用户名: 密码: 验证码:
船载光测设备精度分析及数据处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代武器装备的飞速发展,对靶场光电测量设备的精度及作用距离等技术指标要求越来越高,针对不同测控任务,光测设备布站组网方式也随之变化,在具备固定观测位置测量方式,即固定站光测设备的基础上,研发机动性能好,布站简便灵活的车载不落地或船载动基座光测设备成为一种趋势。本文基于国内首台应用于靶场测量,且明确提出一定测量精度要求的某型船载光电测量设备,针对靶场光测设备最为重要的测角精度指标,提出了一套完整的精度分析和数据处理方法。
     在跟踪测量过程中,承载平台发生姿态和位置变化是船载设备与固定站光测设备的本质区别,本文从船载设备所特有的三轴姿态测量误差对光测设备测角误差的影响入手,建立综合3个姿态量和2个设备测角量的偏导误差模型,估算由姿态误差引入的测角误差,并分析多组典型姿态角所引入测角误差的规律,提出最优测量方案,通过限制设备测角范围使姿态测量误差造成的测角误差小于预设值,从而保证光测设备的测角精度。针对船上GPS测量位置与站址不在同一点的情况,提出由测量点坐标经船摇修正获得设备站址的算法,并据此分析修正后站址误差对测角精度的影响。综合各主要误差,估算设备测角精度,以及采用最优测量方案后的最优理论测角精度。
     提出对船载光测设备输出数据,包括三轴姿态角度,速度和加速度,编码器测角数据,图像及判读脱靶量,以及GPS差分定位坐标的完整数据处理方法,包括数据合理性检查,平滑滤波,插值和对齐,经一系列处理获得修正后测角数据和站址坐标。
     基于精度分析的结果和2个多元线性偏导误差函数,以统计回归方式估算平台姿态测量平均误差,总结采用一般多元和逐次回归算法存在的问题,提出附加观测方案,通过测量在多个预设测角范围内的合作靶标,将2个多元回归转化为4个一元回归,引入融合参数,并由任务段内双GPS差分定位数据计算该参数,将2组回归结果融合为1组姿态误差估计,整个回归过程覆盖全任务段的7个数据集合,保证了回归过程的稳定性。建立回归数据库和海况参数,存储和检索摇摆台上大量的实验数据和回归结果,在任务时进行附加观测,计算实测姿态误差估计,以任务时海况参数从数据库内获得此海况条件下的先验误差估计,以先验估计修正实测估计,并以修正值对任务段平台姿态角进行补偿,减小姿态测量误差,从而提高光测设备的测角精度。
     在摇摆台上多次多类型实验和最终的设备出海验收测试结果表明,本文对船载光测设备的精度分析是准确的,最优测量方案是有效的,数据处理方法满足要求,回归与补偿能够稳定减小设备测角误差。最终的结果为:在姿态测量精度(误差极大值)为航向≤72″,纵横摇≤24″,定位误差(极大值)≤5cm时,船载光测设备达到了最优理论测角精度(误差均方根):方位≤38″,俯仰≤21″。
With the rapid development of modern weaponry, the accuracy and operatingrange of optoelectronic measuring equipment (OME) in shooting range have becomeincreasingly demanding, OME’s station arranging and networking also changes fordifferent monitoring tasks, on the basis of a fixed station equipment (FOME) with afixed observer position, the research of the on-board or shipboard mobile equipmentwith good mobility and flexible station arranging have becoming a trend. Based on afirst domestic certain type of shipboard OME (SOME) applied to target rangemeasurement with clear indicators, a complete set of accuracy analysis and dataprocessing method is proposed for the most important indicator of angularmeasuring accuracy.
     In the process of tracking and measuring, the essential difference between theSOME and FOME is the attitude and position changes of the platform, fromSOME’s unique OME’s angle measuring error caused by triaxis attitude measuringerror, a partial derivative model include of3attitude and2measuring angle variableshas been built, measuring angle error caused by attitude error has been calcuated,and by analysis of the pattern of angle error caused by a few sets of typical attitudeangle value, a optimal measuring scheme has been proposed, which by making theangle error caused by attitude error less than the preset value through limiting anglemeasuring range, so as to ensure the SOME’s measuring angle accuracy. For onboard GPS loacation and site position are different, the algorithm to abtain siteposition through correting the measuring coordinates by ship’s attitude has beenproposed, and analyzing the measuring angle error caused by site position’s errorafter correting based on the algorithm. Estimating the measuring angle accuracy byconsidering all main error, and the theory of optimal measuring angel accuracy byusing optimal measuring scheme.
     A complete data processing method to deal with all SOME’s data has beenproposed, the data includs triaxis attitude angel, velocity and acceleration, angularecoder data, image and interpretation miss distance data, as well as GPS differentialpositioning coordinates, the method includes data plausibility check, smooth filtering,interpolation and alignment, and after those processing the modified angle data andsite position have been obtained.
     Based on the accuracy analysis and2multiple linear partial derivative errorfunctions, estimating the average attitude measuring error by using statisticalregression method, and the additional observation scheme is put forward bysummarizing the problems when using the general multiple and successiveregression algorithm, and transforming2multiple regression into4unary regressionby measuring some cooperative targets in the preset range, and bringing in a fusionparameter calculated by the dual GPS differential positioning data during the task, byusing the parameter fusing two groups of regression results as a set of attitudemeasuring error estimation, and the process of regression use7datasets covering thewhole task time, therefore to ensure the stability of regression process. A regressiondatabase and sea-state parameter have been established, and they are used to storeand retrieve a large number of experimental data and regression results measured onthe swing table, performing the additional observation in the task and calculating thereal-task attitude error estimates, getting the transcendental error estimates form thedatabase by the sea-state parameter in task, and correcting the real estimates bytranscendental estimates, and compensating for the attitude angel by using thecorrected estimates, reducing the attitude measuring error, so as to improve the SOME’s measuring angle accuracy.
     Data of several different types of experiments on the swing table and the finalacceptance test at sea show that: the SOME’s accuracy analysis is accurate, theoptimal measuring scheme is effective, the method of data processing meet therequirements, regression and compensation can steadily reduce the measuring angleerror. The final result is: when the attitude measurement precision(error’s maximum)is the heading≤72″, the roll and pitch≤24″, the positioning error(maximum)≤5cm,the accuracy of the Shipboard Optical Measuring Equipment reach the theory ofoptimal accuracy(error’s RMS): the azimuth≤38″, the pitch≤21″.
引文
[1]赵学研,李迎春.靶场光学测量[M].北京:装备指挥技术学院,2001.86-192
    [2]邹东明,刘栖山,陈长青,等.舰载光电跟踪设备视轴稳定分析[J].兵工自动化,2003,22(1):15-19
    [3]张艳.提高舰载光电设备跟踪精度的关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2013
    [4] R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl. Satellite attitude control byquaternion-based backstepping [J]. IEEE Transactions on Control SystemsTechnology,2009,17(1):227-232
    [5] D. H. Qiu, Q. L. Wang, J. Yang, et al. Adaptive fuzzy control for path tracking ofunderactuated ships based on dynamic equilibrium state theory[J]. InternationalJournal of Computational Intelligence Systems,2011,12(4):1148-1157
    [6]黄德鸣.惯性导航系统[M].北京:国防工业出版社,1986.10-24
    [7]潘良.航天测量船船姿船位测量技术[M].北京:国防工业出版社,2009.101-136
    [8]张磊.自主导航星敏感器关键技术的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2009
    [9] Hegg, J. Enhanced space integrated GPS/INS (SIGI)[J]. Aerospace and ElectronicSystems Magazine, IEEE,2002,17(4),26-33.
    [10]郭立红.航天测量船惯性导航系统姿态校准技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003
    [11]Lawrence, A. Modern Inertial Technology: Navigation, Guidance, andControl[M].2nd ed. New York: Springer-Verlag,1998.
    [12]简仕龙,费加兵,刘冰.航天测量船海上测控技术概论[M].北京:国防工业出版社,2009.121-129
    [13]郭敬明.基于星敏感器的船姿测量方法研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2013
    [14]Gleason, S., Gebre-Egziabher, D. GNSS Applications and Methods[M]. Norwood,MA:Artech House,2009.
    [15]Wendel, J., Trommer, G.F. Tightly Coupled GPS/INSIntegration for MissileApplications[J]. Aerospace Science and Technology,2004.2004(8):627-634.
    [16]申功勋,孙建峰.信息融合理论在惯性/天文/GPS组合导航系统中的应用[M].北京:国防工业出版社,1998.34-60
    [17]黄晶.基于GPS/GIS/GSM船载导航系统的研究[D]:[硕士学位论文].成都:电子科技大学,2009
    [18]Farrell, J., Barth, M. The Global Positioning System and Inertial Navigation[M].New York:McGraw-Hill,1999
    [19]HILIUTA A, LANDRY REJ, GAGNON FO. Fuzzy Corrections in a GPS/INSHybrid Navigation System[J]. IEEE Transactions on Aerospace and ElectronicsSystem,2004,40(2):10-11
    [20]Groves, P. D., Long, D. C. Combating GNSS Interference with Advanced InertialIntegration[J]. Journal of Navigation,2005,58(03),419-432
    [21]ZHAO Hai-bo, GUO Li-hong. INS’s error compensation on the base of thecelestial theodolite [J]. Optical Devices and Instruments,2005,6024(2E):1-6
    [22]Singh, A., S.K.Saraswati. India Heading for a Regional Navigation SatelliteSystem[J]. Coordinates,2006.2(11):6-8
    [23]Farrell, J., Barth, M. The Global Positioning System and Inertial Navigation[M].New York:McGraw-Hill,1999.
    [24]Groves,P.D. Principles of GNSS, Inertial and Multisensor Integrated NavigationSystems[M]. Artech House, INC.,2008.
    [25]D.H.Titterton, J.L.Weston. Strapdown Inertial Navigation Technology:SecondEdition[M]: AIAA Inc.,2004.
    [26]高策,乔彦峰.光电经纬仪测量误差的实时修正[J].光学精密工程,2007,15(6):846-851
    [27]刘敏,雷斌.靶场光电经纬仪测量数据的误差分析及数据处理[J].理论与方法,2007,26(11):12-14
    [28]王晓东.地基光测设备误差修正[D]:[博士学位论文].天津:天津大学,2007
    [29]王宗友,付承毓,王芳.基于数据配准提高光电经纬仪的测量精度[J].中国光学,2010,3(6):586-590
    [30]侯宏录,周德云,王伟.基于星体标定的光电跟踪系统测角精度评定[J].光电工程,2006,33(3):5-10
    [31]郭立红.利用测星实现经纬仪外场静态精度检测[J].光学精密工程,1997,5(1):119-123
    [32]李慧,沈湘衡.光电经纬仪轴系误差仿真计算的新方法[J].红外与激光工程,2008,37(2):334-337
    [33]李淼,高慧斌.应用径向基函数神经网络的经纬仪跟踪误差建模[J].光学精密工程,2012,20(4):818-825
    [34]孔德强,刘作学,崔灿,等.舰船平台罗经航向误差的标校[J].中国航海,2009,32(1):10-13
    [35]王辉华,刘文化,张世英,等.舰载光电跟踪系统跟踪误差源分析[J].电光与控制,2007,14(2):101-103
    [36]郭德强.航天测量船校飞残差数据的分析与处理[D]:[硕士学位论文].长沙:国防科学技术大学研究生院,2008
    [37]康德勇,李晓勇,王旭良,等.船位误差对外弹道测量及定轨精度的影响[J].电讯技术,2010,50(9):106-109
    [38]GAWRONSKI W, BAHER F, QUINTERO O. Analysis of tracking error sourcefor shipboard photoelectric tracking system [J]. ELECTRONICS OPTICS&CONTROL,2007,14(2):100-103
    [39]薛国虎,李晓勇,张忠华,等.测量船多设备外测数据的融合算法[J].飞行器测控学报,2011,30(1):52-55
    [40]李增,吴志勇,佟刚,等.车载经纬仪的静态指向误差补偿[J].光学精密工程,2010,18(4):921-927
    [41]佟钢,王芳.车载平台变形对测角误差的影响分析与修正[J].光学精密工程,2011,19(4):775-782
    [42]王辉华,刘文化,张世英,等.船载光电跟踪系统跟踪误差源分析[J].电光与控制,2007,14(2):100-103
    [43]薛向尧,高云国,韩光宇,等.水平式经纬仪指向误差的统一补偿技术[J].光学精密工程,2011,19(7):1524-1530
    [44]姜伟伟,高云国,冯栋彦,等.车载光电经纬仪基准平面测角误差修正[J].兵工学报,2009,30(12):1638-1641
    [45]张尧禹.车载平台变形测量和误差校正技术的研究[D]:[博士学位论文].长春:长春光学精密机械与物理研究所,2003
    [46]王晓明,张尧禹,乔彦峰.用动态水平基准测量系统实时测量船体横扭角和纵挠角[J].光学精密工程,2013,21(2):294-300
    [47]李辉芬,周锦标,何剑伟,等.航天测量船外测数据异常值自适应处理算法设计[J].电讯技术,2011,51(4):54-59
    [48]李晓勇,张忠华.船载外测设备测速数据的误差修正[J].电讯技术,2006(5):131-135
    [49]朱国力,文香稳,潘明华.三维姿态测量系统的安装误差[J].华中科技大学学报,2011,39(5):1-5
    [50]高策,乔彦峰.车载光电经纬仪不落地测量的实时误差修正方法[J].计算机测量与控制,2010,18(12):2738-2740
    [51]金光,王家骐,倪伟.利用坐标变换推导经纬仪三轴误差[J].光学精密工程,1999,7(5):89-94
    [52]金光.机载光电跟踪测量的目标定位误差分析和研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2001
    [53]张葆,姚俊峰,高利民.机载GPS测量定位技术研究[J].光学精密工程,2009,17(1):172-177
    [54]王涛,宋立维.车载经纬仪的测量误差修正[J].仪器仪表学报,2012,33(2):469-473
    [55]LI Miao, GAO Hui-bin. Correction method of heading calibration for calibrationtheodolite [J]. Chinese Optics,2011,4(6):583-587
    [56]刘廷霞,王伟国,陈健.车载惯性平台稳定位置解算算法[J].中国光学,2012,5(5):537-543
    [57]吴小强,窦林涛,初阳,等.舰艇姿态对雷达测量误差的影响分析[J].指挥控制与仿真,2011,33(6):102-105
    [58]钟德安,赵文华,傅敏辉.航天测量船测量设备方位取齐误差分析[J].测控遥感与导航定位,2008,38(4):37-39
    [59]陈红英,李辉芬,吴君,等.航天测量船角度系统误差偏大问题的分析与解决[J].电讯技术,2011,51(10):71-75
    [60]张志远,罗国富.舰船姿态坐标变换及稳定补偿分析[J].舰船科学技术,2009,31(4):34-40
    [61]孙国政.综合导航系统误差对舰载三坐标相控阵雷达精度的影响分析[J].现代雷达,2006,28(2):15-18
    [62]董起顺,姜涛,苏成志.火炮复瞄精度测试中经纬仪的最佳布站研究[J].兵工学报,2007,8(5):513-515
    [63]张宏艺,刘敬明.俯仰角大气折射误差修正方法[J].光电子技术应用,2008,23(8):25-27
    [64]严豪键,符养,洪振杰.现代大气折射引论[M].上海:上海科技教育出版社,2006.23-40
    [65]翁宁泉,曾宗泳,龚知本.卫星目标光学测量大气折射修正[J].量子电子学报,2011,18(6):560-565
    [66]孙泽林,王昭,翟唤春.双经纬仪交会测量火炮调炮精度的误差分析与抑制[J].光学精密工程,2011,19(10):2434-2441
    [67]刘旨春,郭立红,关文翠,等.经纬仪交会精度的定量预测[J].光学精密工程,2008,16(10):1822-1830
    [68]赵云峰,孟庆利,袁水平.红外经纬仪视频图像判读系统研究[J].电光与控制,2008,15(7):67-74
    [69]顾建熊.红外图像增强算法研究[D]:[硕士学位论文].兰州:兰州大学,2009
    [70]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社,2002:116-130
    [71]魏长安.红外小目标检测与跟踪算法研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2009
    [72]张小虎.靶场图像运动目标检测与跟踪定位技术研究[D]:[博士学位论文].长沙:国防科学技术大学研究生院,2006
    [73]李晓冰,杨荣芳,段一萍.红外测量图像判读精度检测方法[J].红外,2008,29(1):20-24
    [74]汪大宝.复杂背景下的红外弱目标检测与跟踪技术研究[D]:[博士学位论文].西安:西安电子科技大学,2010
    [75]李清军.快速视频判读方法的研究[J].光学精密工程,2000,8(4):321-324
    [76]Gelb, A. Applied Optimal Estimation[M]. Cambridge, MA: The MIT Press,1974.
    [77]Travis W, Simmons AT, Bevly DM. Corridor Navigation with a LiDAR/INSKalman Filter Solution[C]. IEEE INTELLIGENT VEHICLE CONFERENCE, LASVEGAS, NEVADA,2005
    [78]Carlson N A. Federated Kalman filter simulation results [J]. Int J Journal of theInstitute of Navigation,1994,41(3):110-119
    [79]彭秀艳,赵希人,高奇峰.船舶姿态运动实时预报算法研究[J].系统仿真学报,2007,19(2):267-271
    [80]易东云,吴孟达.船姿数据的模型误差与噪声误差分析[J].导弹与航天运载技术,1998(2):41-44
    [81]Julier S, Uhlmann J, Durrant-Whyte H F. A new method for NonlinearTransformation of means and Covariances in Filters and Estimators(C). IEEETransactions on Automatic Control.2000,45(3):477-482
    [82]泰永源,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.274-285
    [83]王珏,潘高峰,黄晓娟,等.船载GPS测姿系统数字滤波算法[J].中国惯性技术学报,2009,17(3):284-287
    [84]李晓勇,张忠华,张同双,等.航天测量船船摇数据特性分析[J].中国惯性技术学报,2006,14(3):27-31
    [85]杨磊,吴孟达,张忠华,等.航天测量船外测数据的滤波算法[J].航天控制,2008,26(6):20-28
    [86]Lee, H. K., Lee, J. G., Jee, G.-I. Calibration of Measurement Delay in GlobalPositioning System/Strapdown Inertial Navigation System[J]. Journal of Guidance,Control, and Dynamics,2002,25(2):240-247
    [87]王可东,熊少锋.ARMA建模及其在Kalman滤波中的应用[J].宇航学报,2012,33(8):1048-1055
    [88]Broersen P M T, De W S. Automatic identification of time-Series Instrumentationand Measurement,2005,54(5):1862-1868
    [89]Ding F. Several multi-innovation identification methods [J]. Digital SignalProcessing,2010,20(4):1027-1039
    [90]Liang G, Wilkes D M, Cadzow J A. ARMA model order estimation based on theeigenvalues of the covariance matrix [J]. IEEE Transactions on Signal processing,1993,41(10):3003-3009
    [91]冯天祥.两类三次样条插值函数的统一解法[J].西南交通大学学报,2003,38(4):450-453
    [92]许小勇,钟太勇.三次样条插值函数的构造与Matlab实现[J].自动测量与控制,2006,25(11):76-78
    [93]李庆杨,王能超,易大义.数值分析[M].北京:清华大学出版社,2001:21-58
    [94]玛蒂尔达(美国),陈渝等译.数值方法(MATALB版)[M].北京:电子工业出版社,2002:207-220
    [95]杨磊,吴孟达,蔡斌.航天测量船外测数据误差分析的小波方法[J].飞行器测控学报,2007,26(2):81-86
    [96]姜君,樊卫华,郭健,等.动中通系统中陀螺信号小波滤波算法[J].系统工程与电子控制,2010,32(4):825-828
    [97]袁瑞铭,孙枫,陈慧.光纤陀螺信号的小波滤波方法研究[J].哈尔滨工业大学学报,2004,36(9):1235-1238
    [98]刘颖,李言,徐金涛.一种多算法融合的实时滤波在光纤陀螺中的应用[J].光子学报,2010,39(6):1116-1119
    [99]G.W.Wornell, A.V.Oppenhiem. Estimation of Fractal Signals from NoisyMeasurements Using Wavelets [J]. IEEE Transactions on Signal Processing.1992,40(3):611-623
    [100]熊科.小波滤波中的阈值研究[J].电力自动化设备,2008,28(10):113-115
    [101]李丽,王振领.MATLAB工程计算机应用[M].北京:人民邮电出版社,2001:201-211
    [102]陈希孺.概率论与数理统计[M].北京:科学出版社,2000:279-333
    [103]包研科,李娜.数理统计与MATLAB数据处理[M].沈阳:东北大学出版社,2008:161-195
    [104] Rousseeuw, P.J. and Leroy, A.M. Robust Regression and Outlier Detection[J], Wiley-Interscience, New York.1987.
    [105]田国富,胡军,郭玉学.多元线性回归理论在数控机床热误差补偿中的应用[J].机械工程与自动化,2013(2):128-131
    [106]刘严.多元线性回归的数学模型[J].沈阳工程学院学报,2005,1(2):128-129
    [107]许昌林,魏立力.一元线性回归模型的贝叶斯分析[J].重庆工学院学报,2009,23(3):98-100
    [108]李欣,刘万军.回归分析数据挖掘技术[J].海军航空工程学院学报,2006,21(3):386-388
    [109] Muthukrishnan. R, Radha. M. M-Estimators in Regression Models [J],Journal of Mathematics,2010,2(4)
    [110] Huber, P. J. Robust Estimation of a Location Parameter[J]. Annals ofMathematical Statistics,1964(35):73-101
    [111] Nathan L. Knight and Jinling Wang. A Comparison of Outlier DetectionProcedures and Robust Estimation Methods in GPS Positioning [J]. Journal ofNavigation,2009(62):699-709
    [112] Avi Giloni, Jeffrey S. Simonoff,Bhaskar Sengupt. Robust weighted LADregression [J], Computational Statistics&Data Analysis,2006(50):3124-3140
    [113]王彤.线性回归模型的稳健估计及多个异常点诊断方法研究[D]:[博士学位论文].西安:第四军医大学,2000
    [114]张忠华.航天测量船船姿数据处理方法[M].北京:国防工业出版社,2009.134-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700