用户名: 密码: 验证码:
冲焊型液力变矩器冲压成形数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲焊型液力变矩器是液力自动变速器(AT)的核心部件,AT作为目前车辆自动变速器市场占有率最高的产品,使得汽车行业成为液力变矩器最大的用户。近年来,国内各大汽车厂商先后推出了装备有AT的新型车,但其中的AT及其核心部件大多是依靠国外进口或者引进国外技术以后在国内组装生产。由于液力变矩器的结构形式和性能优劣对整车的动力性和经济性具有很大影响,因此,开发出具有我国自主知识产权的液力变矩器产品具有极好地应用前景。
     模具制造是冲焊型液力变矩器设计研发过程中的重要环节之一,其制造工艺和制造精度对液力变矩器工作性能有直接影响。在进行模具制造过程中,需要有效的控制板料冲压成形时的回弹。回弹是冲压成形过程中不可避免的现象。在板料的成形领域,它的存在造成零件的形状及尺寸与设计的要求不符,直接影响了冲压件的品质,如外观质量、装配性能和使用的可靠性等。液力变矩器零部件回弹的控制也成为其设计研发主要面临的问题。传统上普遍采用基于经验的现场“试错法”进行成形工艺参数的调整和模具型面的修正,这种方法通常需要花费大量的人力物力,并且生产周期长。因此,如何准确的预测液力变矩器零部件冲压回弹后的形状、设计出准确的型面用以补偿回弹,是实际生产中需要解决的难题。
     在冲焊型液力变矩器的设计过程中,结构的可靠性是保证其安全运行的关键。因此,在现有的材料、结构以及工艺条件下,液力变矩器叶片与内外环的焊接强度能否满足使用要求,需要进行校核。
     针对以上问题,本文以浙江省科技厅重大科技专项“轿车扁平化液力变矩器研制(2008C01036-4)”项目为依托,针对我国冲焊型液力变矩器在结构设计、模具制造方面所面临的关键技术性问题,对冲焊型液力变矩器冲压成形做了较为系统深入的研究。主要研究内容如下:
     1.变矩器冲压成形理论及基本参数测试
     以弹塑性变形理论为基础,对液力变矩器冲压成形有限元理论进行研究,并分析影响板料弯曲回弹的主要因素,为液力变矩器冲压成形的数值模拟研究提供理论依据;对液力变矩器叶片所用材料进行单向拉伸试验,得到材料的基本力学性能参数,为数值模拟中材料参数的选取提供依据;对叶片材料进行简单V型件的冲压成形数值模拟,并通过试验验证数值模拟方法的正确性,为后续对液力变矩器冲压成形的数值模拟奠定基础。
     2.冲焊型液力变矩器冲压成形数值模拟
     基于经验公式法和环量分配法,设计了YJH255型液力变矩器简化模型;为了提高材料的利用率,将有限元逆算法应用到液力变矩器的坯料展开计算中,得到冲压件展开料的形状和尺寸大小;针对液力变矩器冲压件的展开料进行冲压成形数值模拟,分析冲压件的成形结果,并对零件实际生产过程中可能出现的回弹量进行预测,为利用回弹规律进行模具补偿提供依据。
     3.叶片回弹补偿与模具设计
     冲焊型液力变矩器的叶片形状复杂,制造精度要求高。叶片的形状决定变矩器的性能,应保证实物模型与设计模型一致,因此需要对液力变矩器叶片的回弹量进行补偿。基于正交试验方法,对型面复杂的三维空间扭曲叶片进行冲压回弹试验,得到最优的成形工艺参数;利用模具型面补偿法对液力变矩器叶片进行回弹修正;最后对满足设计要求的液力变矩器叶片及内外环模具型面,使用三维造型软件UG对其进行参数化设计,并对模具进行快速三维造型,最后制造出液力变矩器实物。
     4.液力变矩器成形的检测与对比分析
     由于液力变矩器的叶片为空间扭曲曲面,为验证其回弹补偿方法的有效性,利用ATOS非接触式光学扫描仪对本文设计并制造出的液力变矩器样机进行扫描测试,检测成形精度;同时对液力变矩器进行外特性试验,检测该液力变矩器的性能。
     5.冲焊型液力变矩器叶片与内外环焊接强度分析
     基于单向流固耦合(FSI)分析技术,对本文设计的液力变矩器叶片与内外环进行焊接强度分析。利用流体分析软件FLUENT对变矩器工作腔内的流场进行CFD数值计算;然后将流场计算得到的作用在耦合面上的流体压力载荷,通过网格插值映射的方法映射到叶轮结构的表面;最后利用结构有限元分析软件ANSYS对液力变矩器叶轮结构进行FSI焊接强度计算。
     本文针对冲焊型液力变矩器冲压成形理论和数值模拟方法的研究,能够有效的解决实际生产中的技术难题,促进液力变矩器模具技术的进步,降低生产成本和缩短生产周期;为液力变矩器的制造提供理论指导意义与实用价值,为其新产品的开发提供借鉴,同时为我国汽车行业的自主研发奠定良好的基础。
Stamping welded hydrodynamic torque converter is the core component ofhydrodynamic automatic transmission (AT), which is mostly applied in the market ofvehicles with automatic transmission. Therefore, in automobile industry, hydrodynamictorque converter becomes the largest user. In recent years, although domestic automobilemanufacturer has launched new cars that are equipped with AT, the AT and its corecomponents mainly rely on the imported product, and mostly apply foreign technologies toassemble before producing in China. Since the performance and structure of hydrodynamictorque converter have a great influence on the power performance and fuel economy ofvehicle, so developing a hydrodynamic torque converter with our own intellectual propertyrights has excellent application prospect.
     Die manufacture is a key step in the process of designing and developing stampingwelded hydrodynamic torque converter, and the process and accuracy of manufacturedirectly impact the working performance of hydrodynamic torque converter. During theprocess of manufacturing die, it is necessary for the developers to efficiently control thespringback, which is generated by sheet forming and is also an inevitable phenomenon. Inthe area of sheet forming, springback may cause difficulties of matching the size and shapeof parts under the designing requirement, this matter will also directly affect the quality ofstamping parts, such as the appearance quality, assembled performance, and reliability, etc.Therefore, the control of springback parts in hydrodynamic torque converter is the maindesign problem. Traditionally, researchers use the method called the scene of “trial anderror”-based on experiences to adjust the forming process parameters and amend the die-face, however, this method wastes lots of resources, and the production period is also toolong. Therefore, we mainly have two difficulties in the practical industry, one is how topredict the shape of hydrodynamic torque converter after springback, and the other is how todesign the die-face for compensating springback accurately.
     In the process of designing stamping welded hydrodynamic torque converter, thereliability of the whole structure is the key to ensure the secure operation. Therefore, in orderto test whether it reaches the requirements of hydrodynamic torque converter, we shouldcheck the welding strength of blade with core and shell based on the existing material,structure and designing condition.
     According to the above questions, this paper, relied on the projects “Development onflat hydrodynamic torque converter of car (2008C01036-4)” of Science and TechnologyAgency of Zhejiang Province, mainly focuses on the technical problem of designing andmanufacturing of stamping welded hydrodynamic torque converter, and will discuss deeplyabout the stamping forming of stamping welded hydrodynamic torque converter. The mainresearch contents contain:
     1. The stamping forming theory of torque converter and basic parameters test
     Based on elastic-plastic deformation theory, investigate the finite element theory ofstamping forming for hydrodynamic torque converter, analyze the main factors influencingthe bending springback of sheet metal, and also provide theoretical basis for the subsequentforming simulation of hydrodynamic torque converter; use the sheet tensile test on materialof making torque converter blade to get the basic parameters of mechanical properties ofmaterials, and then provide the evidence of the selection of material parameters in numericalsimulation; apply the torque converter blade material in the stamping forming numericalsimulation for the simple V type parts, and then test the certification of numerical simulationin order to lay a foundation for the following numerical simulation of stamping forming onstamping welded hydrodynamic torque converter.
     2. The forming simulation of stamping welded hydrodynamic torque converter
     Based on the empirical formula and the circulation distribution method, design a simplemodel of YJH255stamping welded hydrodynamic torque converter. In order to improve the utilization rate of materials, apply the finite element inverse algorithm to the blank unfoldingcalculation of hydrodynamic torque converter, and then get the shape and size of blankmaterial; numerically simulate the stamping forming of torque converter blank unfolded, andanalyze the forming results, and finally predict the springback that may appears in the actualproducing process, this would provide the evidence of using springback rules in die-facecompensation.
     3. The blade springback compensation and die design
     The shape of stamping welded hydrodynamic torque converter blade is complicated, soit needs a high precision of manufacturing. The shape of the blade determines theperformance of torque converter and needs to be the same as the real product, so we need tocompensate the springback value of torque converter blade. To get the best forming processparameters, we test the springback value on three-dimensional space twisted blade byorthogonal test method; Use die-face compensation method on hydrodynamic torqueconverter blade to correct springback; Considering to meet the design requirements of thedie-face of blade, core and shell in a hydrodynamic torque converter, we use3D modelingsoftware UG to parametric design, and then fast generates3D models for the dies, finally, getthe real product of hydrodynamic torque converter.
     4. Test and comparative analysis the forming of hydrodynamic torque converter
     Because the blade of torque converter is spatial distortion surface, so in order to verifythe effectiveness of the springback compensation method, we choose to scan and test thedesigned stamping welded hydrodynamic torque converter prototype by ATOS non-contactoptical scanner, and then test the forming precision. Meanwhile, we will also test the externalcharacteristics of the hydrodynamic torque converter, and then examine the performance ofthe hydrodynamic torque converter.
     5. The welding strength analysis of blade with core and shell on stamping weldedhydrodynamic torque converter
     Based on the fluid-solid interaction (FSI) analysis technology, we analyze the weldingstrength on the designed blade with core and shell of hydrodynamic torque converter. Firstly,numerical calculate CFD on flow field of torque converter working chamber by the fluid analysis software FLUENT; Secondly, apply the results about the fluid pressure load in thecoupling surface mapping onto the impeller structure surface by the method of gridinterpolation mapping; Finally, use finite element analysis software ANSYS to calculate theFSI welding strength of impeller structure of hydrodynamic torque converter.
     This paper discusses the stamping forming theory and numerical simulation methods ofstamping welded hydrodynamic torque converter. These theories and methods effectivelysolve the technical problems in production, promote the die technology of hydrodynamictorque converter, and also reduce production cost and cycle. Moreover, this paper hasimportant theory guiding significance and practical value to manufacture of stamping weldedhydrodynamic torque converter, and provides references for the development of newproducts of hydrodynamic torque converter, and also provides a better foundation for theindependent research in Chinese automobile industry.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]陆忠东.现代轿车液力变矩器及其开发技术[J].汽车与配件,2008,18(8):36-38.
    [3]贾双林,褚亚旭,刘荣辉,等.公共汽车液力变矩器流场的数值分析[J].液压气动与密封,2011,(9):9-11.
    [4]刘春宝,朱喜林,马文星.轿车液力变矩器扁平率研究[J].农业机械学报,2010,41(10):23-27.
    [5]褚亚旭,马文星,刘春宝,等.液力变矩器流场分析与实验研究[J].哈尔滨工业大学学报,2009,41(7):212-214.
    [6]李春芾,陈慧岩,李艳琴,等.重型车辆液力变矩器闭解锁控制技术的试验研究[J].汽车工程,2010,32(2):123-127.
    [7]才委,马文星,褚亚旭.大功率履带推土机发动机与液力变矩器动态匹配方法的探讨[J].机床与液压,2006,(2):106-108,156.
    [8]刘春宝,马文星,杜巍巍,等.基于液力调速的风力发电传动系统计算与分析[J].同济大学学报(自然科学版),2013,41(10):1584-1588.
    [9]王奎升,刘来福,张青振.石油钻机液力变矩器轴向力的分析与计算[J].石油大学学报(自然科学版),1999,23(5):53-56.
    [10]陈守慧.冲压焊接型液力变矩器在叉车上的应用[J].起重运输机械,1989,(7):31-34.
    [11]安道星.矿用新型液力变矩器的特性分析[J].煤矿机械,2013,34(6):87-89.
    [12]王宏卫.钣金冲焊型双涡轮液力变矩器的研制[J].工程机械,2002,(5):45-47.
    [13]吴光强,王欢.液力变矩器研究综述[J].汽车技术,2009,(3):1-6.
    [14]许玉昌.冲压焊接液力变矩器[J].航天技术与民品,1995,(4):42-44.
    [15]李雪原,闫清东.液力变矩器模具设计参数化研究[J].工程机械,2002,(4):40-44.
    [16]张冬娟.板料冲压成形回弹理论及有限元数值模拟研究[D].上海:上海交通大学材料科学与工程学院,2006.
    [17]刘迪辉.薄板冲压回弹仿真计算及应用技术研究[D].长沙:湖南大学机械与汽车工程学院,2005.
    [18]朱东波,孙琨,李涤尘,等.板料成形回弹问题研究新进展[J].塑性工程学报,2000,7(1):11-17.
    [19]陈锋,王春江,周岱.流固耦合理论与算法评述[J].空间结构,2012,18:55-63.
    [20] F. Pochyly,E. Malenovsky,L. Pohanka.New Approach for Solving the Fluid-Structure InteractionEigenvalue Problem by Modal Analysis and the Calculation of Steady-State or UnsteadyResponses[J].Journal of Fluids and Structures,2013,37,171-184.
    [21] A. Berkenbos,C.P. Lowe.Accurate Method for Including Solid-Fluid Boundary Interactions inMesoscopic Model Fluids[J].Journal of Computational Physics,2008,227:4589-4599.
    [22]陆忠东,吴光强,殷学仙,等.液力变矩器流固耦合研究[J].汽车技术,2010,32(4):4-16.
    [23] Tomasz Kietlinski,Michael Fingerman.248mm Elliptical Torque Converter from DaimlerChryslerCorporation[C]//SAE Paper2007-01-0241.
    [24] Kazutoshi Nozaki,Yuuji Kashihara,Nobuaki Takahashi,et al.Toyota' New Five-Speed AutomaticTransmission A750E/A750F for RWD Vehicles[C]//SAE Paper2003-01-0595.
    [25] Toru Ochi,Hiroaki Takeuchi,Hiromichi Kimura,et al.Development of a Super-flat TorqueConverter for the New Toyota FWD6-Speed Automatic Transaxle[C]//SAE Paper2006-01-0149.
    [26] Masato Watanabe,Kazumichi sasaki,Koichi Miyamoto,et al.Toyota's New Six-Speed AutomaticTransmission AB60E for RWD Vehicles[C]//SAE Paper2007-01-1098.
    [27] Hirofumi Ota,Kazutoshi Nozaki,Atsushi Honda,et al.Toyota's World First8-Speed AutomaticTransmission for Passenger Cars[C]//SAE Paper2007-01-1101.
    [28] Helmut Hrmann,Manfred Bek,Heribert Scherer.ZF6速自动变速器的技术改进—高燃油经济性和快速动态换档[J].传动技术,2011,24(3):3-13,19.
    [29] Heribert Scherer. ZF6-Speed Automatic Transmission for Passenger Cars[C]//SAE Paper2003-01-0596.
    [30]中国机械工程学会.中国机械工程技术路线图[M].北京:机械工业出版社,2011.
    [31] Sehyun Shin,Hyukjae Chang,Mahesh Athavale.Numerical Investigation of the Pump Flow in anAutomotive Torque Converter[C]//SAE Paper1999-01-1056.
    [32] Norihiko Watanabe,Shinya Miyamoto,Masayuki Kuba,et al.The CFD Application for EfficientDesigning in the Automotive Engineering[C]//SAE Paper2003-01-1335.
    [33] Dong Yu,Korivi Vamshi,Attibele Pradeep.Torque Converter CFD Engineering PartⅠ: Torque Ratioand K Factor Improvement Through Stator Modifications[C]//SAE Paper2002-01-0883.
    [34] Dong Yu,Korivi Vamshi,Attibele Pradeep.Torque Converter CFD Engineering PartⅡ: PerformanceImprovement Through Core Leakage Flow and Cavitation Control[C]//SAE Paper2002-01-0884.
    [35] Shieh T,Perng C,Chu D,et al.Torque Converter Analytical Program for Blade DesignProcess[C]//SAE Paper2000-01-1145.
    [36] R. Flack,K. Brun.Fundamental Analysis of the Secondary Flows and Jet-Wake in a TorqueConverter Pump-PartⅠ: Model and Flow in a Rotating Passage[J].ASME Journal of FluidsEngineering,2005,127(1):66-74.
    [37] R. Flack,K. Brun.Fundamental Analysis of the Secondary Flows and Jet-Wake in a TorqueConverter Pump-PartⅡ: Flow in a Curved Stationary Passage and Combined Flows[J].ASMEJournal of Fluids Engineering,2005,127(1):75-82.
    [38] Darrell Robinette,Michael Grimmer,Jeremy Horgan,et al.Torque converter clutch optimization:Improving fuel Economy and reducing noise and vibration[C]//SAE Paper2011-01-0146.
    [39] Chunhao Joseph Lee,Kumaraswamy Hebbale,Chi-Kuan Kao,et al.Control of a Multi-Plate TorqueConverter Clutch with an Aggressive Schedule in an Automatic Transmission[C]//ASME2007International Mechanical Engineering Congress and Exposition,November11–15,2007,Seattle,Washington,USA,115-120.
    [40] Otanez Pau,Lee Chunhao J,Chen Xu,et al.Torque converter clutch low slip speed detection andcontrol[C]//ASME2010Dynamic Systems and Control Conference,September12–15,2010,Cambridge,Massachusetts,USA,1,69-75.
    [41] Otanez Paul,Samie Farzad Lee,Chunhao Joseph,et al.Aggressive torque converter clutch slipcontrol and driveline torsional velocity measurement[C]//SAE Paper2008-01-1584.
    [42] Tejinder Singh,Richard Olenzek.General Motors Small Front Wheel Drive Six speed AutomaticTransmission Family[C]//SAE Paper2010-01-0857.
    [43] Kumaraswamy Hebbale,Chunhao Lee,Farzad Samie,et al.Model Based Torque Converter ClutchSlip Control Model Based Torque Converter Clutch Slip Control[C]//SAE Paper2011-01-0396.
    [44] Akira Higashimata,Kazutaka Adachi,Satoshi Segawa,et al.Development of a Slip Control Systemfor a Lock-Up Clutch[C]//SAE Paper2004-01-1227.
    [45] Y. Dong,B. Lakshminarayana.Experimental Investigation of the Flow Field in an AutomotiveTorque Converter Stator[J].ASME Journal of Fluids Engineering,1999,121(4):788-797.
    [46] Y. Dong,B. Lakshminarayana.Rotating Probe Measurements of the Pump Passage Flow Field in anAutomotive Torque Converter[J].ASME Journal of Fluids Engineering,2001,123(1):81-91.
    [47] Yasunori Kunisaki,Toshio Kobayashi,Tetsuo Saga,et al.PIV Measurement on the Flow FieldAround a Stator Cascade of Automotive Torque Converter[C]//SAE Paper2001-01-0868.
    [48] Yasunori Kunisaki,Toshio Kobayashi,Tetsuo Saga,et al.A Study on Internal Flow Field ofAutomotive Torque Converter Three-Dimensional Flow Analysis Around a Stator Cascade ofAutomotive Torque Converter by Using PIV and CT Techniques[J].JSAE Review,2001,22(4):559-564.
    [49] Kraus S O,Flack R,Habsieger A,et al.Periodic Velocity Measurements in a Wide and Large RadiusRatio Automotive Torque Converter at the Pump/Turbine Interface[J].ASME Journal of FluidsEngineering,2005,127(2):308-316.
    [50]王坤定.制造过程的有限元仿真加速下一代液力变矩器的创新[J].汽车与配件,2013,22(6):33.
    [51]韩文明,黄金玲,葛安林.CAD/CAM一体化技术在液力变矩器研制中的应用[J].汽车技术,1999,1:23-26.
    [52]马文星,何延东,刘春宝.液力传动研究现状分析与展望[J].农业机械学报,2008,39(7):51-55.
    [53]才委,马文星,刘春宝,等.基于三维流场计算的液力变矩器特性预测方法[J].哈尔滨工程大学学报,2007,28(3):316-319.
    [54]褚亚旭,马文星,方杰,等.液力变矩器三维流动的计算[J].农业机械学报,2005,36(8):107-110.
    [55]刘春宝,马文星,褚亚旭.多流动区域耦合算法在液力元件中的应用[J].吉林大学学报(工学版),2008,38(6):1342-1347.
    [56]朱喜林,刘春宝,马文星,等.冲焊型与铸造型液力变矩器性能对比分析[J].北京工业大学学报,2012,38(3):335-339.
    [57]才委,褚亚旭,马文星.双涡轮液力变矩器第一涡轮空转特性分析[J].哈尔滨工程大学学学报,2011,32(7):948-952.
    [58]刘春宝,马文星,朱喜林.液力变矩器三维瞬态流场计算[J].机械工程学报,2010,46(14):161-166.
    [59]刘春宝.轿车扁平化液力变矩器研究[D].长春:吉林大学机械科学与工程学院,2009.
    [60]王欢,吴光强,冀海燕.超扁平化液力变矩器泵轮流场主流特征分析[J].江苏大学学报(自然科学版),2009,30(5):463-466.
    [61]邓兆祥,李兴泉,罗虹,等.轿车液力变矩器循环圆改进设计方法[J].重庆大学学报,2011,34(5):26-30.
    [62]魏良武,汪建华,陆浩.液力变矩器焊接工艺参数的计算机优化[J].焊接学报,2001,22(5):76-78.
    [63]魏良武,魏杰,汪建华.液力变矩器总成点固焊焊接变形有限元分析[J].电焊机,2004,34(9):42-44.
    [64]惠记庄,曹杰,邹亚科,等.钣金型液力变矩器疲劳寿命模拟仿真与实验研究[J].机械设计,2011,28(6):74-77.
    [65]陈清洪,秦大同,叶心.闭锁离合器滑摩压力优化控制与仿真[J].系统仿真学报,2010,22(3):699-703.
    [66]郑亚飞.轿车液力变矩器闭锁离合器动态特性研究[D].长春:吉林大学机械科学与工程学院,2007.
    [67]孙文涛,陈慧岩,关超华,等.液力变矩器闭锁过程控制技术研究[J].汽车工程,2009,31(8):761-764,787.
    [68]王雷雷,吴光强.自动变速器闭锁策略设计[J].同济大学学报(自然科学版),2011,39(9):1329-1332.
    [69]鲁统利,葛安林,张宏坤,等.液力变矩器性能试验台油温自动控制系统研制[J].农业机械学报,2000,31(4):95-98,102.
    [70]李文平.弯曲回弹变分原理及其数值模拟研究[D].秦皇岛:燕山大学材料科学与工程学院,2006.
    [71] F.J. Gardiner.The Springback of Metals[J].Transactions of ASME,1957,79:1-9.
    [72]付宝连.金属成形过程的回弹变分原理[J].工程力学,2002,19(6):87-92.
    [73] Myoung-Gyu Lee,Daeyong Kim,Chongmin Kim,et al.Springback Evaluation of AutomotiveSheets Based on Isotropic-kinematic Hardening Laws and Non-quadratic anisotropic yield functions,Part Ⅲ:Applications[J].International Journal of Plasticity,2005,21:915-953.
    [74] Lumin Geng,Yao Shen,R.H Wagoner.Anisotropic Hardening Equations Derived fromReverse-bend Testing[J].International Journal of Plasticity,2002,18:743-767.
    [75] M.C. Oliveira,J.L. Alves,B.M. Chaparro,et al.Study on the Influence of Work-hardening Modelingin Springback Prediction[J].International Journal of Plasticity,2007,23:516-543.
    [76]胡康康,彭雄奇,陈军,等.基于Yoshida-Uemori材料模型的汽车结构件冲压回弹分析[J].材料科学与工艺,2011,19(6):43-47.
    [77]肖煜中,陈军.金属板料冲压数值模拟中的宏观硬化模型研究现状[J].塑性工程学报,2009,16(4):51-58.
    [78] Lumin Geng, R.H. Wagoner. Role of Plastic Anisotropy and Its Evolution onSpringback[J].International Journal of Mechanical Sciences,2002,44:123-148.
    [79] F. Yoshida,T. Uemori.A model of Large-strain Cyclic Plasticity and Its Application to SpringbackSimulation[J].International Journal of Mechanical Sciences,2003,45:1687-1702.
    [80] Farhang Pourboghrat,Michael E. Karabin,Richard C. Becker,et al.A Hybrid Membrane/ShellMethod for Calculating Springback of Anisotropic Sheet Metals Undergoing AxisymmetricLoading[J].International Journal of Plasticity,2000,16:677-700.
    [81] I. N. Vladimirov,M. P. Pietryga,S. Reese.Prdiction of springback in sheet forming by a new finitestrain model with nonlinear kinematic and isotropic hardening[J].Journal of Materials ProcessingTechnology,2009,209:4062-4075.
    [82] Z.T. Zhang,D. Lee.Development of a New Model for Plane Strain Bending and SpringbackAnalysis[J].Journal of Materials Engineering and Performance,1995,4(3):291-300.
    [83]刘克进.薄板冲压回弹试验研究及数值模拟对比分析[D].长沙:湖南大学机械与汽车工程学院,2004.
    [84] Li-Ping Lei,Sang-Moon Hwang,Beom-Soo Kang.Finite Element Analysis and Design in StainlessSteel Sheet Forming and its Experimental Comparison[J]. Journal of Materials ProcessingTechnology,2001,110:70-77.
    [85] Zafer Tekiner.An Experimental Study on the Examination of Springback of Sheet Metals withSeveral Thicknesses and Properties in Bending Dies[J].Journal of Materials Processing Technology,2004,145:109-117.
    [86] H. Livatyali,T. Altan.Prediction and Elimination of Springback in Straight flanging Using ComputerAided Design Methods Part1. Experimental Investigations[J].Journal of Materials ProcessingTechnology,2001,117:262-268.
    [87]方刚.高强度钢板冲压成形性能及回弹特性的研究[D].重庆:重庆大学材料科学与工程学院,2011.
    [88]肖华,刘艳,汤禹成,等.高强度钢冲压回弹量对板料力学性能参数的灵敏度分析[J].锻压装备与制造技术,2007,42(2):69-71.
    [89]刘伟,刘红生,邢忠文,等.高强钢板冲压成形的回弹规律与工艺参数研究[J].材料科学与工艺,2010,18(6):758-761.
    [90]张阳,臧顺来,丁日显,等.单元尺寸和积分点个数对冲压回弹模拟精度影响的研究[J].塑性工程学报,2010,17(5):1-7.
    [91]陈磊,杨继昌,张立文.板料弯曲回弹影响因素的有限元模拟研究[J].材料科学与工艺,2007,15(2):269-272.
    [92]林忠钦,刘罡,李淑慧,等.应用正交试验设计提高U形件的成形精度[J].机械工程学报,2002,38(3):83-89.
    [93] B. Chongthairungruang,V. Uthaisangsuk,S. Suranuntchai,et al.Springback Prediction in SheetMetal Forming of High Strength Steels[J].Materials and Design,2013,50:253-266.
    [94] Y.Q. Guo,W. Gati,H. Naceur,et al.An Efficient DKT Rotation Free Shell Element for SpringbackSimulation in Sheet Metal Forming[J].Computers and Structures,2002,80:2299-2312.
    [95] Robert H. Wagoner,Hojun Lim,Myoung-Gyu Lee.Advanced Issues in Springback[J].InternationalJournal of Plasticity,2013,45:3-20.
    [96] H.S. Mehta,S. Kobayashi.Finite Element Analysis and Experimental Investigation of Sheet MetalStretching[J].Journal of Engineering for Industry,1973,95(3):874-880.
    [97] S.I. Oh. Finite Element Analysis of Metal Forming Problem with Arbitrarily Shaped Dies[J].International Journal of Mechanical Sciences,1982,24(8):479-493.
    [98] C.H. Toh, Shiro Kobayashi. Deformation Analysis and Blank Design in Square CupDrawing[J].International Journal of Machine Tool Design and Research,1985,25(1):15-32.
    [99] Bor-Tsuen Lin,Chun-Chih Kuo.Application of an integrated CAD/CAE/CAM system for stampingdies for automobiles[J].Advanced Manufacturing Technology,2008,35:1000-1013.
    [100] Takayuki Hama,Takashi Nagata,Cristian Teodosiu,et al.Finite-element simulation of Springbackin Sheet Metal Forming Using Local Interpolation for Tool Surfaces[J].International Journal ofMechanical Sciences,2008,50:175-192.
    [101] B. Chongthairungruang,V. Uthaisangsuk,S. Suranuntchai,et al.Experimental and NumericalInvestigation of Springback Effect for Advanced High Strength Dual Phase Steel[J].Materials andDesign,2012,39:318-328.
    [102]熊火轮,胡世光.板料成形的数值分析及程序系统[J].北京航空航天大学学报,1992,(2):51-56.
    [103]夏欣,卫原平,李发致,等.板料冲压成形工艺参数的计算机优化[J].上海交通大学学报,1999,33(2):178-180.
    [104]秦泗吉,王志松.板材冲压成形中的弯曲与反弯曲变形问题的研究[J].机械工程学报,2001,37(8):99-101,105.
    [105]李春光,胡平,张向奎,等.汽车覆盖件深拉延有限元仿真过程中的回弹及补偿试验[J].吉林大学学报(工学版),2006,36:70-74.
    [106]李光耀,王琥,杨旭静,等.板料冲压成形工艺与模具设计制造中的若干前言技术[J].机械工程学报,2010,46(10):31-39.
    [107]吴华英,郭成,王永信,等.轿车后围板成形过程数值模拟及参数优化[J].材料科学与工艺,2013,21(2):83-89.
    [108] Y.C. Liu.The Effect of Restraining Force on Shape Deviations in Flanged Channels[J].Journal ofEngineering Materials and Technology,1988,110(4):389-394.
    [109] Gang Liu,Zhongqin Lin,Weili Xu,et al.Variable Blankholder Force in U-shaped Part Forming forEliminating Springback Error[J].Journal of Materials Processing Technology,2002,120:259-264.
    [110] Y.H Moon,S.S Kang,J.R Cho,et al.Effect of Tool Temperature on the Reduction of the Springbackof Aluminum Sheets[J].Journal of Materials Processing Technology,2003,132:365-368.
    [111]谢晖.基于CAE仿真的冲压回弹影响因素研究[J].湖南大学学报(自然科学版),2003,30(5):29-34.
    [112]李建,赵军,高颖,等.宽板V型自由弯曲回弹模拟精度及回弹影响因素研究[J].燕山大学学报,2008,32(3):193-196,205.
    [113] Z. Tan,B. Persson,C. Magnusson.An Empiric Model for Controlling Springback in V-die Bendingof Sheet Metals[J].Journal of Materials Processing Technology,1992,34:449-455.
    [114] Suha Oral, Haluk Darendeliler. The Optimum Die Profile for the Cylindrical Bending ofPlates[J].Journal of Materials Processing Technology,1997,70:151-155.
    [115]王晓林,周贤宾.金属板弹塑性非圆弧弯曲回弹的计算[J].塑性工程学报,1996,3(4):27-33.
    [116] Apostolos P. Karafillis,Mary C. Boyce.Tooling and Binder Design for Sheet Metal FormingProcesses Compensating Springback Error[J]. International Journal of Machine Tools andManufacture,1996,36(4):503–526.
    [117] Wei Gan,R.H. Wagoner.Die Design Method for Sheet Springback[J].International Journal ofMechanical Sciences,2004,46(7):1097–1113.
    [118] R. Lingbeek,J. Huétink,S. Ohnimus,et al.The Development of a Finite Elements Based SpringbackCompensation Tool for Sheet Metal Products[J].Journal of Materials Processing Technology,2005,169(1):115-125.
    [119]余天明.激光拼焊板制车门成形和刚度的数值仿真与试验研究[D].长春:吉林大学机械科学与工程学院,2011.
    [120]李学春,杨玉英,王永志,等.宽板V型自由弯曲回弹的有限元模拟[J].塑性工程学报,2001,8(2):1-3.
    [121]李建,赵军,高颖,等.宽板V型自由弯曲回弹模拟精度及回弹影响因素研究[J].燕山大学学报,2008,32(3):193-196,205.
    [122]沈启彧,卫原平,王玉国,等.金属板料成形的一步有限元模拟法[J].上海交通大学学报,2000,34(10):1402-1405.
    [123] LEE C H,HUH H.Blank design and strain estimates for sheet metal forming processes by a finiteelement inverse approach with initial guess of linear deformation[J].Journal of Materials ProcessingTechnology,1998,82:145-155.
    [124] AZAOUZI M,BELOUETTAR S,RAUCHS G.A numerical method for the optimal blank shapedesign[J].Materials and Design,2011,32:756-765.
    [125] MOHAMMAD Habibi-parsa,PAYAM Pournia.Optimization of initial blank shape predicted basedon inverse finite element method[J].Finite Elements in Analysis and Design,2007,43:218-233.
    [126] GUO Y Q,BATOZ J L,NACEUR H.Recent developments on the analysis and optimum design ofsheet metal forming parts using a simplified inverse approach[J].Computers and Structures,2000,78:133-148.
    [127] LEE C H,HUH H.Blank design and strain prediction of automobile stamping parts by an inversefinite element approach[J].Journal of Materials Processing Technology,1997,63:645-650.
    [128]陈国强.有限元逆算法在汽车覆盖件冲压成形数值模拟中的应用研究[D].武汉:华中科技大学工程力学系,2004.
    [129] REZA Azizi,AHMAD Assempour.Applications of linear inverse finite element method inprediction of the optimum blank in sheet metal forming[J].Material and Design,2008,29:1965-1972.
    [130]徐国艳,施法中.反向法在冲压件成形初期设计阶段的应用[J].塑性工程学报,2003,10(1):40-43.
    [131]鲍益东.汽车车身部件一步逆成形有限元法与碰撞仿真研究[D].长春:吉林大学机械科学与工程学院,2004.
    [132]徐丙坤,施法中.板料冲压成形回弹的数值模拟[J].北京航空航天大学学报,2001,27(2):194-197.
    [133]朱茂桃,张永建,张黎黎.汽车发动机罩内板冲压成形仿真[J].农业机械学报,2008,39(6):189-192.
    [134]王孝培.冲压手册(第3版)[M].北京:机械工业出版社,2012,95-97.
    [135]胡玉梅,张健,邓兆祥,王勇.板料成形仿真中冲模速度的确定方法[J].机械工程学报,2007,43(12):88-92.
    [136]谭保中.汽车覆盖件冲压成形数值模拟技术研究及应用[D].长春:吉林大学材料科学与工程学院,2008.
    [137]柴海啸.基于几何和工艺补偿的冲压回弹控制方法[D].杭州:浙江大学机械与能源工程学院,2006.
    [138]李文平,边文德,聂绍珉,等.补偿回弹的冲压件模具设计方法[J].锻压技术,2007,32(5):86-91.
    [139]林东玲.基于UG的泠冲模造型设计研究[D].沈阳:东北大学机械工程与自动化学院,2008.
    [140]齐从谦,陈亚洲,甘屹,等.反求工程中复杂曲面数字化重构关键技术的研究[J].机械工程学报,2003,39(4):131-135.
    [141]李东泽.反求工程曲面重构技术研究[D].大连:大连理工大学机械工程学院,2003.
    [142]王清松,马文星,赵罡,等.液力变矩器叶轮和叶片非接触测量及三维建模[J].工程机械,2004,(4):38-40.
    [143]赵罡,马文星,周平.反求工程技术在液力传动中的应用研究[J].液压气动与密封,2006,1:26-29.
    [144]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报(自然科学版),2004,18(2):123-126.
    [145]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99.
    [146] Fotis Sotiropoulos,Xiaolei Yang.Immersed Boundary Methods for Simulating Fluid-StructureInteraction[J].Progress in Aerospace Sciences,2014,65:1-21.
    [147] Jie Chen,He Liu,Fengshan Wang,et al.Numerical Prediction on Volumetric Efficiency ofProgressive Cavity Pump With Fluid-Solid Interaction Model[J].Journal of Petroleum Science andEngineering,2013,109:12-17.
    [148] F. Ilinca,J.-F. Hétu.Numerical Simulation of Fluid-Solid Interaction Using an Immersed BoundaryFinite Element Method[J].Computers&Fluids,2012,59:31-43.
    [149]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法[J].工程力学,2005,22(6):1-6.
    [150]王彬,杨庆山.弱耦合算法的实现及其应用[J].工程力学,2008,25(12):48-52,59.
    [151]王峰,闫清东,王书灵.基于CFD和FEA的液力减速器叶片强度分析[J].北京理工大学学报,2006,26(12):1052-1060.
    [152]卢秀泉.调速型液力耦合器流固耦合与振动特性研究[D].长春:吉林大学机械科学与工程学院,2012.
    [153]魏巍,闫清东,朱颜.液力变矩器叶片流固耦合强度分析[J].兵工学报,2008,29(10):1158-1162.
    [154]闫清东,刘树成,姚寿文,等.大功率液力变矩器叶轮强度有限元分析[J].兵工学报,2011,32(2):142-146.
    [155]刘树成,闫清东,魏巍,等.基于稳定工作点的变矩器叶轮强度有限元分析[J].中国机械工程,2013,24(14):1922-1926.
    [156]王洋,王洪玉,张翔,等.基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J].农业工程学报,2011,27(3):131-136.
    [157] Tiezheng Qian,Xiaoping Wang,Ping Sheng.Hydrodynamic Boundary Conditions: An EmergentBehavior of Fluid-Solid Interactions[J].Solid State Communications,2010,150:976-989.
    [158] Pengtao Sun,Jinchao Xu,Lixiang Zhang.Full Eulerian Finite Element Method of a Phase FieldModel for Fluid-Structure Interaction Problem[J].Computers&Fluids,2014,90,1-8.
    [159]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004,112-119.
    [160]高小茜.风电齿轮箱轮齿接触有限元分析[D].大连:大连理工大学机械工程学院,2008.
    [161]汪学锋,李锋,周炜,等.流固耦合网格插值方法研究[J],船舶力学,2009,13(4):571-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700