用户名: 密码: 验证码:
压痕/划痕测试若干理论与基于自制仪器的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料及其制品的失效源于微小变形损伤和缺陷,近年来针对材料微纳米力学行为的研究受到国内外学者的广泛关注。微纳米压痕/划痕测试由于具有高的载荷和位移分辨率,逐渐发展成为材料微纳米力学性能测试的主流技术,在材料科学、半导体技术、薄膜、生物力学、生物医学工程等领域展现出重要的科学意义和广泛的应用前景。目前,美国、瑞士、英国等国掌握了该项技术,且有商业化的压痕/划痕测试仪器产品,而我国在压痕/划痕测试技术方面起步较晚,尚无自主生产的商业化压痕仪。
     一方面,进口国外的压痕/划痕测试仪存在价格昂贵、耗时长、高端技术禁运等问题,另一方面,由于我国未掌握压痕/划痕测试的核心技术,完全依赖于国外的测试仪器,无法对其进行功能扩展,使得国内相关研究一直处于跟踪国外的状态,严重制约了研究的深入。因此,研究压痕/划痕测试的核心技术,研制具有我国自主知识产权的压痕/划痕测试仪具有重要意义。同时,在压痕/划痕测试仪器校准、误差校正等理论方面,还有待深入研究。
     本文针对国内外在压痕/划痕测试技术与仪器方面的现存不足,开展压痕/划痕测试理论、仪器设计、制造、装配、检测控制、调试、校准等基础理论与技术的研究,研制了具有自主知识产权的离位和原位压痕/划痕测试仪器。在此基础上,借助自制的仪器开展了典型应用研究。论文主要内容如下:
     (1)分析了纳米压痕测试经典数据分析方法—Oliver&Pharr方法。在此基础上,对影响压痕测试结果但目前尚未详细讨论的三个因素—“残余压入深度的确定”、“试件表面处理方法”和“压头与试件之间的倾斜”着重进行了分析。针对压痕测试曲线卸载部分不完整或出现明显拐点的情况,提出了一种利用卸载阶段局部曲线拟合确定残余压入深度hf的方法。通过对比试验,研究了不同试件表面处理方法—机械抛光和横切对非晶合金压痕过程中锯齿流变和蠕变行为的影响规律。提出了两种定量评价压头与试件之间倾斜状态的方法,即残余压痕形貌测量法和三点测量法,并通过试验手段验证了这两种方法的有效性。
     (2)开展了离位压痕/划痕测试仪器的设计分析与试验研究,研究了其中涉及的结构设计分析、布局优化、动态模型建立、控制系统搭建、校准与性能测试等理论与技术问题,成功研制了离位压痕/划痕测试仪器。提出了一种新的压痕测试仪器机架柔度测试方法,利用该方法测得压痕测试模块的机架柔度为0.425nm/mN,熔融石英标准样品压痕试验结果验证了该方法的可行性。对压痕测试模块进行了性能测试,试验结果表明:在有隔振台、无恒温措施的实验环境下,压痕测试模块的载荷分辨率优于10μN,噪声小于30μN,位移分辨率为1nm,噪声约2nm。熔融石英标准样品重复压痕试验结果表明,压痕测试模块具有很好的重复性和良好的测试精度。利用工字型弹性体和八片应变片,设计了可对划痕测试中横向力和轴向力进行同步测量的力传感器,提出了横向力与轴向力耦合/解耦算法,并开展了标定试验和解耦分析。
     (3)利用自制的离位压痕/划痕测试仪器,针对单晶硅和非晶合金等材料开展了典型应用。利用压痕测试模块,研究了单晶硅压痕卸载突退现象的统计性规律。利用研制的拉应力加载模块,开展了预拉应力下单晶硅压痕响应试验。利用玻氏压头和立方角压头开展非晶合金压痕响应的对比试验,研究了非晶合金粘附、锯齿流变、剪切带分布等现象的压头几何尺寸效应。利用划痕测试模块,开展了非晶合金的划痕力学行为研究,分析了划痕测试过程中横向力和摩擦系数波动的可能原因,并发现了维氏压头非对称划入导致非晶合金残余划痕左右边界出现不一致变形的现象。
     (4)采用步进电机与压电叠堆混合驱动方式,设计研制了结构紧凑的原位压痕测试仪器,并就其输出特性、闭环控制、校准等开展了试验研究。针对磷化铟晶片和非晶合金的原位压痕试验表明,研制的原位压痕测试仪器与扫描电子显微镜具有良好的兼容性,可在其真空腔内开展材料微观力学性能的原位压痕测试。
     (5)基于弹性体变形产生的寄生运动,提出了一种压电驱动新原理,即寄生运动原理。基于该原理设计研制了大行程划痕运动组件,对其运动过程和输出特性进行了理论分析与试验研究。在自制的原位压痕测试仪器基础上,集成该大行程划痕运动组件,研制了可与扫描电子显微镜兼容的原位压痕/划痕测试仪器,并利用该仪器开展了压头与试件表面间的摩擦和切屑堆积条件下的材料去除机理等研究。
Failure of materials and related products is resulted from micro deformation, damageand defect. In recent years, research on mechanical properties of materials in micro/nanoscales is given increasing attention. With high load and displacement resolutions,micro/nano indentation and scratch testing has been a commonly used method to evaluatemechanical properties of materials in micro/nano scales, expressing important scientificsignificance and broad application prospects in fields of materials science, semiconductors,thin films, biomechanics, biomedical engineering and so on. Up to now, America, Swiss,UK, etc. have mastered this technology and there are commercial indentation and scratchinstruments in these countries. However, research on indentation and scratch testingtechnology in China begins relatively late, and there is no commercial home-grownindentation and scratch instrument.
     On the one hand, there are many problems by importing indentation and scratchinstruments from abroad such as high cost, time-consuming, high-end technology embargo,and so on. On the other hand, because we don’t master the key technologies of indentationand scratch testing and completely rely on foreign testing instruments, functions of thecommercial instruments can not be extended according to requirements, which makesrelated research work in China be always in the state of follow-up study and restrictsresearch progress seriously. So, it has important significance to study the key technologiesof indentation and scratch testing and develop indentation and scratch instruments withour own intellectual property rights. Meanwhile, some theoretical problems such ascalibration and error correction of indentation and scratch instruments are still needed tobe further investigated.
     Aimed at the current deficiencies in indentation and scratch testing technologies andinstruments at home and abroad, basic theories and technologies of indentation and scratchtesting such as testing theory, structure design, fabrication, assembling, measuring andcontrol, debugging, calibration and so on, are studied in this paper. Ex situ and in situ indentation and scratch instruments with our own intellectual property rights aredeveloped, by which typical applications are carried out. The main contents are listed asfollows:
     (1) The classical data analysis method—Oliver&Pharr method is discussed firstly, andthen emphasis is put on three factors, determination of the residual indentation depth, thesample preparation method and the tilt between the indenter and the sample surface, whichaffect indentation testing results but are not studied in detail up to now. For the case thatunloading curves are incomplete or there are obvious elbow phenomena, a method byfitting partial unloading curves to determine residual indentation depth hfis proposed.Influences of two different sample preparation methods, mechanical polishing and plungecutting, on the serrated flow and creep behaviors of a bulk metallic glass duringindentation testing are studied by comparison tests. Two methods, the residual indentationmorphology measuring method and the three-point measuring method, are presented toquantificationally evaluate the tilt between the indenter and sample surface. Byexperiments, feasibility of these two methods are verified respectively.
     (2) Design, analysis and experimental investigation of an ex situ indentation andscratch testing system are carried out. Related theoretical and technological issues, such asstructure design and analysis, layout optimization, dynamic modelling, control system setup, calibration, performance testing, and so on, are addressed. After that, an ex situindentation and scratch testing system is developed successfully. A new method isproposed to measure compliance of indentation instruments, by which instrumentcompliance of the indentation testing module is obtained, and it is0.425nm/mN.Indentation testing results of the standard sample—fused quartz verify the feasibility ofthe proposed method. Performances of the indentation testing module are tested byexperiments, and results indicate that for the general experimental environment withvibration isolation platform but without constant temperature treatment, the loadresolution of the indentation testing module is higher than10μN and the noise floor is lessthan30μN. The displacement resolution is1nm and the noise floor is about2nm.Nanoindentation testing results of the standard sample—fused quartz indicate that theindentation testing module has good repeatability and testing accuracy. A two-axis loadsensor is designed by integrating an I-shaped structure and eight strain gauges, which canbe used to measure the lateral load and the normal load simultaneously. A decoupling algorithm is presented to obtain the lateral load and the normal load. Calibrationexperiments and decoupling analysis are carried out to obtain the correspondingdecoupling parameters.
     (3) Applications of the self-made ex situ indentation and scratch testing system insingle crystal silicon and the bulk metallic glass are carried out. Via the indentation testingmodule, statistical laws of indentation-induced pop-out in unloading curves of singlecrystal silicon are studied. Indentation response of single crystal silicon under tensionstress is revealed by a self-made tension stress loading unit. Indentation comparison testsare carried out by the Berkovich indenter and the cube-corner indenter respectively tostudy indenter dependent indentation behaviors of the bulk metallic glass, such asadhesion, serrated flows, shear bands, and so on. Mechanical behaviors of the bulkmetallic glass are analyzed via the scratch testing module. Possible reasons leading tofluctuations of the lateral load and the friction coefficient during the scratch testing arediscussed. The phenomenon that unsymmetric scratch induces unsymmetric deformationof the bulk metallic glass around borders of the residual scratch is observed.
     (4) By combination of the stepper motor and the piezoelectric stack, an in situindentation instrument is developed. Output performances, closed-loop control, calibrationof the instrument are studied by experiments. In situ indentation experiments of the InP(Indium phosphide, InP) wafer and the bulk metallic glass indicate that the developed insitu indentation instrument has good compatibility with the scanning electron microscope,and it can be used to carry out in situ indentation tests of materials inside the vacuumchamber of the scanning electron microscope.
     (5) A novel piezo-driving principle is proposed by means of the parasitic motion of theelastic body. Based on this principle, a scratch module with the large motion range isdeveloped using two piezoelectric stacks. Driving processes and output performences ofthe scratch module are investigated via theoretical analysis and experiments. Based on theprevious in situ indentation instrument, an in situ indentation and scratch instrument isdeveloped by integrating the designed scratch module, which is compatible with thescanning electron microscope. Friction between the indenter and the sample surface aswell as material removal mechanism especially when lots of chips are accumulated on therake face of the indenter is studied.
引文
[1] CAER C, PATOOR E, BERBENNI S, et al. Stress induced pop-in and pop-outnanoindentation events in CuAlBe shape memory alloys [J]. Materials Science andEngineering A-Structural Materials Properties Microstructure and Processing,2013,587:304-312.
    [2] CHOI I C, KIM Y J, WANG Y M, et al. Nanoindentation behavior of nanotwinned Cu:Influence of indenter angle on hardness, strain rate sensitivity and activation volume[J]. Acta Materialia,2013,61:7313-7323.
    [3] VARAM S, RAJULAPATI K V, RAO K B S. Strain rate sensitivity studies on bulknanocrystalline aluminium by nanoindentation [J]. Journal of Alloys and Compounds,2014,585:795-799.
    [4] ZULKIFLI M N, JALAR A, ABDULLAH S, et al. Strength distribution of Au ballbond using nanoindentation approach [J]. Materials Science and EngineeringA-Structural Materials Properties Microstructure and Processing,2013,577:189-196.
    [5] CHROBAK D, NORDLUND K, NOWAK R. Nondislocation origin of GaAsnanoindentation pop-in event [J]. Physical Review Letters,2007,98:045502.
    [6] HAREA E E. Changes in the electric resistance of silicon under cyclic nanoindentation[J]. Surface Engineering and Applied Electrochemistry,2011,47:290-293.
    [7] PANTCHEV B, DANESH P, WIEZOREK J, et al. Nanoindentation-induced pile-up inhydrogenated amorphous silicon [J]. Journal of Physics: Conference Series,2010,253:012054.
    [8] ZHANG L C, BASAK A. Quantitative prediction of phase transformations in siliconduring nanoindentation [J]. Philosophical Magazine Letters,2013,93:448-456.
    [9] ARYAEI A, JAYASURIYA A C. Mechanical properties of human amniotic fluid stemcells using nanoindentation [J]. Journal of Biomechanics,2013,46:1524-1530.
    [10] GIAMBINI H, WANG H J, ZHAO C F, et al. Anterior and posterior variations inmechanical properties of human vertebrae measured by nanoindentation [J]. Journalof Biomechanics,2013,46:456-461.
    [11] RODRIGUEZ-FLOREZ N, OYEN M L, SHEFELBINE S J. Insight into differencesin nanoindentation properties of bone [J]. Journal of the Mechanical Behavior ofBiomedical Materials,2013,18:90-99.
    [12] ZHANG Y, ALLAHKARAMI M, HANAN J C. Measuring residual stress in ceramiczirconia-porcelain dental crowns by nanoindentation [J]. Journal of the MechanicalBehavior of Biomedical Materials,2012,6:120-127.
    [13] ARMSTRONG D E J, HASEEB A S M A, ROBERTS S G, et al. Nanoindentation andmicro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloyfilms [J]. Thin Solid Films,2012,520:4369-4372.
    [14] BERASATEGUI E G, PAGE T F. The contact response of thin SiC-coated siliconsystems-characterisation by nanoindentation [J]. Surface&Coatings Technology,2003,163:491-498.
    [15] CHEN J J. On the determination of coating toughness during nanoindentation [J].Surface&Coatings Technology,2012,206:3064-3068.
    [16] HERBERT E G, TENHAEFF W E, DUDNEY N J, et al. Mechanical characterizationof LiPON films using nanoindentation [J]. Thin Solid Films,2011,520:413-418.
    [17] GONG J L, LIPOMI D J, DENG J D, et al. Micro-and nanopatterning of inorganicand polymeric substrates by indentation lithography [J]. Nano Letters,2010,10:2702-2708.
    [18] PARK J W, LEE C M, CHOI S C, et al. Surface patterning for brittle amorphousmaterial using nanoindenter-based mechanochemical nanofabrication [J].Nanotechnology,2008,19:085301.
    [19] BRUET B J F, SONG J H, BOYCE M C, et al. Materials design principles of ancientfish armour [J]. Nature Materials,2008,7:748-756.
    [20] CROSS G L W, SCHIRMEISEN A, GRUTTER P, et al. Plasticity, healing andshakedown in sharp-asperity nanoindentation [J]. Nature Materials,2006,5:370-376.
    [21] KIM J J, CHOI Y, SURESH S, et al. Nanocrystallization during nanoindentation of abulk amorphous metal alloy at room temperature [J]. Science,2002,295:654-657.
    [22] PAN D, INOUE A, SAKURAI T, et al. Experimental characterization of sheartransformation zones for plastic flow of bulk metallic glasses [J]. Proceedings of theNational Academy of Sciences of the United States of America,2008,105:14769-14772.
    [23] SCHUH C A, MASON J K, LUND A C. Quantitative insight into dislocationnucleation from high-temperature nanoindentation experiments [J]. Nature Materials,2005,4:617-621.
    [24]黎明,温诗铸.纳米压痕技术理论基础[J].机械工程学报,2003,39:142-145.
    [25]蒋庄德,王海容.微机械力学性能测试仪[J].河南机电高等专科学校学报,2006,14:1-4.
    [26] FENG Y H, ZHANG T H, YANG R. A work approach to determine vickersindentation fracture toughness [J]. Journal of the American Ceramic Society,2011,94:332-335.
    [27]张泰华,郇勇,杨业敏.一种利用压入方式对材料力学性能进行测试的装置:中国,200420093377.8[P].2005-09-28.
    [28]姜辛,张泰华,郇勇,等.一种便携式压入仪:中国,200820080577.8[P].2009-02-04.
    [29]米杰.原位纳米压痕/划痕测试装置的设计与试验研究[D].吉林大学,2013.
    [30]黄虎,赵宏伟,万顺光,等.纳米压痕测试装置机架柔度直接标定法的改进[J].西安交通大学学报,2012,46:122-127.
    [31]嵇佳斌.纳米压痕/划痕测试装置的设计与试验研究[D].吉林大学,2010.
    [32]耿春阳.变温环境下微纳米压痕测试平台设计分析与试验研究[D].吉林大学,2013.
    [33]赵宏伟,黄虎,米杰,等.纳米压痕/刻划测试装置:中国,201120115360.8[P].2011-11-30.
    [34]赵宏伟,黄虎,邓金强,等.超精密跨尺度原位纳米压痕刻划测试系统:中国,200910066697.1[P].2011-05-18.
    [35]邓金强.精密原位微纳米级压痕/划痕测试系统的设计与实验研究[D].吉林大学,2009.
    [36] KIENER D, HOSEMANN P, MALOY S A, et al. In situ nanocompression testing ofirradiated copper [J]. Nature Materials,2011,10:608-613.
    [37] MINOR A M, ASIF S A S, SHAN Z W, et al. A new view of the onset of plasticityduring the nanoindentation of aluminium [J]. Nature Materials,2006,5:697-702.
    [38] BERNICK K B, PREVOST T P, SURESH S, et al. Biomechanics of single corticalneurons [J]. Acta Biomaterialia,2011,7:1210-1219.
    [39] PREVOST T P, JIN G, DE MOYA M A, et al. Dynamic mechanical response of braintissue in indentation in vivo, in situ and in vitro [J]. Acta Biomaterialia,2011,7:4090-4101.
    [40] TRENKLE J C, PACKARD C E, SCHUH C A. Hot nanoindentation in inertenvironments [J]. Review of Scientific Instruments,2010,81:073901.
    [41] OLIVER W C, PHARR G M. An improved technique for determining hardness andelastic modulus using load and displacement sensing indentation measurements [J].Journal of Materials Research,1992,7:1564-1583.
    [42] DOERNER M F N, NIX W D. A method for interpreting the data from depth-sensingindentation instruments [J]. Journal of Materials Research,1986,1:601-609.
    [43] International Standard. ISO14577:2002Metallic materials—instrumentedindentation test for hardness and materials parameters [S]. Switzerland: ISOcopyright office,2002.
    [44] BERKE P, EL HOUDAIGUI F, MASSART T J. Coupled friction and roughnesssurface effects in shallow spherical nanoindentation [J]. Wear,2010,268:223-232.
    [45] KIM J Y, LEE J J, LEE Y H, et al. Surface roughness effect in instrumentedindentation: A simple contact depth model and its verification [J]. Journal ofMaterials Research,2006,21:2975-2978.
    [46] WANG Q, HU R, SHAO Y. The combined effect of surface roughness and internalstresses on nanoindentation tests of polysilicon thin films [J]. Journal of AppliedPhysics,2012,112:044512.
    [47]沈林.材料样品表面粗糙度对纳米压痕测试结果的影响研究[D].吉林大学,2012.
    [48] BERKE P Z, MASSART T J. Computational investigation of slip rate dependentfriction as a potential contribution to displacement bursts in nanoindentation of nickel[J]. Tribology International,2012,47:167-174.
    [49] HUANG X Q, PELEGRI A A. Finite element analysis on nanoindentation withfriction contact at the film/substrate interface [J]. Composites Science andTechnology,2007,67:1311-1319.
    [50] MATA M, ALCALA J. The role of friction on sharp indentation [J]. Journal of theMechanics and Physics of Solids,2004,52:145-165.
    [51] TSOU C F, HSU C C, FANG W L. Interfaces friction effect of sliding contact onnanoindentation test [J]. Sensors and Actuators A-Physical,2005,117:309-316.
    [52] BANDYOPADHYAY P P, CHICOT D, KUMAR C S, et al. Influence of sinking-inand piling-up on the mechanical properties determination by indentation: A casestudy on rolled and DMLS stainless steel [J]. Materials Science and EngineeringA-Structural Materials Properties Microstructure and Processing,2013,576:126-133.
    [53] ELMUSTAFA A A. Pile-up/sink-in of rate-sensitive nanoindentation creeping solids[J]. Modelling and Simulation in Materials Science and Engineering,2007,15:823-834.
    [54] GARRIDO M A, RODRIGUEZ J. Nanoindentation by multiple loads methodology:A pile up correction procedure [J]. Key Engineering Materials,2007,345-346:805-808.
    [55] BRADBY J E, WILLIAMS J S, WONG-LEUNG J, et al. Mechanical deformation insilicon by micro-indentation [J]. Journal of Materials Research,2001,16:1500-1507.
    [56] DOMNICH V, GOGOTSI Y, DUB S. Effect of phase transformations on the shape ofthe unloading curve in the nanoindentation of silicon [J]. Applied Physics Letters,2000,76:2214-2216.
    [57] LEE W S, CHEN T H, LIN C F, et al. Load effects on nanoindentation behaviour andmicrostructural evolution of single-crystal silicon [J]. Materials Transactions,2010,51:1173-1177.
    [58] LI W H, WEI B C, ZHANG T H, et al. Study of serrated flow and plastic deformationin metallic glasses through instrumented indentation [J]. Intermetallics,2007,15:706-710.
    [59] SCHUH C A, NIEH T G. A nanoindentation study of serrated flow in bulk metallicglasses [J]. Acta Materialia,2003,51:87-99.
    [60] BOBJI M S, RAMANUJAN C S, PETHICA J B, et al. A miniaturized TEMnanoindenter for studying material deformation in situ [J]. Measurement Science&Technology,2006,17:1324-1329.
    [61] RABE R, BREGUET J M, SCHWALLER P, et al. Observation of fracture and plasticdeformation during indentation and scratching inside the scanning electronmicroscope [J]. Thin Solid Films,2004,469:206-213.
    [62] RZEPIEJEWSKA-MALYSKA K A, BUERKI G, MICHLER J, et al. In situmechanical observations during nanoindentation inside a high-resolution scanningelectron microscope [J]. Journal of Materials Research,2008,23:1973-1979.
    [63] WALL M A, DAHMEN U. An in situ nanoindentation specimen holder for a highvoltage transmission electron microscope [J]. Microscopy Research and Technique,1998,42:248-254.
    [64] WARREN O L, SHAN Z W, ASIF S A S, et al. In situ nanoindentation in the TEM [J].Materials Today,2007,10:59-60.
    [65] ASMEC GmbH. http://www.asmec.de/.
    [66] Bruker Corporation. Microindenter&nanoindenter, mircoscratch&nanoscratchtester industry-leading sensitivity, unmatched performance and versatility [EB/OL].
    [2014-01-08]. http://www.bruker.com/products/surface-analysis/tribology-and-mech-anical-testing/umt-1/overview.html BRUKER.
    [67] Australian Scientific Instruments. http://www.asi-pl.com.au/.
    [68] CSM Instruments. http://www.csm-instruments.com.
    [69]赵宏伟,杨柏豪,赵宏健,等.单晶硅纳米力学性能的测试[J].光学精密工程,2009,17:1602-1608.
    [70] Agilent. http://www.home.agilent.com/zh-CN/pc-1678689/nanoindenters.
    [71] Hysitron Incorporated. http://www.hysitron.com/.
    [72] Micro Materials Ltd. http://www.micromaterials.co.uk/.
    [73] MTS Systems Corporation. http://www.mts.com/en/index.htm.
    [74]马德军,郭俊宏,陈伟,等.高精度仪器化压入仪设计与应用[J].仪器仪表学报,33:1889-1896.
    [75] HUANG H, ZHAO H W, MI J, et al. Experimental research on a modularminiaturization nanoindentation device [J]. Review of Scientific Instruments,2011,82:095101.
    [76] ZHOU H, PEI Y M, FANG D N. Magnetic field tunable small-scale mechanicalproperties of nickel single crystals measured by nanoindentation technique [J].Scientific Reports,2014,4:4583.
    [77] ZHOU H, PEI Y M, HUANG H, et al. Multi-field nanoindentation apparatus formeasuring local mechanical properties of materials in external magnetic and electricfields [J]. Review of Scientific Instruments,2013,84:063906.
    [78] ZHOU H, PEI Y M, LI F X, et al. Electric-field-tunable mechanical properties ofrelaxor ferroelectric single crystal measured by nanoindentation [J]. Applied PhysicsLetters,2014,104:061904.
    [79] CAO Z H, LI P Y, LU H M, et al. Thickness and grain size dependent mechanicalproperties of Cu films studied by nanoindentation tests [J]. Journal of PhysicsD-Applied Physics,2009,42:065405.
    [80] CHANG S Y, TSAI H C, CHANG J Y, et al. Analyses of interface adhesion betweenporous SiOCH low-k film and SiCN layers by nanoindentation and nanoscratch tests[J]. Thin Solid Films,2008,516:5334-5338.
    [81] CHICOT D, PUCHI-CABRERA E S, AUMAITRE R, et al. Elastic modulus ofTiHfCN thin films by instrumented indentation [J]. Thin Solid Films,2012,522:304-313.
    [82] DELOBELLE P, FRIBOURG-BLANC E, REMIENS D. Mechanical propertiesdetermined by nanoindentation tests of [Pb(ZrTi)O-3] and [Pb(Mg1/3Nb2/3)(1-x)TixO3] sputtered thin films [J]. Thin Solid Films,2006,515:1385-1393.
    [83] WANG T H, FANG T H, LIN Y C. Analysis of the substrate effects ofstrain-hardening thin films on silicon under nanoindentation [J]. Applied PhysicsA-Materials Science&Processing,2007,86:335-341.
    [84] ZHU X Y, LUO J T, CHEN G, et al. Size dependence of creep behavior in nanoscaleCu/Co multilayer thin films [J]. Journal of Alloys and Compounds,2010,506:434-440.
    [85] CHANG L, ZHANG L C. Deforamtion mechanisms at pop-out in monocrystallinesilicon under nanoindentation [J]. Acta Materialia,2009,57:2148-2153.
    [86] JANG J I, LANCE M J, WEN S Q, et al. Indentation-induced phase transformationsin silicon: influences of load, rate and indenter angle on the transformation behavior[J]. Acta Materialia,2005,53:1759-1770.
    [87] BOSE B, KLASSEN R J. Effect of copper addition and heat treatment on the depthdependence of the nanoindentation creep of aluminum at300K [J]. Materials Scienceand Engineering A-Structural Materials Properties Microstructure and Processing,2009,500:164-169.
    [88] MA L, MORRIS D J, JENNERJOHN S L, et al. The role of probe shape on theinitiation of metal plasticity in nanoindentation [J]. Acta Materialia,2012,60:4729-4739.
    [89] MUKHOPADHYAY A K, JOSHI K D, DEY A, et al. Nanoindentation of shockdeformed alumina [J]. Materials Science and Engineering A-Structural MaterialsProperties Microstructure and Processing,2010,527:6478-6483.
    [90] WANG Z G, BEI H, GEORGE E P, et al. Influences of surface preparation onnanoindentation pop-in in single-crystal Mo [J]. Scripta Materialia,2011,65:469-472.
    [91] RAJAGOPALAN S. Instrumented nanoindentation studies of deformation in shapememory alloys [D]. Florida: University of Central Florida Orlando,2005.
    [92] STOLLBERG D W. Nanoindentation of YSZ-Alumina ceramic thin films grown bycombustion chemical vapor deposition [D]. Atlanta: Georgia Institute of Technology,2000.
    [93] SCHOLZ T, SCHNEIDER G A, MUNOZ-SALDANA J, et al. Fracture toughnessfrom submicron derived indentation cracks [J]. Applied Physics Letters,2004,84:3055-3057.
    [94] WEI P, QIAN L M, ZHENG J, et al. Effect of water on the mechanical and frictionalbehaviors of human fingernails [J]. Tribology Letters,2010,38:367-375.
    [95] HAY J, AGEE P, HERBERT E. Continuous stiffness measurement duringinstrumented indentation testing [J]. Experimental Techniques,2010,34:86-94.
    [96] LI X D, BHUSHAN B. A review of nanoindentation continuous stiffnessmeasurement technique and its applications [J]. Materials Characterization,2002,48:11-36.
    [97] TSUI T Y, OLIVER W C, PHARR G M. Influences of stress on the measurement ofmechanical properties using nanoindentation: Part I. Experimental studies in analuminum alloy [J]. Journal of Materials Research,1996,11:752-759.
    [98] KHAN M K, FITZPATRICK M E, HAINSWORTH S V, et al. Effect of residualstress on the nanoindentation response of aerospace aluminium alloys [J].Computational Materials Science,2011,50:2967-2976.
    [99] LEE Y H, KWON D. Estimation of biaxial surface stress by instrumented indentationwith sharp indenters [J]. Acta Materialia,2004,52:1555-1563.
    [100] LEE Y H, KWON D. Measurement of residual-stress effect by nanoindentation onelastically strained (100) W [J]. Scripta Materialia,2003,49:459-465.
    [101] CARLSSON S, LARSSON P L. On the determination of residual stress and strainfields by sharp indentation testing. Part I: Theoretical and numerical analysis [J].Acta Materialia,2001,49:2179-2191.
    [102] CARLSSON S, LARSSON P L. On the determination of residual stress and strainfields by sharp indentation testing. Part II: Experimental investigation [J]. ActaMaterialia,2001,49:2193-2203.
    [103] SUBHASH G, MAITI S, GEUBELLE P H, et al. Recent advances in dynamicindentation fracture, impact damage and fragmentation of ceramics [J]. Journal ofthe American Ceramic Society,2008,91:2777-2791.
    [104] MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley&SonsInc.1994.
    [105] RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain ratebehavior of ceramics [J]. International Journal of Solids and structures,1995,32:2627-2646.
    [106] JENNETT N M, NUNN J. High resolution measurement of dynamic (nano)indentation impact energy: a step towards the determination of indentation fractureresistance [J]. Philosophical Magazine,2011,91:1200-1220.
    [107] HOLBERY J D, EDEN V L, SARIKAYA M, et al. Experimental determination ofscanning probe microscope cantilever spring constants utilizing a nanoindentationapparatus [J]. Review of Scientific Instruments,2000,71:3769-3776.
    [108] YING Z C, REITSMA M G, GATES R S. Direct measurement of cantilever springconstants and correction for cantilever irregularities using an instrumented indenter[J]. Review of Scientific Instruments,2007,78:063708.
    [109] DUAN Z C, HODGE A M. High-temperature nanoindentation: New developmentsand ongoing challenges [J]. Jom,2009,61:32-36.
    [110] LI N, LIU L, CHAN K C, et al. Deformation behavior and indentation size effect ofAu49Ag5.5Pd2.3Cu26.9Si16.3bulk metallic glass at elevated temperatures [J].Intermetallics,2009,17:227-230.
    [111] WHEELER J M, MICHLER J. Invited Article: Indenter materials for hightemperature nanoindentation [J]. Review of Scientific Instruments,2013,84:101301.
    [112] WHEELER J M, OLIVER R A, CLYNE T W. AFM observation of diamondindenters after oxidation at elevated temperatures [J]. Diamond and RelatedMaterials,2010,19:1348-1353.
    [113] WANG C L, ZHANG M, NIEH T G. Nanoindentation creep of nanocrystallinenickel at elevated temperatures [J]. Journal of Physics D-Applied Physics,2009,42:115405.
    [114] RUFFELL S, BRADBY J E, WILLIAMS J S, et al. Nanoindentation-induced phasetransformations in silicon at elevated temperatures [J]. Nanotechnology,2009,20:135603.
    [115] GERBIG Y B, STRANICK S J, COOK R F. Direct observation of phasetransformation anisotropy in indented silicon studied by confocal Ramanspectroscopy [J]. Physical Review B,2011,83:205209.
    [116] STACH E A, FREEMAN T, MINOR A M, et al. Development of a nanoindenter forin situ transmission electron microscopy [J]. Microscopy and Microanalysis,2001,7:507-517.
    [117] BRADBY J E, WILLIAMS J S, SWAIN M V. In situ electrical characterization ofphase transformations in Si during indentation [J]. Physical Review B,2003,67:085205.
    [118] RUFFELL S, BRADBY J E, WILLIAMS J S, et al. An in situ electricalmeasurement technique via a conducting diamond tip for nanoindentation in silicon[J]. Journal of Materials Research,2007,22:578-586.
    [119] MANN A B, PETHICA J B. Nanoindentation studies in a liquid environment [J].Langmuir1996,12:4583-4586.
    [120] ZARUDI I, ZHANG L C, SWAIN M V. Cyclic microindentations onmonocrystalline silicon in air and in water [J]. Proceedings of the Institution ofMechanical Engineers Part C-Journal of Mechanical Engineering Science,2004,218:591-598.
    [121] CONSTANTINIDES G, KALCIOGLU Z I, MCFARLAND M, et al. Probingmechanical properties of fully hydrated gels and biological tissues [J]. Journal ofBiomechanics,2008,41:3285-3289.
    [122] ALTAF K. Investigation of the effect of relative humidity on additive manufacturedpolymers by depth sensing indentation [D]. Leicestershire: LoughboroughUniversity,2011.
    [123] YAN J, HORIKOSHI A, KURIYAGAWA T, et al. Manufacturing structured surfaceby combining microindentation and ultraprecision cutting [J]. CIRP Journal ofManufacturing Science and Technology,2012,5:41-47.
    [124] FRANKE O, GOKEN M, HODGE A M. The nanoindentation of soft tissue: Currentand developing approaches [J]. Jom,2008,60:49-53.
    [125] DE HOSSON J T M, SOER W A, MINOR A M, et al. In situ TEM nanoindentationand dislocation-grain boundary interactions: a tribute to David Brandon [J]. Journalof Materials Science,2006,41:7704-7719.
    [126] LOCKWOOD A J, INKSON B J. In situ TEM nanoindentation and deformation ofSi-nanoparticle clusters [J]. Journal of Physics D-Applied Physics,2009,42:035410.
    [127] RUFFELL S, BRADBY J E, WILLIAMS J S, et al. Formation and growth ofnanoindentation-induced high pressure phases in crystalline and amorphous silicon[J]. Journal of Applied Physics,2007,102:063521.
    [128] GHISLENI R, RZEPIEJEWSKA-MALYSKA K, PHILIPPE L, et al. In situ SEMindentation experiments: instruments, methodology, and applications [J].Microscopy Research and Technique,2009,72:242-249.
    [129] NOWAK J D, RZEPIEJEWSKA-MALYSKA K A, MAJOR R C, et al. In-situnanoindentation in the SEM [J]. Materials Today,2010,12:44-45.
    [130] GANE N, BOWDEN F P. Microdeformation of solids [J]. Journal of AppliedPhysics,1968,39:1432-1435.
    [131] BANGERT H, WAGENDRISTEL A. Ultralow-load hardness tester for use in ascanning electron microscope [J]. Review of Scientific Instruments,1985,56:1568-1572.
    [132] Alemnis GmbH. http://alemnis.ch/.
    [133] WARREN O L, ASIF S A S, CYRANKOWSKI E, et al. Actuatable capacitivetransducer for quantitative nanoindentation combined with transmission electronmicroscopy: U.S. Patent Application,20070180924[P].2007-08-09.
    [134] Nanomechanics Inc. http://www.nanomechanicsinc.com/.
    [135] RABE R. Compact test platform for in-situ indentation and scratching inside ascanning electron microscope (SEM)[D]. Switzerland: école polytechniquefédérale de Lausanne (EPFL),2006.
    [136] CHUDOBA T, SCHWALLER P, RABE R, et al. Comparison of nanoindentationresults obtained with Berkovich and cube-corner indenters [J]. PhilosophicalMagazine,2006,86:5265-5283.
    [137] MOSER B, LOFFLER J F, MICHLER J. Discrete deformation in amorphous metals:an in situ SEM indentation study [J]. Philosophical Magazine,2006,86:5715-5728.
    [138] RZEPIEJEWSKA-MALYSKA K, PARLINSKA-WOJTAN M, WASMER K, et al.In-situ SEM indentation studies of the deformation mechanisms in TiN, CrN andTiN/CrN [J]. Micron,2009,40:22-27.
    [139] BARNES D, JOHNSON S, SNELL R, et al. Using scratch testing to measure theadhesion strength of calcium phosphate coatings applied to poly (carbonate urethane)substrates [J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,6:128-138.
    [140] BORA M O, COBAN O, SINMAZCELIK T, et al. Instrumented indentation andscratch testing evaluation of tribological properties of tin-based bearing materials [J].Materials&Design,2010,31:2707-2715.
    [141] BULL S J, BERASETEGUI E G. An overview of the potential of quantitativecoating adhesion measurement by scratch [J]. Tribology International,2006,39:99-114.
    [142] FRIEDRICH K, SUE H J, LIU P, et al. Scratch resistance of high performancepolymers [J]. Tribology International,2011,44:1032-1046.
    [143] KARIMZADEH A, AYATOLLAHI M R. Investigation of mechanical andtribological properties of bone cement by nano-indentation and nano-scratchexperiments [J]. Polymer Testing,2012,31:828-833.
    [144] MOGHAL J, SUTTLE H, COOK A G, et al. Investigation of the mechanicalproperties of aluminium oxide thin films on polymer substrates by a combination offragmentation and scratch testing [J]. Surface&Coatings Technology,2012,206:3309-3315.
    [145] SHARMA N, KUMAR N, DASH S, et al. Scratch resistance and tribologicalproperties of DLC coatings under dry and lubrication conditions [J]. TribologyInternational,2012,56:129-140.
    [146] MICHLER J, RABE R, BUCAILLE J L, et al. Investigation of wear mechanismsthrough in situ observation during microscratching inside the scanning electronmicroscope [J]. Wear,2005,259:18-26.
    [147] WHEELER R, SHADE P A, UCHIC M D, et al. In-situ micro-sample mechanicaltesting in the SEM [J]. Microscopy and Microanalysis,2006,12:68-69.
    [148] GU X W, LOYNACHAN C N, WU Z X, et al. Size-dependent deformation ofnanocrystalline Pt nanopillars [J]. Nano Letters,2012,12:6385-6392.
    [149] KIENER D, GURUPRASAD P J, KERALAVARMA S M, et al. Work hardening inmicropillar compression: In situ experiments and modeling [J]. Acta Materialia,2011,59:3825-3840.
    [150] KIENER D, MOTZ C, DEHM G. Dislocation-induced crystal rotations inmicro-compressed single crystal copper columns [J]. Journal of Materials Science,2008,43:2503-2506.
    [151] KIM J Y, GREER J R. Tensile and compressive behavior of gold and molybdenumsingle crystals at the nano-scale [J]. Acta Materialia,2009,57:5245-5253.
    [152] MICHLER J, WASMER K, MEIER S, et al. Plastic deformation of gallium arsenidemicropillars under uniaxial compression at room temperature [J]. Applied PhysicsLetters,2007,90:043123.
    [153] OSTLUND F, HOWIE P R, GHISLENI R, et al. Ductile-brittle transition inmicropillar compression of GaAs at room temperature [J]. Philosophical Magazine,2011,91:1190-1199.
    [154] JANG D C, GREER J R. Transition from a strong-yet-brittle to astronger-and-ductile state by size reduction of metallic glasses [J]. Nature Materials,2010,9:215-219.
    [155] HUANG M, GREER J R. Measuring graphene piezoreisistance via in-situnanoindentation [J]. ECS Transactions,2011,35:211-216.
    [156] WHEELER J M, BRODARD P, MICHLER J. Elevated temperature, in situindentation with calibrated contact temperatures [J]. Philosophical Magazine,2012,92:3128-3141.
    [157] WHEELER J M, MICHLER J. Elevated temperature, nano-mechanical testing insitu in the scanning electron microscope [J]. Review of Scientific Instruments,2013,84:045103.
    [158] WHEELER J M, NIEDERBERGER C, TESSAREK C, et al. Extraction of plasticityparameters of GaN with high temperature, in situ micro-compression [J].International Journal of Plasticity,2013,40:140-151.
    [159] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus byinstrumented indentation: Advances in understanding and refinements tomethodology [J]. Journal of Materials Research,2004,19:3-20.
    [160] SNEDDON I N. The relation between load and penetration in the axisymmetricboussinesq problem for a punch of arbitrary profile [J]. International Journal ofEngineering Science,1965,3:47-57.
    [161] PHARR G M, BOLSHAKOV A. Understanding nanoindentation unloading curves[J]. Journal of Materials Research,2002,17:2660-2671.
    [162] BRISCOE B J, EVANS P D, PELLILO E, et al. Scratching maps for polymers [J].Wear,1996,200:137-147.
    [163] BANDYOPADHYAY P, DEY A, MANDAL A K, et al. New observations on scratchdeformations of soda lime silica glass [J]. Journal of Non-Crystalline Solids,2012,358:1897-1907.
    [164] NOSAR N S, OLSSON M. Influence of tool steel surface topography on adhesionand material transfer in stainless steel/tool steel sliding contact [J]. Wear,2013,303:30-39.
    [165] FISCHER-CRIPPS A C. Nanoindentation [M]. New York: Springer-Verlag,2004.
    [166] KASHANI M S, MADHAVAN V. Analysis and correction of the effect of sampletilt on results of nanoindentation [J]. Acta Materialia,2011,59:883-895.
    [167] MANEIRO M A G, RODRIGUEZ J. Pile-up effect on nanoindentation tests withspherical-conical tips [J]. Scripta Materialia,2005,52:593-598.
    [168] XU Z H, LI X. Effect of sample tilt on nanoindentation behaviour of materials [J].Philosophical Magazine,2007,87:2299-2312.
    [169] HUANG Y J, SHEN J, CHIU Y L, et al. Indentation creep of an Fe-based bulkmetallic glass [J]. Intermetallics,2009,17:190-194.
    [170] BEAKE B D, LISKIEWICZ T W. Comparison of nano-fretting and nano-scratchtests on biomedical materials [J]. Tribology International,2013,63:123-131.
    [171] SCHUH C A, NIEH T G. A survey of instrumented indentation studies on metallicglasses [J]. Journal of Materials Research,2004,19:46-57.
    [172] WANG J G, CHOI B W, NIEH T G, et al. Crystallization and nanoindentationbehavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy [J]. Journal of MaterialsResearch,2000,15:798-807.
    [173] CHEN K W, JIAN S R, WEI P J, et al. The study of loading rate effect of aCu-based bulk metallic glass during nanoindentation [J]. Journal of Alloys andCompounds,2010,504: S69-S73.
    [174] YOO B G, LEE K W, JANG J I. Instrumented indentation of a Pd-based bulkmetallic glass: Constant loading-rate test vs constant strain-rate test [J]. Journal ofAlloys and Compounds,2009,483:136-138.
    [175] CHEN L Y, XUE Z, XU Z J, et al. Cu-Zr-Al-Ti bulk metallic glass with enhancedglass-forming ability, mechanical properties, corrosion resistance andbiocompatibility [J]. Advanced Engineering Materials,2012,14:195-199.
    [176] KASHANI M S, MADGAVAN V. The effect of surface tilt on nanoindentationresults [C]. Proceedings of ASME International International MechanicalEngineering Congress and Exposition, November11-15,2007, Seattle, Washington,USA. ASME,2007:1067-1071.
    [177] ELLIS J D, SMITH S T, HOCKEN R J. Alignment uncertainties in ideal indentationstyli [J]. Precision Engineering-Journal of the International Societies for PrecisionEngineering and Nanotechnology,2008,32:207-214.
    [178] LEE Y H, BAEK U, LEE H M, et al. Effects of residual stress in elastic regime onthe surface formability of a Zr-based metallic glass [J]. Intermetallics,2010,18:1916-1919.
    [179] PAN C T, WU T T, LIU C F, et al. Study of scratching Mg-based BMG usingnanoindenter with Berkovich probe [J]. Materials Science and Engineeringa-Structural Materials Properties Microstructure and Processing,2010,527:2342-2349.
    [180] BHATTACHARYYA D, MARA N A, DICKERSON P, et al. A transmission electronmicroscopy study of the deformation behavior underneath nanoindents in nanoscaleAl-TiN multilayered composites [J]. Philosophical Magazine,2010,90:1711-1724.
    [181] HUANG Y J, SHEN J, SUN Y, et al. Indentation size effect of hardness of metallicglasses [J]. Materials&Design,2010,31:1563-1566.
    [182] NOWAK S, OCHIN P, PASKO A, et al. Nanoindentation analysis of the mechanicalbehavior of Zr-based metallic glasses with Sn, Ta and W additions [J]. Journal ofAlloys and Compounds,2009,483:139-142.
    [183] WHEELER J M, RAGHAVAN R, MICHLER J. In situ SEM indentation of aZr-based bulk metallic glass at elevated temperatures [J]. Materials Science andEngineering A-Structural Materials Properties Microstructure and Processing,2011,528:8750-8756.
    [184] WILKINSON A J, RANDMAN D. Determination of elastic strain fields andgeometrically necessary dislocation distributions near nanoindents using electronback scatter diffraction [J]. Philosophical Magazine,2010,90:1159-1177.
    [185] ZHU X Y, LUO J T, ZENG F, et al. Microstructure and ultrahigh strength ofnanoscale Cu/Nb multilayers [J]. Thin Solid Films,2011,520:818-823.
    [186] MOTOKI T, GAO W, KIYONO S, et al. A nanoindentation instrument formechanical property measurement of3D micro/nano-structured surfaces [J].Measurement Science&Technology,2006,17:495-499.
    [187] NAH S K, ZHONG Z W. A microgripper using piezoelectric actuation formicro-object manipulation [J]. Sensors and Actuators A-Physical,2007,133:218-224.
    [188] SCHITTER G, STEMMER A. Identification and open-loop tracking control of apiezoelectric tube, scanner for high-speed scanning-probe microscopy [J]. IEEETransactions on Control Systems Technology,2004,12:449-454.
    [189] TIAN Y, SHIRINZADEH B, ZHANG D. A flexure-based mechanism and controlmethodology for ultra-precision turning operation [J]. PrecisionEngineering-Journal of the International Societies for Precision Engineering andNanotechnology,2009,33:160-166.
    [190]赵宏伟,吴博达,曹殿波,等.直角柔性铰链的力学特性[J].纳米技术与精密工程,2007,5:143-147.
    [191] HUANG H, ZHAO H W, FAN Z Q, et al. Analysis and experiments of a novel andcompact3-DOF precision positioning platform [J]. Journal of Mechanical Scienceand Technology,2013,27:3347-3356.
    [192] TIAN Y, SHIRINZADEH B, ZHANG D. Design and dynamics of a3-DOFflexure-based parallel mechanism for micro/nano manipulation [J]. MicroelectronicEngineering,2010,87:230-241.
    [193] TIAN Y, ZHANG D, SHIRINZADEH B. Dynamic modelling of a flexure-basedmechanism for ultra-precision grinding operation [J]. Precision Engineering-Journalof the International Societies for Precision Engineering and Nanotechnology,2011,35:554-565.
    [194] HUANG H, ZHAO H W, SHI C L, et al. An integrated nanoindentation module:Design and experiments [C]. Proceedings of the10th International Conference onFrontiers of Design and Manufacturing, June10-12,2012, Chongqing, China.NSFC,2012:1-5.
    [195]黄虎,赵宏伟,史成利,等.压电驱动型微纳米压痕测试装置的设计与试验研究[J].机械工程学报,2013,49:1-7.
    [196] NUROT P, SUN Y. Improved method to determine the hardness and elastic moduliusing nano-indentation [J]. KMITL Science Journal,2005,5:483-492.
    [197] VAN VLIET K J, PRCHLIK L, SMITH J F. Direct measurement of indentationframe compliance [J]. Journal of Materials Research,2004,19:325-331.
    [198]黄虎,赵宏伟,万顺光,等.纳米压痕测试装置机架柔度直接标定法的改进[J].西安交通大学学报,2012,46:122-127.
    [199] FUJISAWA N, RUFFELL S, BRADBY J E, et al. Understanding pressure-inducedphase-transformation behavior in silicon through in situ electrical probing undercyclic loading conditions [J]. Journal of Applied Physics,2009,105:106111.
    [200] ZHANG T Y, SU Y J, QIAN C F, et al. Microbridge testing of silicon nitride thinfilms deposited on silicon wafers [J]. Acta Materialia,2000,48:2843-2857.
    [201] LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallicglasses [J]. Nature Materials,2006,5:15-18.
    [202] YAO J H, WANG J Q, LU L, et al. High tensile strength reliability in a bulk metallicglass [J]. Applied Physics Letters,2008,92:041905.
    [203] LU Z P, BEI H, WU Y, et al. Oxygen effects on plastic deformation of a Zr-basedbulk metallic glass [J]. Applied Physics Letters,2008,92:011915.
    [204] WANG G, CHAN K C, XU X H, et al. Instability of crack propagation in brittle bulkmetallic glass [J]. Acta Materialia,2008,56:5845-5860.
    [205] WANG G, ZHAO D Q, BAI H Y, et al. Nanoscale periodic morphologies on thefracture surface of brittle metallic glasses [J]. Physical Review Letters,2007,98:235501.
    [206] HILL R, LEE E H, TUPPER S J. The theory of wedge indentation of ductilematerials [J]. Proceedings of the Royal Society of London. Series A. Mathematicaland Physical Sciences,1947,188:273-289.
    [207] HUANG H, ZHAO H W, MA Z C, et al. Design and analysis of the precision-drivenunit for nano-indentation and scratch test [J]. Journal of Manufacturing Systems,2012,31:76-81.
    [208] HUANG H, ZHAO H W, YANG J, et al. Design and analysis of a miniaturizationnanoindentation and scratch device [J]. Advanced Materials Research,2011,314-316:1792-1795.
    [209] MA H W, YAO S M, WANG L Q, et al. Analysis of the displacement amplificationratio of bridge-type flexure hinge [J]. Sensors and Actuators A-Physical,2006,132:730-736.
    [210] ZUBIR M N M, SHIRINZADEH B. Development of a high precision flexure-basedmicrogripper [J]. Precision Engineering-Journal of the International Societies forPrecision Engineering and Nanotechnology,2009,33:362-370.
    [211] ZUBIR M N M, SHIRINZADEH B, TIAN Y L. Development of a novelflexure-based microgripper for high precision micro-object manipulation [J].Sensors and Actuators A-Physical,2009,150:257-266.
    [212] HUANG H, FU L, ZHAO H W, et al. Note: A novel rotary actuator driven by onlyone piezoelectric actuator [J]. Review of Scientific Instruments,2013,84:096105.
    [213] ADAM C J, SWAIN M V. The effect of friction on indenter force and pile-up innumerical simulations of bone nanoindentation [J]. Journal of the MechanicalBehavior of Biomedical Materials,2011,4:1554-1558.
    [214] HARSONO E, SWADDIWUDHIPONG S, LIU Z S. The effect of friction onindentation test results [J]. Modelling and Simulation in Materials Science andEngineering,2008,16:065001.
    [215] LI N, LIU L, ZHANG M. The role of friction to the indentation size effect inamorphous and crystallized Pd-based alloy [J]. Journal of Materials Science,2009,44:3072-3076.
    [216] TALJAT B, PHARR G M. Development of pile-up during spherical indentation ofelastic-plastic solids [J]. International Journal of Solids and Structures,2004,41:3891-3904.
    [217] HUANG H, SHI C L, ZHAO H W, et al. Influence of friction on the residualmorphology, the penetration load and the residual stress distribution of a Zr-basedbulk metallic glass [J]. AIP Advances,2013,3:042116.
    [218] DENKENA B, KOEHLER J, MORAL A. Ductile and brittle material removalmechanisms in natural nacre-A model for novel implant materials [J]. Journal ofMaterials Processing Technology,2010,210:1827-1837.
    [219] GU W B, YAO Z Q, LIANG X G. Material removal of optical glass BK7duringsingle and double scratch tests [J]. Wear,2011,270:241-246.
    [220] SUMITOMO T, HUANG H, ZHOU L B. Deformation and material removal in ananoscale multi-layer thin film solar panel using nanoscratch [J]. InternationalJournal of Machine Tools&Manufacture,2011,51:182-189.
    [221] WANG J G, CHOI B W, NIEH T G, et al. Nano-scratch behavior of a bulkZr-10Al-5Ti-17.9Cu-14.6Ni amorphous alloy [J]. Journal of Materials Research,2000,15:913-922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700