用户名: 密码: 验证码:
半捷联光电稳定平台误差分析与补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于半捷联光电稳定平台的体积小、重量轻、成本低,其已成为导引头技术的研究重点,并且对其稳定与跟踪精度的要求越来越高。为提高其稳定与跟踪精度,本文针对某半捷联光电稳定平台,在对半捷联稳定平台运动学、动力学以及稳定机理分析的基础上,讨论了影响稳定平台精度的各项误差来源,并对误差的作用规律、误差建模、参数标定与误差补偿等问题展开了深入的分析与探讨。
     论文首先基于李群李代数理论,结合半捷联光电稳定平台结构,采用局部指数积方法描述框架姿态关系,并详细讨论了弹体与稳定平台框架间的速度与加速度间的耦合关系,同时给出了光轴在惯性空间的稳定方程,讨论了两种半捷联稳定方案的优缺点。在运动学分析的基础上,运用绕动点转动的动量矩定理,建立了半捷联光电稳定平台俯仰轴与偏航轴的动力学方程,其中包含惯量耦合力矩与框架质量不平衡力矩的具体数学模型。针对半捷联导引头稳定平台,对框架最大角速度与角加速度、惯量耦合力矩以及质量不平衡力矩进行数值仿真分析,为高精度控制系统设计打下了基础。
     在分析半捷联光电稳定平台各项误差源的基础上,根据多体系统的运动学误差建模理论建立了光轴指向误差模型;通过Matlab计算,分析了各项误差对光轴指向误差的影响,为合理地进行精度分配以及误差补偿奠定了基础。
     为修正半捷联导引头的光轴指向误差,建立了基本参数模型与局部指数积模型,并采用最小二乘法标定基本参数模型的参数以及采用设计的遗传算法标定局部指数积模型的参数。标定实验结果表明:局部指数积模型的稳定性与补偿精度均优于基本参数模型,局部指数积模型可将光轴指向精度由119.9″提高到21.3″。
     最后,对半捷联导引头的框架质量不平衡力矩与光轴指向误差进行补偿后,在搭建的半物理实验平台上测试其稳定与跟踪精度。测试结果表明:系统以0.5°/s运动时,在频率为1Hz、幅值为2°的弹体扰动情况下,补偿后的稳定精度提高了79.7%;在系统以3°/s跟踪目标时,补偿后的偏航与俯仰方向的跟踪精度分别提高了20.7%与18.9%;在弹体扰动为频率2Hz、幅值1°时,测得半捷联稳定平台偏航与俯仰方向的隔离度分别为5.63%与5.08%。
Because of its advantages of small volume, light weight and low cost,Semi-Strapdown Photo-Electricity Stabilized Platform (SSPESP) has become animportant part of seeker technology research, its stability and tracking precisionshould be gradually improved. The thesis mainly has a central research on thestability and tracking precision of SSPESP. Based on the analysis of the kinematics,dynamics and stability mechanism for SSPESP, this paper discussed its error sourcesand made a deep research on the effect rule of error, error modeling, parametercalibration and error compensation etc.
     Firstly, according to the theory of Lie group and Lie algebras and with thestructure of SSPESP considered, a local product of exponentials (Local POE)representation of framework pose was established for SSPESP. The couplingrelationships of the velocity and acceleration between the missile and theframeworks were analyzed. Following that, the stability equation of optical axis inthe inertial space was established. Two different semi-strapdown stabilizationmethods were compared and each’s advantages and disadvantages were pointed out.Based on the kinematic analysis, the pitch and yaw dynamics models were derivedaccording to momentum moment theorem of rigid body rotating around movingpoint, including the inertial coupling torque model and the mass imbalance torque model. According to stabilized platform of semi-strapdown seeker, the angularvelocity and acceleration, inertial coupling torque and mass imbalance torque wereanalyzed by numerical simulation, which provided a fundamental for future controlsystem design.
     On the basis of analysis of various error sources of SSPESP, the optical axispointing error model was defined and set up according to the kinematics errormodeling theory of multi-body system. Then, Matlab was used to simulate and analyze the influence of the errors on optical axis pointing, which lay a foundation forprecision allocation and error compensation.
     In order to correct the optical axis pointing error of SSPESP, the basicparameter model and Local POE model were established and calibrated through theleast squares method and self-designed genetic algorithm respectively. Thecalibration experimental results indicate that the compensation accuracy andstabilization of Local POE models are superior to the basic parameter model, theoptical axis pointing precision increases from119.9″to21.3″.
     Finally, after compensating for the inertial coupling torque and the optical axispointing error, the stability and tracking precision of semi-strapdown seeker weretested on the semi-physical simulation platform. The results show that, the stabilityprecision rises79.7%when the system speed is0.5°/s and the missile disturbancefrequency is1Hz and amplitude is2degree; the tracking precision of yaw and pitchdirection rises20.7%and18.9%when the tracking speed is3°/s; the isolation ofyaw and pitch framework is5.63%and5.08%when missile disturbance frequencyis2Hz and amplitude is1degree.
引文
[1]贾宏光.《精确制导技术》专题文章导读[J].光学精密工程,2008,16(10):1942–1948.
    [2]李保平.战术导弹导引头技术[J].弹箭与制导学报,2002,22(1):1–5.
    [3] Chun–Liang Lin,Yi–Hsing Hsiao. Adaptive Feedforward Control for DisturbanceTorque Rejection in Seeker Stabilizing Loop[J].IEEE Transactions on ControlSystems Technology,2001,9(1):108–121.
    [4]杜运理,夏群利,祁载康.导引头隔离度相位滞后对寄生回路稳定性影响研究[J].兵工学报,2011,32(1):28–32.
    [5] Jacques Waldmann. Line-of-Sight Rate Estimation and Linearizing Control of anImaging Seeker in a Tactical Missile Guided by Proportional Navigation[J].IEEETransactions on Control Systems Technology,2002,10(4):556–567.
    [6]朱华征,范大鹏,马东玺等.导引头伺服系统隔离度与测试[J].光学精密工程,2009,17(8):1993–1998.
    [7] Russell T. Rudin. Strapdown Stabilization for Imaging Seeker. AIAA-93-2660,1993.
    [8]周瑞青,刘新华,史守峡.捷联导引头稳定与跟踪技术[M].北京:国防工业出版社,2010.
    [9]姚郁,章国江.捷联成像制导系统的若干问题讨论[J].红外与激光工程,2006,35(1):1–6.
    [10]毛峡,张俊伟.半捷联导引头光轴稳定的研究[J].红外与激光工程,2007,36(1):9–12.
    [11] Guojiang Zhang,Yu Yao,Kemao Ma. Line of Sight Rate Estimation ofStrapdown Imaging Guidance System Based on Unscented Kalman Filter[C].IEEE International Conference on Machine Learning and Cybernetics,2005:1574–1578.
    [12]温杰.“响尾蛇”家族新成员—AIM–9X近距格斗空空导弹[J].兵器博览,2004(7).
    [13]张岷峰,张忠敏.船用数字两轴稳定控制系统[J].电子对抗技术,1996,(1):34–40
    [14]王文清.瞄准线捷联稳定原理及其应用[J].电脑开发与应用,1998,11(1):14–16.
    [15] Arthur K. Rue. Stabilization of Precision Electrooptical Pointing and TrackingSystems[J].IEEE Transactions on Aerospace and Electronic Systems,1969,AES–5(1):805–819.
    [16] Arthur K. Rue. Correction to“Stabilization of Precision Electrooptical Pointingand Tracking Systems”[J].IEEE Transactions on Aerospace and ElectronicSystems,1970,AES–6(1):855–857.
    [17] Michael K. Masten, J. M. Hilkert. Impact of Optics Decisions uponLine–of–Sight Stabilization[C].SPIE,Vol.389:98–106.
    [18] Michael K. Masten,J. M. Hilkert. Electromechanical System Configurationfor Pointing,Tracking and Stabilization Application[C].SPIE,Vol.779:75–87.
    [19] Michael K. Masten,Henry R. Sebesta. Line–of–Sight Stabilization/TrackingSystem:an Overview[C].Proceedings of the American Control Conference,1987:1477–1482.
    [20] Larry A. Stockum,George R. Carroll. Precision Stabilized Platform forShipboard Electro–Optical Systems[C].SPIE,Vol.493:414–425.
    [21] Larry A. Stockum,James Burge. Electro–mechanical Design for PrecisionPointing and Tracking Systems[C].SPIE,Vol.779:66–74.
    [22]贾平,张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程,2003,11(1):82–88.
    [23] C. J. Cooper,Hamilton. Sensor Line-of-Sight Stabilization[C].SPIE,1991,Vol.1498:39–51.
    [24] Richard L. Pio. Euler Angle Transformation[J].IEEE Transactions onAutomatic Control,1966,AC-11(4):707–715.
    [25]陈非凡,张高飞,陈益峰.小卫星动量轮非线性特性建模与仿真方法[J].宇航学报,2003,24(6):651–655.
    [26] Patel R. Mukund. Energy–Momentum–Wheel for Satellite Power and AttitudeControl Systems[C].35th Intersociety Energy Conversion EngineeringConference and Exhibit(IECEC),Vol.1:609–612.
    [27]张景旭,王洋.动载体光学图像视轴稳定技术[J].光电技术应用,2007,22(1):4–7.
    [28] Donald Ruffatto,Donald Brown,Richard Pohle,et al. Stabilized High-AccuracyOptical Tracking System(Shots)[C].SPIE,2001,Vol.4365:10–18.
    [29] Kevin Murphy,Scott Goldblatt,Jeffery Warren,et al. Pointing and StabilizationSystem for Use in a High-Altitude Hovering Helicopter[C].SPIE,1999,Vol.3692:23–32.
    [30] Karl Wandner,Hans J. K rcher. The Pointing Control System of SOFIA[C].SPIE,2000,Vol.4014:360–369.
    [31] Ho Dong Seok,Joon Lyou. Digital Image Stabilization Using Simple Estimationof the Rotational and Translational Motion[C].SPIE,2005,Vol.5810:170–181.
    [32] Filippo Vella, Alfio Castorina,Massimo Mancuso,et al. Digital ImageStabilization by Adaptive Block Motion Vectors Filtering[J].IEEE Transactionson Consumer Electronics,2002,48(3):796–801.
    [33] Ping Zhong. Research on Methods of Motion Estimation and Compensation inElectronic Image Stabilization Technique[C].SPIE,2005,Vol.5637:182–188.
    [34]周庆方,王志坚,王春艳.光学稳像技术在空间通信及航空、航天中应用的探讨[J].空间科学学报,2004,24(1):74–80.
    [35] James C. DeBruin,Jim Royalty,Marty Wand,et al. Feedforward StabilizationTestbed[C].SPIE,Vol.2739:204–214.
    [36]赵跃进.平行光路中的三轴稳像反射镜组[J].光学技术,2000,26(5):437–439.
    [37] Andrei Battistel,Fernando Lizarralde,Liu.Hsu. Inertially Stabilized PlatformsUsing Only Two Gyroscopic Measures and Sensitivity Analysis to UnmodeledMotion[C].Proceedings of the American Control Conference,2012:4582–4587.
    [38] Hamed Khodadadi,Mohammad Reza Jahed Motlagh,Mohammad Gorji. RoustControl and Modeling a2-DOF Inertial Stabilized Platform[C].IEEEInternational Conference on Electrical Control and Computer Engineering,2011,7:223–228.
    [39] Zdeněk Hurák,Martin ezá. Image-Based Pointing and Tracking for InertiallyStabilized Airborne Camera Platform[J].IEEE Transactions on Control SystemsTechnology,2012,20(5):1146–1159.
    [40]吴晔,朱晓峰,陈俊山.导引头二轴稳定平台的轴角关系和简化[J].制导与引信,2012,33(1):1–5.
    [41]成刚.光电稳定跟踪的机械结构分析与研究[D]:[硕士学位论文].西安:西安电子科技大学,2000.
    [42]纪明.高精度光电二级稳定系统的运动隔离和补偿分析[J].兵工学报,1996,17(4):320–324.
    [43]王小军,李殿璞,余宏明.顶空无盲区跟踪的舰载倾斜三轴雷达的研究[J].哈尔宾工程大学学报,2002,23(2):37–42.
    [44]王小军,李殿璞,赵阳.舰载三轴雷达波束稳定跟踪的研究[J].哈尔宾工程大学学报,2002,23(1):58–63.
    [45]严武升,刘宏,过润秋.基于前馈补偿的舰载雷达三轴稳定跟踪的研究[J].西安电子科技大学学报,1998,25(5):650–654.
    [46]范大鹏,张智永.光电稳定跟踪装置的稳定机理分析研究[J].光学精密工程,2006,14(4):673–680.
    [47] Ulrich Hartmann, Jurgen Schnatz, Hartmut Goseberg. Seeker for TargetTracking Missiles[P].United States Patent,6978965B1,2005–12–07.
    [48] Warren T. Burt. Wide Angle Seeker[P].United Stated Patent,4087061,1978–05–02.
    [49]董小萌,张平.两轴稳定平台的过顶盲区问题[J].北京航空航天大学学报,2007,33(7):811–815.
    [50] Huhai Jiang,Hongguang Jia,Qun Wei. Analysis of Zenith Pass Problem andTracking Strategy Design for Roll-Pitch Seeker[J].Aerospace Science andTechnology,2012,23(1):345–351.
    [51] Arthur K. Rue. Precision Stabilization Systems[J].IEEE Transactions onAerospace and Electronic Systems,1974,AES–10(1):34–42.
    [52] Peter J. Kennedy,Rhonda L. Kennedy. Direct versus Indirect Line of Sight(LOS) Stabilization[J].IEEE Transactions on Control Systems Technology,2003,11(1):3–15.
    [53] Sungpil Yoon,John B. Lundberg. Equations of Motion for a Two–Axes GimbalSystem[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(3):1083–1091.
    [54] Maher Abdo,Ahmad Reza Vali,Alireza Toloei,et al. Research on theCross–Coupling of a Two Axes Gimbal System with Dynamic Unbalance[J].International Journal of Advanced Robotic Systems,2013,10:1–13.
    [55] Maher Abdo,Ali Reza Toloei,Ahmad Reza Vali,et al. Cascade Control Systemfor Two Axes Gimbal System with Mass Unbalance[J]. International Journal ofScientific&Engineering Research,2013,4(9):903–912.
    [56] Charles W. McKerley. A Model for a Two Degree of Freedom Coupled Seekerwith Mass Imbalance[J].IEEE Southeast Conference Bringing TogetherEducation Science and Technology,1996:84–87.
    [57] Yu Shuang,Zhao Yanzheng. A New Measurement Method for UnbalancedMoments in a Two-axis Gimbaled Seeker[J].Chinese Journal of Aeronautics,2010,23(1):117–122.
    [58] Hany F. Mokbel,Lv Qiong Ying,Amr A. Roshdy,et al. Modeling andOptimization of Electro–Optical Dual Axis Inertially StabilizedPlatform[J].IEEE International Conference on Optoelectronics andMicroelectronics(ICOM),2012:372–377.
    [59]金光,王家骐,倪伟.利用坐标变换推导经纬仪三轴误差[J].光学精密工程,1999,7(5):89–94.
    [60]阴蕊,房建成,钟麦英.航空遥感用三轴惯性稳定平台动力学建模与仿真[J].中国惯性技术学报,2011,19(6):676–685.
    [61]刘炜,周向阳.航空遥感惯性稳定平台非线性摩擦建模与补偿[J].机械工程学报,2013,49(15):122–129.
    [62]王春生,宁汝新,刘检华.导引头稳定平台弹性干扰力矩分析与优化技术[J].计算机集成制造系统,2012,18(3):566–574.
    [63]董安华,王召义,刘杰.某红外成像导弹的静平衡问题分析[J].航空兵器,2005,(5):62–64.
    [64]于爽,付庄,赵辉.惯性平台不平衡力矩测试方法及补偿控制[J].上海交通大学学报,2008,42(10):1692–1696.
    [65] F. C. Park. Computational Aspect of Manipulators via Product of ExponentialFormula for Robot Kinematics[J].IEEE Transactions on Automatic Control,1994,39(9):643–647.
    [66] Richard M. Murray, Zexiang Li, S. Shankar Sastry. A MathematicalIntroduction to Robotic Manipulation[J].CRC Press,1994.
    [67] Ruibo He, Yingjun Zhao, Shunian Yang, et al. Kinematic ParameterIdentification for Serial Robot Calibration Based on POE Formula[J].IEEETransactions on Robotics,2010,26(3):411–423.
    [68] I–Ming Chen,YANG G. Kinematic Calibration of Modular ReconfigurableRobots Using Product of Exponentials Formula[J].Journal of Robotic System,1997,14(11):807–821.
    [69]朱明超,贾宏光.基于Paden–Kahan子问题求解滚仰式导引头角增量[J].光学精密工程,2011,19(8):1838–1844.
    [70]刘慧.滚仰式导引头伺服机构稳定跟踪技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [71] Keith B. Doyle,Vincent J. Cerrati. Optimal Structural Design of the AircraftInfrared Imager[C].SPIE,Vol.2542:11–22.
    [72]甘至宏,张葆,撖芃芃.机载光电稳定平台框架结构工程分析[J].光学精密工程,2008,16(12):2441–2446.
    [73] R. K. Mishra,AMG Pillai,MR Sheshadri,etc. Airborne Electro–Optical SensorPerformance Predictions and Design Consideration[C].SPIE, Vol.1482:138–145.
    [74]安源,许晖,金光.振动对动载体成像的影响及被动隔振技术的应用[J].半导体光电,2006,27(6):803–806.
    [75]耿文豹,翟林培,丁亚林.振动对光学成像系统传递函数影响的分析[J].光学精密工程,2009,17(2):314–320.
    [76]张葆,贾平,黄猛.动载体成像系统底座无角位移减振器的设计[J].光学技术,2003,29(4):464–472.
    [77]刘又午,刘丽冰,赵小松.数控机床误差补偿技术研究[J].中国机械工程,1998,9(12):48–52.
    [78] P. Schellekens,N. Rosielle,H. Vermeulen,etc. Design for Precision:CurrentStatus and Trends[J].Annals of the CIRP,1998,47(2):557–586.
    [79] Wenjie Tian,Weiguo Gao,Dawei Zhang. A General Approach for ErrorModeling of Machine Tools[J].International Journal of Machine Tools&Manufacture,2014,79:17–23.
    [80] John M. Hollerbach, Charles W. Wampler. The Calibration Index andTaxonomy for Robot Kinematic Calibration Methods[J].The InternationalJournal of Robotics Research,1996,15(6):573–591.
    [81] Jorge Santolaria,José-Antonio Yagüe,Roberto Jiménez. Calibration–BasedThermal Error Model for Articulated Arm Coordinate Measuring Machines[J].Precision Engineering,2009,33(4):476–485.
    [82] A. Greve,M. Bremer. Calculated Thermal Behavior of Ventilated HighPrecision Radio Telescopes[J].IEEE Antennas and Propagation Magazine,2006,48(3):9–19.
    [83]范国滨,贾建援,陈贵敏.机械振动对光学系统指向精度的影响[J].中国机械工程,2005,16(2):104–106.
    [84]周向阳,刘炜.航空遥感惯性稳定平台振动特性分析与隔振系统设计[J].中国惯性技术学报,2013,49(15):266–272.
    [85]张智永,周晓尧,范大鹏.光电探测系统指向误差分析、建模与修正[J].航空学报,2012,20(3):2042–2054.
    [86] Mahbubur Rahman, Jouko Heikkala, Kauko Lappalainen. ModelingMeasurement and Error Compensation of Multi–Axis Machines Tools. Partl:Theory[J].International Journal of Machine Tools and Manufacture,2000,40(10):1535–1546.
    [87] Ming–Tzong Lin,Shih–Kai Wu. Modeling and Improvement of DynamicContour Errors for Five-Axis Machine Tools under Synchronous MeasuringPaths [J].International Journal of Machine Tools&Manufacture,2013,72:58–72.
    [88] R. Ramesh,M. A. Mannan,A. N. Poo. Error Compensation in Machine Tools–A Review Part II:Thermal Errors[J].International Journal of Machine Tools&Manufacture,2000,40:1257–1284.
    [89] John C. Ziegert,Prashant Kalle. Error Compensation in Machine Tools:ANeural Network Approach[J].Journal of Intelligent Manufacture,1994,5:143–151.
    [90] Xing Hua Li,Bo Chen,Zu Rong Qiu. The Calibration and Error CompensationTechniques for an Articulated Arm CMM with Two Parallel Rotational Axes[J].Measurement,2013,46(1):603–609.
    [91]黄奎.多关节式坐标测量系统的关键技术研究[D]:[博士学位论文].武汉:华中科技大学,2010.
    [92]胡毅,费业泰,程文涛.关节式坐标测量机热变形误差及修正[J].机械工程学报,2011,47(24):15–19.
    [93] Chris Lightcap,Samuel Hamner,Tony Schmitz,etc. Improved PositioningAccuracy of the PA10–6CE Robot with Geometric and Flexibility Calibration[J].IEEE Transactions on Robotics,2008,24(2):452–456.
    [94] Chunhe Gong,Jingxia Yuan,Jun Ni. Nongeometric Error Identification andCompensation for Robotic System by Inverse Calibration[J].InternationalJournal of Machine Tools&Manufacture,2000,40:2119–2137.
    [95] A. D. Poyner,J. W. Montgomery. MMT Pointing and Tracking[C].SPIE,Vol.628:9–15.
    [96] Arthur K. Rue. Calibration of Precision Gimbaled Pointing Systems[J].IEEETransaction on Aerospace and Electronic Systems,1970,AES–6(5):697–706.
    [97] Jerome W. Fisk,Arthur K. Rue. Confidence Limits for the Pointing Error ofGimbaled Sensors[J]. IEEE Transaction on Aerospace and Electronic Systems,1966,AES–2(6):648–654.
    [98] Robert L. Meeks. Improving telescope mechanical error estimates usingpointing data[D]:[Doctor Dissertation].Colorado:Colorado State University,2003.
    [99]王家骐.光学仪器总体设计[M].长春:长春光机所研究生部,2003.
    [100]赵彦.大射电望远镜指向误差建模分析与设计研究[D]:[博士学位论文].西安:西安电子科技大学,2008.
    [101]李岩,范大鹏.基于多体系统运动学理论的三轴转台装配误差建模分析[J].兵工学报,2007,28(8):981–987.
    [102]李岩,范大鹏.光电稳定机构指向误差建模与敏感度分析[J].国防科技大学学报,2008,30(1):104–109.
    [103]徐征峰,陈洪斌,刘顺发.视轴偏心三轴跟踪机架指向精度分析[J].光电工程,2007,34(4):12–16.
    [104]赵金宇,王德兴,李文军.望远镜系统误差动态修正的一种新方法[J].红外与激光工程,2005,34(2):244–247.
    [105] Wen Yuh Jywe, Chien Hong. Verification and Evaluation Method forVolumetric and Position Errors of CNC Machine Tool[J].International Journalof Machine Tools&Manufacture,2000,40(13):1899–1911.
    [106]冯栋彦,高云国,张文豹.采用标准轴承的光电经纬仪轴系误差修正[J].光学精密工程,2011,19(3):605–611.
    [107]陶建峰,王旭永,刘成良.五轴飞行仿真转台及其关键技术研究[J].机床与液压,2006,(6):78–82.
    [108]李岩.光电稳定跟踪装置误差建模与评价问题研究[D]:[博士学位论文].长沙:国防科学技术大学,2008.
    [109] Andrew Baker. Matrix Groups–An Introduction to Lie Group Theory[M].Springer–Verlag,2002.
    [110] J. M. Selig. Geometric Fundamentals of Robotics[M].London:Springer,2000.
    [111]黄田,李亚,李思维.一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J].中国科学E辑,2002,32(5):628–635.
    [112]王广雄.控制系统设计[M].北京:清华大学出版社,2008.
    [113]夏群力,魏先利,祁载康等.地空导弹视线指令制导系统目标跟踪装置模型研究[J].弹箭与制导学报,2004,24(3):1–9.
    [114]任顺清,陈世杰,李玉华.论瞬时轴线垂直度、平均回转轴线垂直度与Wobble的关系[J].中国惯性技术学报,2002,10(1):55–59.
    [115]刘又午.多体动力学的休斯敦方法及其发展[J].中国机械工程,2000,11(6):601-607.
    [116]王永年,祝梁生,孙隆和.头盔显示/瞄准系统[M].北京:国防工业出版社,1994.
    [117]朱明超,王涛,贾宏光.基于指数积公式的导引头运动学分析与标定[J].红外与激光工程,2011,40(8):1556–1562.
    [118]毛英泰.误差理论与精度分析[M].北京:机械工业出版社,1982.
    [119]杜俊峰,张孟伟,张晓明.光电经纬仪测角精度分析[J].应用光学,2012,33(3):466-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700