] Fauser N, Hahnel M, Miessen W. Method and apparatus for fracturing connecting rods:U.S. Patent5,169,046[P].1992-12-8.
    [14]寇淑清,杨慎华,金明华.发动机连杆裂解加工技术及其应用[J].机械强度,2004,26(5):538-541.
    [15]寇淑清,杨慎华,邓春萍,等.裂解工艺—发动机连杆制造最新技术[J].中国机械工程,2001,12(7):839-841.
    [16]杨慎华,寇淑清,谷诤巍,等.发动机连杆裂解加工新技术[J].哈尔滨工业大学学报,2000,32(3):129-131.
    [17] Blauel JG, Mayville RA, Moser M. Materials and mechanics for fracture splitting ofautomobile connecting rods [J]. MATERIALWISSENSCHAFT UNDWERKSTOFFTECHNIK,2000,31(3):238-244.
    [18] Kubota T, Yamagata H. Advanced technology of automotive connecting rod [C].//Materials science forum.2007,539:4850-4854.
    [19]谷诤巍,姚卫国.发动机连杆裂解工艺与装备[J].制造技术与机床,2006(11):103-105.
    [20] Kubota T, Iwasaki S, Isobe T, et al. Development of fracture splitting method for casehardened connecting rods [J]. SAE transactions,2004,113(3):1905-1911.
    [21] Г.П.切列帕诺夫.脆性断裂力学[M].北京:科学出版社,1990.
    [22] Zhao Y, Yang S H, Zheng Q F. The Effect of Notch Processing on Fracture ofHigh-Carbon Steel (C70S6)[J]. Advanced Materials Research,2011,217:1283-1288.
    [23] Tang Y J, Li Y B, Zhang Y J, et al. Study on Machining of Cracking Notches forAutomotive Connecting Rod Using WEDM [J]. Key Engineering Materials,2010,447:228-232.
    [24]张志强,郑祺峰,赵勇,等.预制裂纹槽加工方法对连杆裂解加工质量的影响规律[J].内燃机工程,2008,29(5):80-84.
    [25]杨慎华,张志强,寇淑清.发动机连杆裂解加工关键技术的研究[J].内燃机工程,2006,27(5):80-84.
    [26] Zheng L, Kou S, Yang S, et al. A study of process parameters during pulsed Nd: YAGlaser notching of C70S6fracture splitting connecting rods [J]. Optics&LaserTechnology,2010,42(6):985-993.
    [27] Kou S Q, Wang J W, Gao Y. Microstructure and fracture splitting properties of a fracturesplitting notch produced in a connecting rod (C70S6) using pulsed laser grooving [J].Lasers In Engineering,2010,20(5):381.
    [28]张志强,杨慎华,赵勇,等.锻造工艺对发动机连杆裂解加工质量的影响[J].汽车技术,2007(10):57-59.
    [29] Fukuda S, Eto H. Development of fracture splitting connecting rod [J]. JSAE Review,2002,23(1):10l-104.
    [30] Weber M. Cost Effective Finishing of Powder Forged Connecting Rods with theFracture-Splitting-Method [J]. Training,1991,2014:06-09.
    [31]寇淑清,金文明,谷诤巍,等.内燃机连杆制造最新技术与发展趋势[J].内燃机工程,2001,22(1):28-31.
    [32]张志强,杨慎华,寇淑清.发动机连杆裂解材料[J].新技术新工艺,2005(6):63-65.
    [33]曹正.汽车发动机连杆材料的现状及发展趋势[J].汽车工艺与材料,2007,(1):7-10.
    [34] Zhang X Z, Cai Q Z, Zhou G F, et al. Development on Microalloyed High Carbon SteelUsed for Fracture Splitting Connecting Rods [J]. Advanced Materials Research,2011,152:301-308.
    [35] Park H, Ko Y, Jung S, et al. Development of fracture split steel connecting rods [J].Training,2003,1997:05-29.
    [36] Cristinacce M, Milbourn D J, James D E. The Future Competitiveness of AutomotiveForgings [C].//IMechE International Conference on Forging and Related Technologies,1998.
    [37]曹正,史万富,土敢利,等.高碳微合金非调质钢连杆研究[J].汽车工艺与材料,2000,(12):24-27.
    [38]李鹏.国外汽车发动机连杆材料最新应用[J].汽车工艺与材料,2010(1):42-45.
    [39] Kato S, Kano T, Hobo M, et al. Development of microalloyed steel for fracture splitconnecting rod [R]. SAE Technical Paper,2007.
    [40]赵宇.35MnVS非调质钢连杆应用研究[J].金属热处理,2001(6):28-30.
    [41]郭彪,葛昌纯,张随财,等.粉末锻造技术与应用进展[J].粉末冶金工业,2011,21(3):45-52.
    [42] Skoglund P, Bengtsson S, Bergkvist A, et al. Performance of High Density P/MConnecting Rods [R]. SAE Technical Paper,2000.
    [43] Brian James W. High performance ferrous PM materials for automotive applications [J].Metal Powder Report,1991,46(9):26-32.
    [44]韩凤麟.用常规粉末冶金工艺制造汽车连杆[J].粉末冶金技术,1996,14(3):214-224.
    [45]洪慎章.发展中的汽车连杆粉末锻造技术[J].新材料产业,2007(1):42-44.
    [46] Geiman T, Christopherson D, Marra M, et al. Machinability and Performance ofPrecision Powder Forged Connecting Rods [J]. Metal Forming,2001,2015:06-22.
    [47]李绍忠.连杆常用制造工艺及其技术经济性分析[J].汽车工艺与材料,2000(4):10-13.
    [48] Repgen B. Optimized connecting rods to enable higher engine performance and costreduction [R]. SAE Technical Paper,1998.
    [49] Chernenkoff R A, Hall D W, Mocarski S, et al, et al. Material characterization ofpowder-forged copper steels [J]. SAE transactions,1991,100(5):87-104.
    [50]韩凤麟.汽车发动机连杆发展趋向[J].现代零部件,2006(6):48-50.
    [51]廖君.汽车轻量化技术发展的探讨[J].机械,2009,36(1):4-7.
    [52]刘政,周彼德.金属基复合材料在发动机中的应用[J].兵器材料科学与工程,1993,16(2):68-72.
    [53]王乾.发动机连杆新材料的发展与研究[J].机械,2010,(3):69-71.
    [54]吴树森.日本金属基复合材料的研究与应用[J].兵器材料科学与工程,1999(2):56-60.
    [55] Ackermann L, Gueydan H. Process for producing connected sintered articles: U.S.Patent5,460,776[P].1995-10-24.
    [56] Komatsu K, Mukai M. Method for producing connecting rod of reciprocating motionsystem: U.S. Patent4,802,269[P].1989-02-07.
    [57]寇淑清,杨慎华,赵勇,等.发动机连杆裂解加工及其关键技术[J].吉林大学学报:工学版,2004,34(1):85-90.
    [58]郑祺峰,杨慎华,寇淑清.发动机连杆裂解加工初始裂解槽预制技术及应用[J].汽车技术,2009(1):52-55.
    [59]百濑保雄,太田熏雄.用于形成连杆的断裂狭槽的加工装置:中国,200410069638.7[P].2005-02-09.
    [60]周春强,张永俊,唐勇军.发动机连杆裂解应力槽加工技术研究[J].电加工与模具,2010(2):1-5.
    [61] Zhang Y J, Luo H P, Liu G X, et al. Research on Power Supply and Control System ofWEDM Cutting of Stress-notches in Fracture Splitting Processing of Connecting Rod[J]. Procedia CIRP,2013,6:250-254.
    [62]曹凤国.电火花加工技术[M].北京:化学工业出版社,2004.
    [63] Tsai C H, Liou C S. Fracture mechanism of laser cutting with controlled fracture [J].Journal of manufacturing science and engineering,2003,125(3):519-528.
    [64] Ghany K A, Newishy M. Cutting of1.2mm thick austenitic stainless steel sheet usingpulsed and CW Nd: YAG laser [J]. Journal of Materials Processing Technology,2005,168(3):438-447.
    [65] Loisos G, Moses AJ. Effect of mechanical and Nd: YAG laser cutting on magnetic fluxdistribution near the cut edge of non-oriented steels [J]. Journal of materials processingtechnology,2005,161(1):151-155.
    [66] Olsen F O, Alting L. Pulsed Laser Materials Processing, ND-YAG versus CO2Lasers[J]. CIRPAnnals-Manufacturing Technology,1995,44(1):141-145.
    [67] Usov S V, Minaev I V. High-power impulse YAG laser system for cutting, welding andperforating of super hard materials [J]. Journal of materials processing technology,2004,149(1):541-545.
    [68] Burkhardt W, Kaufhold W, Schmidt S. Method and Device for the Fracture Separationof Workpieces: U.S. Patent20,100,065,538[P].2010-3-18.
    [69]寇淑清,杨慎华,赵勇,等.用于连杆断裂剖分前预制裂解槽的激光加工设备:中国,200410010722.1[P],2004-03-09.
    [70] Henning H J. C70crack able forged connecting rods [J]. MPR,2004(12):14.
    [71] Schmitt H. Split connecting rod for an internal combustion engine and method ofproduction: U.S. Patent6,357,321[P].2002-03-19.
    [72] Brovold T E. System for manufacturing connecting rods: U.S. Patent4,754,906[P].1988-7-5.
    [73] Ikeda H, Kodama H, Matsue Y, et al. Method of manufacturing connecting rod: U.S.Patent5,974,663[P].1999-11-2.
    [74]刘文忠.ALFING激光裂解设备的应用[J].汽车工艺与材料.2005(11):11-13.
    [75] Becker LT. Connecting rod cracker: U.S. Patent5,320,265[P].1994-6-14.
    [76]张志强,杨慎华,寇淑清.背压力对连杆裂解加工的影响规律[J].吉林大学学报(工学版).2007,37(02):343-346.
    [77] Hoag P Y, Kyte R L, Stueck J P. Low-cost method of making cracked connecting rodscomprised of forged wrought steel: U.S. Patent5,105,538[P].1992-4-21.
    [78] Kim H S, Kim T G, Chung T J, et al. Fatigue characteristics of high strength C70S6andSMA40steels [J]. Materials Science and Engineering: A,2010,527(12):2813-2818.
    [79] Hedia H S, Najjar I M R, Aldousari S M, et al. Design Optimization of an AutomobileConnecting Rod Using FEM [J]. MATERIALS TESTING,2010,52(11-12):800-806.
    [80]杨晨光.连杆裂解加工过程数值研究及工艺参数优化[D].长春:吉林大学,2005.
    [81]寇淑清,杨慎华,赵庆华,等.发动机连杆裂解加工初始裂纹槽几何参数研究[J].哈尔滨工业大学学报,2007,39(9):1487-1490.
    [82]王彦菊,寇淑清,杨慎华.基于数值仿真的连杆裂解加工缺陷分析[J].材料科学与工艺,2008,16(6):776-780.
    [83]王彦菊,寇淑清,杨慎华,等.连杆厚度对裂解的影响分析[J].内燃机工程,2009(3):80-85.
    [84]赵勇,杨慎华,寇淑清,等.斜连杆裂解工艺分析[J].汽车技术,2009(8):53-57.
    [85]赵勇,杨慎华,寇淑清,等.结构不对称对斜切口连杆裂解影响分析[J].内燃机学报,2012,30(2):186-191.
    [86]张志强,金文明,杨慎华,等.连杆裂解加工力参数数值分析[J].吉林大学学报:工学版,2009(4):959-963.
    [87]谢冰冰.连杆胀断夹具结构强度分析及几何参数影响[D].长春:吉林大学,2010.
    [88]郑黎明,杨慎华,寇淑清,等.连杆裂解机床加载速度优化仿真[J].吉林大学学报:工学版,2012,42(4):936-941.
    [89]郑黎明,邓春萍,杨慎华,等.激光切割头摆动机构的动力学仿真及试验[J].光学精密工程,2009,17(12):3047-3054.
    [90]寇淑清,王金伟,赵勇,等.脉冲激光加工连杆裂解槽数值仿真[J].吉林大学学报:工学版,2010(5):1256-1261.
    [91]阎洪涛.发动机连杆裂解工艺参数确定及数值模拟[D].秦皇岛:燕山大学,2006.
    [92]王维峰.基于XFEM的连杆裂解过程仿真与分析[D].北京:北京交通大学,2012.
    [93]尹双增.断裂*损伤理论及应用[M].北京:清华大学出版社,1992.
    [94]郦正能.应用断裂力学[M].北京:北京航空航天出版社,2012.
    [95](日)宫本博讲授,杨秉宪,王幼复编译.弹塑性断裂力学[M].太原:山西人民出版社,1983.
    [96]李清芬,湖胜海,朱世范.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [97] Griffith A A. The Phenomena of Rupture and Flow in Solids [J]. PhilosophicalTransaction of Royal Society of London,1921,221:163-198.
    [98] Orowan E. Fracture and strength of solids[J]. Reports on Progress in Physics,1949,12:185-232.
    [99] Irwin G R. Analysis of Stresses and Strain Near the End of a Crack Traversing a Plate[J].Journal ofApplied Mechanics,1957,22:361-364.
    [100]范天佑.断裂理论基础[M].北京:科学出版社,2003,5.
    [101]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.91-199.
    [102]高庆.工程断裂力学[M].重庆:重庆大学出版社,1986.3-55.
    [103] Westergaard H M. Bearing pressures and cracks [J]. Jouranl of Applied Mechanics,1939,6:49-53.
    [104] Irwin G R, Kies J A, Smith H L. Fracture strengths relative to onset and arrest of crackpropagation [C].//Proc. ASTM.1958,58:640-657.
    [105]匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社,2001.
    [106]唐雨建.考虑细观损伤的韧性断裂研究[D].哈尔滨:哈尔滨工程大学,2007.
    [107]李智慧.金属材料裂纹体与无裂纹体统一断裂理论若干问题的试验研究[D].西安:西安理工大学,2006.
    [108]张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2006.
    [109]张斌,郭万林,佘建生.穿透直裂纹三维应力约束数值分析[J].探索创新交流-中国航空学会青年科技论坛文集,2004:666-671.
    [110] Guo W. Elastoplastic three dimensional crack border field—I. Singular structure of thefield [J]. Engineering Fracture Mechanics,1993,46(1):93-104.
    [111] Guo W. Elastoplastic three dimensional crack border field—II. Asymptotic solution forthe field [J]. Engineering Fracture Mechanics,1993,46(1):105-113.
    [112] Guo W. Elasto-plastic three-dimensional crack border field. III. Fracture parameters [J].Engineering Fracture Mechanics,1995,51(1):51-71.
    [113] Rice J R. A path independent integral and the approximate analysis of strainconcentration by notches and cracks [J]. Journal of applied mechanics,1968,35(2):379-386.
    [114] Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardeningmaterial [J]. Journal of the Mechanics and Physics of Solids,1968,16(1):13-31.
    [115] Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-lawhardening material [J]. Journal of the Mechanics and Physics of Solids,1968,16(1):1-12.
    [116] Begley J A, Landes J S. The J-integral as a Facture Criterion [J]. Astm Stp,1972,514:1-20.
    [117] Lee B W, Jang J, Kwon D. Evaluation of fracture toughness using small notchedspecimens [J]. Materials Science and Engineering: A,2002,334(1):207-214.
    [118] Dieter G E, Bacon D. Mechanical metallurgy [M]. New York: McGraw-Hill,1986.
    [119] Peterson R E. Stress Concentration Design Factors [M]. New York: John Wiley,1962.
    [120]肖纪美.金属的韧性与韧化[M].上海:上海科学技术出版社,1982.
    [121] Frost N E, Marsh K J, Pook L P. Metal Fatigue [M]. Oxford: Clarendon Press,1974.
    [122] Dowling N E. Mechanical Behavior of Materials (2nd Edition)[M]. New Jersey:Prentice Hall,1998.
    [123] Zheng X. Local strain range and fatigue crack initiation life [J]. Rapports de I"Association internationale des ponts et charpentes,1982,37:169-178.
    [124] Zheng X L. Modelling fatigue crack initiation life [J]. International journal of fatigue,1993,15(6):461-466.
    [125] Kuwamura H. Fracture of steel during an earthquake—state-of-the-art in Japan [J].Engineering structures,1998,20(4):310-322.
    [126] Xu Y, Schulson E M. On the notch sensitivity of the ductile intermetallic Ni, AIcontaining boron [J]. Acta metallurgica et materialia,1996,44(4):1601-1612.
    [127] Pollock T M, Mumm D R, Muraleedharan K, et al. In-situ observations of crackinitiation and growth at notches in cast Ti-48Al-2Cr-2Nb [J]. Scripta materialia,1996,35(11):1311-1316.
    [128] El-Magd E, Brodmann M. Influence of precipitates on ductile fracture of aluminiumalloy AA7075at high strain rates [J]. Materials Science and Engineering: A,2001,307(1):143-150.
    [129] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grainedheat affected zone: Part II. Failure criteria and statistical effects [J]. Metallurgical andmaterials transactionsA,1996,27(10):3019-3029.
    [130]郑修瞬.金属材料切口强度的近似计算[J].航空材料(专刊),1983,3(1):53-58.
    [131] Coffin L F. Fatigue in Machines and Structures--Power Generation [J]. Fatigue andmicrostructure,1978:4-7.
    [132]郑修麟.材料力学性能(第二版)[M].西安:西北工业大学出版社,2000.
    [133] Zheng X. On an unified model for predicting notch strength and fracture toughness ofmetals [J]. Engineering Fracture Mechanics,1989,33(5):685-695.
    [134] McClintock F A. Mechanical behavior of materials [M]. Massachusetts: Addison-Wesley,1966.
    [135]陈篪.论裂纹扩展的判据[J].金属学报,1977,13(1,2):57-73.
    [136]刘协会.一个考虑形变能影响的脆断强度条件[J].力学与实践,2000,22(4):54-55.
    [137]汤安民,师俊平.几种金属材料宏观断裂形式的试验研究[J].应用力学学报,2004,21(3):142-144.
    [138] Bao Y. Dependence of ductile crack formation in tensile tests on stress triaxiality,stress and strain ratios [J]. Engineering fracture mechanics,2005,72(4):505-522.
    [139] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxialityspace [J]. International Journal of Mechanical Sciences,2004,46(1):81-98.
    [140] Hopperstad O S, B rvik T, Langseth M, et al. On the influence of stress triaxiality andstrain rate on the behaviour of a structural steel. Part I. Experiments [J]. EuropeanJournal of Mechanics-A/Solids,2003,22(1):1-13.
    [141] Bandstra J P, Koss D A, Geltmacher A, et al. Modeling void coalescence during ductilefracture of a steel [J]. Materials Science and Engineering: A,2004,366(2):269-281.
    [142]汤安民,朱文艺,卢智先.韧性材料的几种断裂形式及判据讨论[J].机械强度,2002,24(4):566-570.
    [143]邓枝生,陈篪.裂纹顶端应变与应力的研究[J].金属学报,1978,14(3):239-245.
    [144]荣伟,张德驺,马茂元,等.金属断裂韧性与微观参量的关系[J].哈尔滨船舶工程学院学报,1994,15(2):31-39.
    [145]中华人民共和国国家标准.金属材料平面应变断裂韧度KIC试验方法[S]. GB/T4161-2007.
    [146] Yang D Y, Jung D W, Song I S, et al. Comparative investigation into implicit, explicit,and iterative implicit/explicit schemes for the simulation of sheet-metal formingprocesses [J]. Journal of materials processing technology,1995,50(1-4):39-53.
    [147]张胜兰等.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2007.
    [148]刘士光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008.
    [149]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.
    [150]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [151]袁懋昶.断裂力学理论及其工程应用[M].重庆:重庆大学出版社,1989.
    [152] Murray W M. Fatigue and fracture of metals [M]. Technology Press of TheMassachusetts Institute of Technology,1950.
    [153] Clatterbuck D M, Chrzan D C, Morris Jr J W. The influence of triaxial stress on theideal tensile strength of iron [J]. Scripta Materialia,2003,49(10):1007-1011.
    [154]宋鸣,李有堂.双材料V型缺口断裂研究[J].科技导报,2009,27(11):60-63.
    [155]寇文军.基于ANSYS的V型切口模型应力强度因子计算[J].新技术新工艺,2013(5):31-33.
    [156]寇淑清,杨宏宇,赵勇,等.连杆裂解起裂及三维裂纹扩展分析[J].内燃机工程,2013,34:58-64.
    [157] Yang H Y, Kou S Q, Gao W Q, et al. Investigation of Crack Line Offset of FractureSplitting Connecting Rod[J]. Applied Mechanics and Materials,2014,472:100-104.
    [158]刘伟军,孙玉文.逆向工程原理方法及应用[M].北京:机械工业出版社,2008.
    [159]寇淑清,杨宏宇,高岩,等.裂解连杆断裂结合面缺损面积定量描述与分析[J].吉林大学学报:工学版,2013,43(6):1541-1545.
    [160]杨红娟,周以齐,陈成军.激光扫描数据脉冲噪声自适应检测和滤除[J].计算机辅助设计与图形学学报,2006,18(10):1531-1534.
    [161] De Boor C. A Practical Guide to Splines [M]. New York: Springer-Verlag,1978.
    [162] De Boor C. On calculating with B-splines [J]. Journal of Approximation Theory,1972,6(1):50-62.
    [163]李江峰,钟约先. STL文件缺陷分析及修补算法研究[J].机械设计与制造,2002(2):40-42.
    [164]崔树标,张宜生. STL面片中冗余顶点的快速滤除算法及其应用[J].中国机械工程,2001,12(2):173-175.
    [165]成学文,李德群,周华民,等.基于哈希表的STL面片冗余顶点快速滤除算法[J].华中科技大学学报:自然科学版,2004,32(6):69-71.
    [166]蔡中义,刘林,王少辉,等.连续柔性成形过程控制及CAD软件开发[J].中国机械工程,2011(08):943-947.
    [167] Kou S Q, Yang H Y, Yang S H, et al. Quantitative Analysis of the Defect Dimensionfor Fracture Surface of Fracture Splitting Connecting Rod [J]. Applied Mechanics andMaterials,2013,397:1059-1063.
    [168]刘志栋,于斌.金属断口宏观形貌表面粗糙度的定量研究[J].宇航材料工艺,2009,39(5):20-23.
    [169]于斌,靳庆臣,刘志栋,等.三维重构技术在断口几何特征定量测量中的应用[J].航天制造技术,2009,26(3):14-17.
    [170] Chermant J L, Coster M. Quantitative fractography [J]. Journal of Materials Science,1979,14(3):509-534.
    [171] Wright K, Karlsson B. Topographic quantification of non‐planar localized surfaces[J]. Journal of Microscopy,1983,130(1):37-51.
    [172] Underwood E E. Estimating feature characteristics by quantitative fractography [J].Journal of Metals,1986,38(4):30-32.
    [173]钟群鹏,赵子华.断口学——中国工程院院士文库[M].北京:高等教育出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700