用户名: 密码: 验证码:
静电纺纳米纤维束的成形机理及SWNTs的电学增强效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米科学与技术的发展,纳米纤维成为了纺织服装、材料科学等领域的研究热点之一。
     目前,基于不同的原理,制造纳米纤维的方法主要有拉伸、模板聚合、相分离、自组织和静电纺等。对比上述几种方法,静电纺最容易获得连续的纳米纤维,装置简单、成本低廉,通过改进常规静电纺接收装置,还可以制备出具有良好取向和高度规则排列的纳米纤维束。目前,尽管在静电纺丝成形机理、产品结构调控、聚合物功能化应用等领域已有较大发展,制备连续纳米纤维束的方法也有较大突破,但纺丝连续性、纳米纤维束的基本性能等都还有待提升。
     本文先通过酸化的方法去除SWNTs制备过程中的杂质,然后酰胺化使其表面带上酰胺键。将功能化处理后的SWNTs添加到聚酰胺6(PA6)纺丝液中,通过独特的静电纺工艺稳定、连续地制备出PA6/SWNTs复合纳米纤维束,进而研究纺丝工艺参数对泰勒锥形态及射流轨迹的影响,分析稳定、连续纺丝的条件,形成静电纺纳米纤维束的成形理论。通过优化纺丝工艺参数,制备填充不同含量、长径比SWNTs的PA6/SWNTs复合纳米纤维束,研究SWNTs在纳米纤维内部的形态、分布及导电增强效果,同时探索复合纳米纤维束内部电荷的传递机制及其微应变传感机理。
     研究表明酰胺化处理后SWNTs长度减小,相互纠缠现象减弱,其表面接枝上酰胺键,能够较好地分散在PA6/甲酸溶液体系中。以该纺丝液制备纳米纤维束的最佳工艺参数为:纺丝电压20kV,纺丝流量0.09ml/h,卷绕速度为5.4m/min。力学测试结果表明:添加酰胺化处理SWNTs的纳米纤维束的拉伸断裂应力比添加酸化处理SWNTs的提高了很多,从43.42MPa增加到了79.75MPa,同时初始模量增大了超过一倍。
     从PA6/SWNTs纳米纤维束拉伸曲线可以看出,纤维束有较明显的屈服点,而屈服平台后的强化区很难看出,纤维束几乎没有不同时断裂性。通过傅里叶变换分析,拉伸曲线上出现的锯齿状波动为测试过程中的噪音所致,并非通常认为的纤维断裂不同时性引起。
     利用高速摄像机记录并研究了静电纺制备纳米纤维束形成过程中,泰勒锥及射流轨迹的动态变化规律,利用SEM和AFM测定与分析了纺丝不同阶段纤维的形态结构与粘弹性,结合不同卷绕速度下纳米纤维、纳米纤维束直径与卷绕速度间关系的研究,探讨了静电纺纳米纤维束的成形机理。研究结果表明:纺丝液出喷丝口后,在电场作用下细化形成射流,进而沉积在浴液表面,纤维呈无规毡状分布,此时,虽然纤维表面已经固化,但其内部高聚物并未完全固化,呈高浓度的粘弹状;在浴液表面被集束作用后,纤维开始沿牵引方向定向排列,初步形成纳米纤维束;在烘干装置的作用下去除纤维中残留的溶剂及水分,并因卷绕速度大于纺丝速度而被进一步拉伸,纤维沿轴向定向排列的程度提高。粘弹性的测定结果表明:射流飞行过程中直接接收的纳米纤维表面力学性能最差,浴液表面收集的次之,而烘干成形后的纳米纤维力学性能最好。
     通过控制卷绕速度可以提高纳米纤维的定向度,制备出方便退绕的纳米纤维束。卷绕速度小于7.2m/min时,卷绕过程主要是使浴液表面无规纳米纤维重新排列,较少涉及单根纳米纤维的拉伸;卷绕速度超过7.2m/min后,因为牵伸倍数较大,不仅使无规纳米纤维趋于沿轴向定向排列,形成稳定的纤维束结构,而且纳米纤维自身也受到一定程度的拉伸,力学性能显著提高。静电纺丝在较小空间及时间内形成的纳米纤维分子链取向差、结构不完善、物理机械性能较差。利用本文的静电纺丝方法制备纳米纤维束时,纤维在受热条件下被快速卷绕,从而获得程度较大的拉伸作用,能够提高其物理机械性能。
     利用3D MAXWELL电场模拟软件,模拟了纳米纤维束形成过程中的电场强度及分布。模拟结果表明,随着纺丝高度的增大,针头处电场强度减弱,电场分布更分散,正负极间电场梯度趋于平缓,负极处电场从浴盘左侧逐渐向中间偏移。实验及理论分析的结果表明,负极收集材料的导电性会以微弱电流的方式对电场起到分压作用,负极收集浴液电导率减小,泰勒锥体积增大、泰勒锥角增大,而稳定直线段长度先是基本没有较大变化,然后在浴液电导率为0时突然减小。
     SWNTs对聚合物纤维具有良好的电学增强效应,本文研究了填充不同质量分数和尺寸的SWNTs后,PA6/SWNTs复合纳米纤维束电学性能的变化。研究结果表明,随着SWNTs质量分数的增加,PA6/SWNTs复合纳米纤维束的导电性能增强,其电导率最大可提高9个数量级,SWNTs质量分数的阈值约为0.8wt%;不同SWNTs含量下,添加长径比为10000~15000的SWNTs的PA6/SWNTs纳米纤维束的电导率均大于添加长径比为1000~1500的纳米纤维束,且添加高长径比SWNTs后,PA6/SWNTs纳米纤维束较早出现电导率阈值;在测试长度分别为2mm~2cm时,试样的测量长度对其电导率的影响不大,最大差异为7.8%。
     用自行设计的一套安捷伦4339B高阻仪适用的夹具,研究了PA6/SWNTs复合纳米纤维束的应变传感性。当纤维束发生10%~60%范围内的应变时,纤维的电阻变化量与应变之间呈线性正相关性,应变传感的线性度均较好;随着纤维中SWNTs质量分数的增加,电阻的变化量减小;相同SWNTs含量下,随着SWNTs长径比增大,电阻变化率减小,也就是灵敏度降低;试样长度对纳米纤维束的应变传感特性没有显著影响。
Recently, with the rapid development in nanoscience and nanotechnology, nanofibersbecome a hot topic in the fields of textile and material science.
     Based on different principles, lots of methods can produce fibers in nano-scale, suchas stretching, template polymerization, phase separation, self-organization andelectrospinning. Compared them, electrospinning has been recognized as the most feasibletechnique for the fabrication of continuous polymeric nanofibre, besides that, it also canproduce nanofiber bundles and nanofiber yarns by changing the negative pole. Althoughthe shaping mechanism of electrospinning, product structure control and its functionalapplication from various polymeric materials have developed well, the basic performanceof nanofiber bundles and the continuity still need to be intensively studied.
     Single wall nanotubes(SWNTs) were acidized to purify the inclusions and thenamidated to graft amide group. Add the functionalized SWNTs into PA6/formic acidsolution, and consecutively produce PA6/SWNTs nanofiber bundles by uniqueelectrospinning. After that, study the nanofiber bundles shaping mechanism by discussingthe morphology of the Taylor cone and the trajectory of the jet flow, also by studying thespinning conditions of producing nanofiber bundles steadily and continuously. Finally,PA6/SWNTs composite nanofiber bundles with different length-diameter ratios anddifferent contents of SWNTs were made by the optimized parameters. Study thedistributions, status and the electrical properties enhancement effects of SWNTs inside ofnanofibers, meanwhile, discuss the transfer mechanism of the charge and the strain sensingmechanism.
     The results show that the length of SWNTs decreased and dispersed well in thePA6/formic acid solution after amidating. The optimized parameters to produce nanofiberbundles were20kV,0.09ml/h and5.4m/min. Mechanical properties results show that compared to the filaments with acided SWNTs, the breaking stress of PA6/SWNTsnanofiber filaments with amide functionalized SWNTs increased obviously, up to79.75MPa from43.42MPa, furthermore, the initial module was also increased about100%.
     The stretching curve indicated that all the nanofibers in the bundle breakdown in thesame time and the yield point without intensifying area after that exist in the curve. TheFast Fourier Transform (FFT) results show that the serrated waves in the curve are noisewhich generated from the stretching process, really not from the asynchronous fracture.
     The Taylor cone and the trajectory of the flow jet were recorded by a high speedcamera and the shaping mechanism was investigated by studying the relationships betweenthe winding speeds and the diameters of the nanofibers and bundles. The stream of liquiderupting from the spinneret firstly, and then deposited onto the surface of the negativecollector forming randomly-oriented nonwoven fiber mats, at this point, the surface of thenanofiber is solidified, but the inner of it is still viscoelastic state, the solvent wouldevaporate in the follow-up drying and winding process. After that, under the bundlingeffect of the bath, nanofiber filaments were converted into bundls and wound onto apackage. The morphological structure and viscoelasticity of the nanofiber in differentstages were tested by scanning electron microscope (SEM) and Atomic ForceMicroscope(AFM). The AFM results show that the mechanical property of the nanofiberafter drying is the best, and after that are the bath stage and the flying stage, respectively.
     At last, the easy backing-off bundles comprised with high alignment and orientationdegree of nanofibers were obtained by controlling the winding speed. When the windingspeed is lower than7.2m/min, the main role of the winding process is rearrange therandomly-oriented nanofibers without stretching it. However, when the winding speed isfaster than7.2m/min, the quantities of the nanofibers in the bundle is already fixed and thehook can no longer unbend. So the winding process can be regarded as hot-stretching, themolecular chain would be rearranged and the mechanical property of it would beimproved.
     The intensity and distribution of the electric fields in the electrospinning process have be simulated by using the3D Maxwell software, the results show that with the increase ofthe spinning space, the electrical intensity close to the spinneret tip weakened anddistributed more separately, the electrical field of the negative pole move to the central partfrom left. The conductivity of the negative pole can relieve the electrical voltage by theweak current way, when the conductivity of the bath decreased, the volume and the angleof the Taylor cone increased, while the straight segment change little firstly, but decreasedsuddenly when the bath conductivity down to0S/cm.
     The conductivity of the as-spun nanofiber bundles with different length-diameter ratioand contents of SWNTs were studied and there is almost109order of magnitudeimprovement by adding SWNTs. The percolation threshold of it is about0.8wt%and theelectrical conductivity increased directly with adding SWNTs up to that threshold and.The conductivity of the PA6/SWNTs nanofiber bundles with length-diameter of10000~15000SWNTs were larger than with length-diameter of1000~1500under the samecontents, and the percolation threshold came out earlier. The testing length has little effecton its conductivity and the biggest difference was7.8%when changing the testing lengthfrom2mm~2cm.
     A custom-made test fixture was used to extend the as-spun bundles and measure thestrain sensitivity of the PA6/SWNTs nanofiber bundles. The results show that there is apositive relationship between△R/R and△L/L when the strain varied between10%and60%. Also, higher CNT concentration and length-diameter yield lower△R/R, and hencehigher sensitivity, while the sensitivity varied little when changing the initial testing length.
引文
[1] Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinningand their applications in nanocomposites [J]. Composites science and technology,2003,63(15):2223-2253.
    [2] Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on themorphology of electrospun nanofibers and textiles [J]. Polymer,2001,42(1):261-272.
    [3] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel?[J]. Advanced materials,2004,16(14):1151-1170.
    [4] Wei C, Srivastava D. Nanomechanics of carbon nanofibers: Structural and elastic properties [J].Applied physics letters,2004,85(12):2208-2210.
    [5] Teo W E, Ramakrishna S. A review on electrospinning design and nanofibre assemblies [J].Nanotechnology,2006,17(14): R89.
    [6] Sill T J, von Recum H A. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials,2008,29(13):1989-2006.
    [7] Bhardwaj N, Kundu S C. Electrospinning: a fascinating fiber fabrication technique [J].Biotechnology advances,2010,28(3):325-347.
    [8] Zhou F L, Gong R H. Manufacturing technologies of polymeric nanofibres and nanofibreyarns [J]. Polymer International,2008,57(6):837-845.
    [9] Persano L, Camposeo A, Tekmen C, et al. Industrial upscaling of electrospinning andapplications of polymer nanofibers: a review [J]. Macromolecular Materials and Engineering,2013,298(5):504-520.
    [10] Greiner A, Wendorff J H. Electrospinning: a fascinating method for the preparation ofultrathin fibers [J]. Angewandte Chemie International Edition,2007,46(30):5670-5703.
    [11] Plateau J. Statique expérimentale et théorique des liquides soumis aux seules forcesmoléculaires [M]. Gauthier-Villars,1873.
    [12] Strutt J W, Rayleigh L. On the instability of jets [C]Proc. R. Soc. London A.1879,10:4-13.
    [13] Rayleigh L. On the capillary phenomena of jets [J]. Proceedings of the Royal Society ofLondon,1879,29(196-199):71-97.
    [14] Rayleigh L, Robert Strutt, Lord. Charles Vernon Boys. Obituary notices of Fellows of theRoyal Society,1944,4:771-88
    [15] Boys C V. LVII. On the production, properties, and some suggested uses of the finest threads[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1887,23(145):489-499.
    [16] Cooley J F. Improved methods of and apparatus for electrically separating therelativelyvolatile liquid component from the component of relatively fixed substances of compositefluids: U.K. Patent6385[P].1900.
    [17] Cooley J F. Apparatus for electrically dispersing fluids: U.S. Patent692,631[P].1902-2-4.
    [18] Burton, E. F., Wiegand, W. B. XII. Effect of electricity on streams of water drops [J].Philosophical Magazine,1912,23,148-65.
    [19] Zeleny J. The discharge of electricity from pointed conductors differing in size [J]. PhysicalReview (Series I),1907,25(5):305.
    [20] Zeleny J. On the conditions of instability of electrified drops, with applications to theelectrical discharge from liquid points [C]. Proc. Camb. Phil. Soc.1915,18:71-83.
    [21] Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuringthe electric intensity at their surfaces [J]. Physical Review,1914,3(2):69.
    [22] Zeleny, J. On the conditions of instability of electrified drops, with applications to theelectrical discharge from liquid points [J]. Proceedings of the Cambridge PhilosophicalSociety: Mathematical and Physical Sciences,1914,71-83.
    [23] Zeleny J. Instability of electrified liquid surfaces [J]. Physical Review,1917,10(1):1.
    [24] Formhals A. Process and apparatus for preparing artificial threads: US,1975504[P].1934.
    [25] Anton F. Production of artificial fibers: U.S. Patent2,077,373[P].1937-4-13.
    [26] Anton F. Artificial fiber construction: U.S. Patent2,109,333[P].1938-2-22.
    [27] Anton F. Method and apparatus for the production of fibers: U.S. Patent2,116,942[P].1938-5-10.
    [28] Norton C L. Method of and apparatus for producing fibrous or filamentary material: U.S.Patent2,048,651[P].1936-7-21.
    [29] Games S. Method and apparatus for making glass wool: U.S. Patent2,133,235[P].1938-10-11.
    [30] Taylor G. Disintegration of water drops in an electric field [J]. Proceedings of the RoyalSociety of London. Series A. Mathematical and Physical Sciences,1964,280(1382):383-397.
    [31] Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers [J]. Polymer,2008,49(10):2387-2425.
    [32] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jetsof polymer solutions in electrospinning [J]. Journal of Applied physics,2000,87(9):4531-4547.
    [33] Yarin A L, Koombhongse S, Reneker D H. Taylor cone and jetting from liquid droplets inelectrospinning of nanofibers [J]. Journal of Applied Physics,2001,90(9):4836-4846.
    [34] Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning ofnanofibers [J]. Journal of Applied Physics,2001,89(5):3018-3026.
    [35] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [36] Avouris P. Carbon nanotube electronics [J]. Chemical Physics,2002,281(2):429-445.
    [37] Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growthmechanism and mass production [J]. Journal of nanoscience and nanotechnology,2010,10(6):3739-3758.
    [38] Anantram M P, Leonard F. Physics of carbon nanotube electronic devices [J]. Reports onProgress in Physics,2006,69(3):507.
    [39] Avouris P, Freitag M, Perebeinos V. Carbon-nanotube photonics and optoelectronics [J].Nature photonics,2008,2(6):341-350.
    [40] Trojanowicz M. Analytical applications of carbon nanotubes: a review [J]. TrAC trends inanalytical chemistry,2006,25(5):480-489.
    [41] Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures:reversible high-capacity lithium-ion anodes [J]. Acs Nano,2010,4(4):2233-2241.
    [42] Yan Y, Chan‐Park M B, Zhang Q. A dvances in Carbon‐Nanotube Assembly [J]. Small,2007,3(1):24-42.
    [43] Pradhan B, Batabyal S K, Pal A J. Functionalized carbon nanotubes in donor/acceptor-typephotovoltaic devices [J]. Applied physics letters,2006,88(9):093106-093106-3.
    [44] Ting J M, Chang C C. Multijunction carbon nanotube network [J]. Applied physics letters,2002,80(2):324-325.
    [45] Anantram M P, Leonard F. Physics of carbon nanotube electronic devices [J]. Reports onProgress in Physics,2006,69(3):507.
    [46] Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotubefield-emission display [J]. Applied physics letters,1999,75(20):3129-3131.
    [47] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes [J].Nature,2009,458(7240):877-880.
    [48] Katz E, Willner I. Biomolecule functionalized carbon nanotubes: applications innanobioelectronics [J]. ChemPhysChem,2004,5(8):1084-1104.
    [49] Zhao X, Liu Y, Inoue S, et al. Smallest carbon nanotube is3in diameter [J]. Physicalreview letters,2004,92(12):125502.
    [50] Wang X, Li Q, Xie J, et al. Fabrication of ultralong and electrically uniform single-walledcarbon nanotubes on clean substrates [J]. Nano letters,2009,9(9):3137-3141.
    [51] Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures:reversible high-capacity lithium-ion anodes [J]. Acs Nano,2010,4(4):2233-2241.
    [52] Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materialsin the modification of textiles: focus on anti-microbial properties [J]. Colloids and Surfaces B:Biointerfaces,2010,79(1):5-18.
    [53] Engel M, Small J P, Steiner M, et al. Thin film nanotube transistors based on self-assembled,aligned, semiconducting carbon nanotube arrays [J]. Acs Nano,2008,2(12):2445-2452.
    [54] Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxidespontaneously coated on carbon nanotubes [J]. Carbon,2007,45(2):375-382.
    [55] Meyyappan M, Delzeit L, Cassell A, et al. Carbon nanotube growth by PECVD: a review [J].Plasma Sources Science and Technology,2003,12(2):205.
    [56] Hone J, Batlogg B, Benes Z, et al. Quantized phonon spectrum of single-wall carbonnanotubes [J]. Science,2000,289(5485):1730-1733.
    [57] Takagi D, Hibino H, Suzuki S, et al. Carbon nanotube growth from semiconductornanoparticles [J]. Nano letters,2007,7(8):2272-2275.
    [58] Wang M S, Wang J Y, Chen Q, et al. Fabrication and electrical and mechanical properties ofcarbon nanotube interconnections [J]. Advanced Functional Materials,2005,15(11):1825-1831.
    [58] Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design anddiscovery [J]. Accounts of chemical research,2007,41(1):60-68.
    [60] Liu Z, Lin X, Lee J Y, et al. Preparation and characterization of platinum-basedelectrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells[J]. Langmuir,2002,18(10):4054-4060.
    [61] Dumortier H, Lacotte S, Pastorin G, et al. Functionalized carbon nanotubes are non-cytotoxicand preserve the functionality of primary immune cells [J]. Nano letters,2006,6(7):1522-1528.
    [62] Takagi D, Hibino H, Suzuki S, et al. Carbon nanotube growth from semiconductornanoparticles [J]. Nano letters,2007,7(8):2272-2275.
    [63]赵玉刚,邱东.传感器基础[M].北京:北京大学出版社,2013.
    [64]强锡富.传感器[M].北京:机械工业出版社,2000.
    [65]余成波,聂春燕,张佳薇.传感器原理与应用[M].武汉:华中科技大学出版社,2010.
    [66] Trojanowicz M. Analytical applications of carbon nanotubes: a review [J]. TrAC trends inanalytical chemistry,2006,25(5):480-489.
    [67] Sinha N, Ma J, Yeow J T W. Carbon nanotube-based sensors [J]. Journal of nanoscience andnanotechnology,2006,6(3):573-590.
    [68] Anantram M P, Leonard F. Physics of carbon nanotube electronic devices [J]. Reports onProgress in Physics,2006,69(3):507.
    [69] Gajendran P, Saraswathi R. Polyaniline-carbon nanotube composites [J]. Pure and AppliedChemistry,2008,80(11):2377-2395.
    [70] Liu Y L, Chen W H, Chang Y H. Preparation and properties of chitosan/carbon nanotubenanocomposites using poly (styrene sulfonic acid)-modified CNTs [J]. CarbohydratePolymers,2009,76(2):232-238.
    [71] Fam D W H, Palaniappan A, Tok A I Y, et al. A review on technological aspects influencingcommercialization of carbon nanotube sensors [J]. Sensors and Actuators B: Chemical,2011,157(1):1-7.
    [72] Valentini L, Bavastrello V, Stura E, et al. Sensors for inorganic vapor detection based oncarbon nanotubes and Poly(O-Anisidine) nanocomposite material [J]. Chemical PhysicsLetters,2004,383(5):617-622.
    [73] Jacobs C B, Peairs M J, Venton B J. Review: carbon nanotube based electrochemical sensorsfor biomolecules [J]. Analytica Chimica Acta,2010,662(2):105-127.
    [74] Merko i A, Pumera M, Llopis X, et al. New materials for electrochemical sensing VI: carbonnanotubes [J]. TrAC Trends in Analytical Chemistry,2005,24(9):826-838.
    [75] Sinha N, Ma J, Yeow J T W. Carbon nanotube-based sensors [J]. Journal of nanoscience andnanotechnology,2006,6(3):573-590.
    [76] Zhang T, Mubeen S, Myung N V, et al. Recent progress in carbon nanotube-based gas sensors[J]. Nanotechnology,2008,19(33):332001.
    [77] Ahammad A J, Lee J J, Rahman M A. Electrochemical sensors based on carbon nanotubes [J].Sensors,2009,9(4):2289-2319.
    [78] Hierold C, Jungen A, Stampfer C, et al. Nano electromechanical sensors based on carbonnanotubes [J]. Sensors and Actuators A: Physical,2007,136(1):51-61.
    [79] Merko i A, Pumera M, Llopis X, et al. New materials for electrochemical sensing VI: carbonnanotubes [J]. TrAC Trends in Analytical Chemistry,2005,24(9):826-838.
    [80] Hrapovic S, Liu Y, Male K B, et al. Electrochemical biosensing platforms using platinumnanoparticles and carbon nanotubes [J]. Analytical chemistry,2004,76(4):1083-1088.
    [81] Li Y, Huang X J, Heo S H, et al. Superhydrophobic bionic surfaces with hierarchicalmicrosphere/SWCNT composite arrays [J]. Langmuir,2007,23(4):2169-2174.
    [82] Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metaland semiconductor nanoparticles [J]. Electroanalysis,2004,16(1-2):19-44.
    [83] Toomadj F, Farjana S, Sanz-Velasco A, et al. Strain Sensitivity of Carbon NanotubesModified Cellulose [J]. Procedia engineering,2011,25:1353-1356.
    [84] Hu N, Karube Y, Yan C, et al. Tunneling effect in a polymer/carbon nanotube nanocompositestrain sensor [J]. Acta Materialia,2008,56(13):2929-2936.
    [85] Li G Y, Wang P M, Zhao X. Pressure-sensitive properties and microstructure of carbonnanotube reinforced cement composites [J]. Cement and Concrete Composites,2007,29(5):377-382.
    [86] Zhao H, Zhang Y, Bradford P D, et al. Carbon nanotube yarn strain sensors [J].Nanotechnology,2010,21(30):305502.
    [87] Song X, Liu S, Gan Z, et al. Controllable fabrication of carbon nanotube-polymer hybrid thinfilm for strain sensing [J]. Microelectronic Engineering,2009,86(11):2330-2333.
    [88] Wu D, Shi T, Yang T, et al. Electrospinning of poly (trimethylene terephthalate)/carbonnanotube composites [J]. European Polymer Journal,2011,47(3):284-293.
    [89] Stampfer C, Jungen A, Hierold C. Fabrication of discrete nanoscaled force sensors based onsingle-walled carbon nanotubes [J]. Sensors Journal, IEEE,2006,6(3):613-617.
    [90] Valentini L, Cantalini C, Armentano I, et al. Highly sensitive and selective sensors based oncarbon nanotubes thin films for molecular detection [J]. Diamond and Related Materials,2004,13(4):1301-1305.
    [91] Sayago I, Terrado E, Lafuente E, et al. Hydrogen sensors based on carbon nanotubes thinfilms [J]. Synthetic Metals,2005,148(1):15-19.
    [92] Hu N, Karube Y, Arai M, et al. Investigation on sensitivity of a polymer/carbon nanotubecomposite strain sensor [J]. Carbon,2010,48(3):680-687.
    [93] Cha S I, Kim K T, Lee K H, et al. Mechanical and electrical properties of cross-linked carbonnanotubes [J]. Carbon,2008,46(3):482-488.
    [94] Gandhi M, Yang H, Shor L, et al. Post-spinning modification of electrospun nanofibernanocomposite from Bombyx Mori silk and carbon nanotubes [J]. Polymer,2009,50(8):1918-1924.
    [95] Lisunova M, Hildmann A, Hatting B, et al. Nanofibres of CA/PAN with high amount ofcarbon nanotubes by core–shell electrospinning [J]. Composites Science and Technology,2010,70(11):1584-1588.
    [96] Chen G X, Kim H S, Park B H, et al. Multi-walled carbon nanotubes reinforced nylon6composites [J]. Polymer,2006,47(13):4760-4767.
    [97] Ra E J, An K H, Kim K K, et al. Anisotropic electrical conductivity of MWCNT/PANnanofiber paper [J]. Chemical Physics Letters,2005,413(1):188-193.
    [98] Chae H G, Sreekumar T V, Uchida T, et al. A comparison of reinforcement efficiency ofvarious types of carbon nanotubes in polyacrylonitrile fiber [J]. Polymer,2005,46(24):10925-10935.
    [99] Bekyarova E, Thostenson E T, Yu A, et al. Multiscale carbon nanotube-carbon fiberreinforcement for advanced epoxy composites [J]. Langmuir,2007,23(7):3970-3974.
    [100] Andrews R, Weisenberger M C. Carbon nanotube polymer composites [J]. Current Opinionin Solid State and Materials Science,2004,8(1):31-37.
    [101] Liu T, Phang I Y, Shen L, et al. Morphology and mechanical properties of multiwalledcarbon nanotubes reinforced nylon-6composites [J]. Macromolecules,2004,37(19):7214-7222.
    [102] Wong K K H, Zinke-Allmang M, Hutter J L, et al. The effect of carbon nanotube aspectratio and loading on the elastic modulus of electrospun poly (vinyl alcohol)-carbon nanotubehybrid fibers [J]. Carbon,2009,47(11):2571-2578.
    [103] Baji A, Mai Y W, Wong S C, et al. Mechanical behavior of self-assembled carbon nanotubereinforced nylon6,6fibers [J]. Composites Science and Technology,2010,70(9):1401-1409.
    [104] Yang Z, Dong B, Huang Y, et al. A study on carbon nanotubes reinforced poly (methylmethacrylate) nanocomposites [J]. Materials Letters,2005,59(17):2128-2132.
    [105] Baji A, Mai Y W, Wong S C, et al. Mechanical behavior of self-assembled carbon nanotubereinforced nylon6,6fibers [J]. Composites Science and Technology,2010,70(9):1401-1409.
    [106] Mazinani S, Ajji A, Dubois C. Fundamental study of crystallization, orientation, andelectrical conductivity of electrospun PET/carbon nanotube nanofibers [J]. Journal ofPolymer Science Part B: Polymer Physics,2010,48(19):2052-2064.
    [107] Kim T A. Acid-treated SWCNT/polyurethane nanoweb as a stretchable and transparentconductor [J]. RSC Advances,2012,2(28):10717-10724.
    [108] Mazinani S, Ajji A, Dubois C. Morphology, structure and properties of conductive PS/CNTnanocomposite electrospun mat [J]. Polymer,2009,50(14):3329-3342.
    [109] Bao W S, Meguid S A, Zhu Z H, et al. Modeling electrical conductivities of nanocompositeswith aligned carbon nanotubes [J]. Nanotechnology,2011,22(48):485704.
    [110]王策,卢小峰等.有机功能纳米材料-高压静电纺丝技术与纳米纤维[M].北京:科学出版社,2011.
    [111]丁彬,俞建勇.静电纺丝与纳米纤维[M].北京:中国纺织出版社,2011.
    [112] Xin Y, Reneker D H. Garland formation process in electrospinning [J]. Polymer,2012,53(16):3629-3635.
    [113] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jetsof polymer solutions in electrospinning [J]. Journal of Applied physics,2000,87(9):4531-4547.
    [114] Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning ofnanofibers [J]. Journal of Applied Physics,2001,89(5):3018-3026.
    [115]刘庸.气泡静电纺丝技术及其机理研究[D]上海:东华大学,2008
    [116] Spivak A F, Dzenis Y A. Asymptotic decay of radius of a weakly conductive viscous jet inan external electric field [J]. Applied Physics Letters,1998,73(21):3067-3069.
    [117] He J H, Wu Y, Zuo W W. Critical length of straight jet in electrospinning [J]. Polymer,2005,46(26):12637-12640.
    [118]覃小红. PAN、PVA静电纺纳米纤维的机理及喷头装置的研究[D]上海:东华大学,2005
    [119] Liu K, Ertley C D, Reneker D H. Interpretation and use of glints from an electrospinning jetof polymer solutions [J]. Polymer,2012,53(19):4241-4253.
    [120] Arinstein A, Zussman E. Electrospun polymer nanofibers: mechanical and thermodynamicperspectives [J]. Journal of Polymer Science Part B: Polymer Physics,2011,49(10):691-707.
    [121] Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers [J]. Polymer,2008,49(10):2387-2425.
    [122] Yarin A L, Koombhongse S, Reneker D H. Taylor cone and jetting from liquid droplets inelectrospinning of nanofibers [J]. Journal of Applied Physics,2001,90(9):4836-4846.
    [123] Gu B K, Shin M K, Sohn K W, et al. Direct fabrication of twisted nanofibers byelectrospinning [J]. Applied physics letters,2007,90(26):263902.
    [124] Teo W E, Gopal R, Ramaseshan R, et al. A dynamic liquid support system for continuouselectrospun yarn fabrication [J]. Polymer,2007,48(12):3400-3405.
    [125] Lotus A F, Bender E T, Evans E A, et al. Electrical, structural, and chemical properties ofsemiconducting metal oxide nanofiber yarns [J]. Journal of Applied Physics,2008,103(2):024910.
    [126] Dalton P D, Klee D, M ller M. Electrospinning with dual collection rings [J]. Polymer,2005,46(3):611-614.
    [127] Bazbouz M B, Stylios G K. Novel mechanism for spinning continuous twisted compositenanofiber yarns [J]. European polymer journal,2008,44(1):1-12.
    [128] Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospunnanofibres [J]. Nanotechnology,2001,12(3):384.
    [129] Teo W E, Gopal R, Ramaseshan R, et al. A dynamic liquid support system for continuouselectrospun yarn fabrication [J]. Polymer,2007,48(12):3400-3405.
    [130] Mondal A, Borah R, Mukherjee A, et al. Electrospun self-assembled nanofiber yarns [J].Journal of applied polymer science,2008,110(1):603-607.
    [131] Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers [J]. Polymer,2001,42(19):8163-8170.
    [132] Maheshwari S, Chang H C. Assembly of Multi-Stranded Nanofiber Threads through ACElectrospinning [J]. Advanced Materials,2009,21(3):349-354.
    [133] Maheshwari S, Chetwani N, Chang H C. Alternating current electrospraying [J]. Industrial&Engineering Chemistry Research,2009,48(21):9358-9368.
    [134] Pan H, Li L, Hu L, et al. Continuous aligned polymer fibers produced by a modifiedelectrospinning method [J]. Polymer,2006,47(14):4901-4904.
    [135] Smit E, B ttner U, Sanderson R D. Continuous yarns from electrospun fibers [J]. Polymer,2005,46(8):2419-2423.
    [136] Khil M S, Bhattarai S R, Kim H Y, et al. Novel fabricated matrix via electrospinning fortissue engineering [J]. Journal of Biomedical Materials Research Part B: AppliedBiomaterials,2005,72(1):117-124.
    [137] Wang X, Zhang K, Zhu M, et al. Continuous polymer nanofiber yarns prepared byself-bundling electrospinning method [J]. Polymer,2008,49(11):2755-2761.
    [138] Dalton P D, Grafahrend D, Klinkhammer K, et al. Electrospinning of polymer melts:phenomenological observations [J]. Polymer,2007,48(23):6823-6833.
    [139] Dalton P D, Klee D, M ller M. Electrospinning with dual collection rings [J]. Polymer,2005,46(3):611-614.
    [140] Liu L Q, Eder M, Burgert I, et al. One-step electrospun nanofiber-based composite ropes [J].Applied physics letters,2007,90(8):083108.
    [141] Lotus A F, Bender E T, Evans E A, et al. Electrical, structural, and chemical properties ofsemiconducting metal oxide nanofiber yarns [J]. Journal of Applied Physics,2008,103(2):024910.
    [142] Afifi A M, Nakano S, Yamane H, et al. Electrospinning of Continuous Aligning Yarns with a‘Funnel’Target [J]. Macromolecular Materials and Engineering,2010,295(7):660-665.
    [143] Ali U, Zhou Y, Wang X, et al. Direct electrospinning of highly twisted, continuous nanofiberyarns [J]. Journal of the Textile Institute,2012,103(1):80-88.
    [144] Teo W E, Ramakrishna S. Electrospun fibre bundle made of aligned nanofibres over twofixed points [J]. Nanotechnology,2005,16(9):1878.
    [145] Yousefzadeh M, Latifi M, Teo W E, et al. Producing continuous twisted yarn from wellaligned nanofibers by water vortex [J]. Polymer Engineering&Science,2011,51(2):323-329.
    [146] Dabirian F, Hosseini Y, Ravandi S A H. Manipulation of the electric field of electrospinningsystem to produce polyacrylonitrile nanofiber yarn [J]. Journal of the Textile Institute,2007,98(3):237-241.
    [147] Dabirian F, Hosseini S A. Novel method for nanofibre yarn production using two differentlycharged nozzles [J]. Fibres&Textiles in Eastern Europe,2009,17(3):74.
    [148] Dabirian F, Ravandi S A H, Sanatgar R H, et al. Manufacturing of twisted continuous PANnanofiber yarn by electrospinning process [J]. Fibers and Polymers,2011,12(5):610-615.
    [149] Bazbouz M B, Stylios G K. Alignment and optimization of nylon6nanofibers byelectrospinning [J]. Journal of applied polymer science,2008,107(5):3023-3032.
    [150] Bazbouz M B, Stylios G K. Novel mechanism for spinning continuous twisted compositenanofiber yarns [J]. European polymer journal,2008,44(1):1-12.
    [151] Ko F, Gogotsi Y, Ali A, et al. Electrospinning of continuous carbon nanotube filled nanofiberyarns [J]. Advanced Materials,2003,15(14):1161-1165.
    [152] Kim H Y, Gil M S, Jung Y H, et al. Process of preparing continuous filament composed ofnano fiber: U.S. Patent7,354,546[P].2008-4-8.
    [153] Kim H, Park J C. Process of preparing continuous filament composed of nanofibers: U.S.Patent7,807,094[P].2010-10-5.
    [154] Kim H. Process of preparing continuous filament composed of nanofibers: U.S. PatentApplication10/585,333[P].2004-2-2.
    [155] Hou P X, Liu C, Cheng H M. Purification of carbon nanotubes [J]. Carbon,2008,46(15):2003-2025.
    [156] Liu J, Rinzler A G, Dai H, et al. Fullerene pipes [J]. Science,1998,280(5367):1253-1256.
    [157] Jeong J S, Jeon S Y, Lee T Y, et al. Fabrication of MWNTs/nylon conductive compositenanofibers by electrospinning [J]. Diamond and related materials,2006,15(11):1839-1843.
    [158]刘洋. PA6/MWNTs复合纳米纤维纱连续静电纺丝的研究[D].苏州:苏州大学,2011.
    [159] Mojarrad A, Jahani Y, Barikani M. Investigation on the correlation between rheology andmorphology of PA6/ABS blends using ethylene acrylate terpolymer as compatibilizer [J].Journal of applied polymer science,2011,120(4):2173-2182.
    [160] Haider S, Al-Masry W A, Bukhari N, et al. Preparation of the chitosan containing nanofibersby electrospinning chitosan-gelatin complexes [J]. Polymer Engineering&Science,2010,50(9):1887-1893.
    [161] Liu Y, Li J, Pan Z. Effect of spinning conditions on the mechanical properties ofPA6/MWNTs nanofiber filaments [J]. Journal of Polymer Research,2011,18(6):2055-2060.
    [162] Shokrieh M M, Rafiee R. Stochastic multi-scale modeling of CNT/polymer composites [J].Computational Materials Science,2010,50(2):437-446.
    [163] Yang Q, He X, Liu X, et al. The effective properties and local aggregation effect ofCNT/SMP composites [J]. Composites Part B: Engineering,2012,43(1):33-38.
    [164] Rafiee R, Maleki Moghadam R. Simulation of impact and post-impact behavior of carbonnanotube reinforced polymer using multi-scale finite element modeling [J]. ComputationalMaterials Science,2012,63:261-268.
    [165]张露.静电纺聚砜纤维膜的结构与性能[D].苏州:苏州大学,2011.
    [166]潘志娟.纤维材料近代测试技术[M].北京:中国纺织出版社,2005.
    [167]董申,孙涛,闫永达.基于原子力显微镜的纳米机械加工与检测技术[M].哈尔滨:哈尔滨工业大学出版社,2012
    [168]祖元刚.原子力显微镜在大分子研究中的应用[M].北京:科学出版社,2013
    [169]王晶,李燕,梁曦东,刘瑛岩.利用原子力显微镜探究污秽颗粒在绝缘子表面的粘附力[J].高电压技术,2013,(第6期).
    [170] Du F, Fischer J E, Winey K I. Effect of nanotube alignment on percolation conductivity incarbon nanotube/polymer composites [J]. Departmental Papers (MSE),2005:79.
    [171] Dalmas F, Dendievel R, Chazeau L, et al. Carbon nanotube-filled polymer compositesNumerical simulation of electrical conductivity in three-dimensional entangled fibrousnetworks [J]. Acta materialia,2006,54(11):2923-2931.
    [172] Grujicic M, Cao G, Roy W N. A computational analysis of the percolation threshold and theelectrical conductivity of carbon nanotubes filled polymeric materials [J]. Journal ofmaterials science,2004,39(14):4441-4449.
    [173] White S I, DiDonna B A, Mu M, et al. Simulations and electrical conductivity of percolatednetworks of finite rods with various degrees of axial alignment [J]. Physical Review B,2009,79(2):024301.
    [174] Hu N, Masuda Z, Yan C, et al. The electrical properties of polymer nanocomposites withcarbon nanotube fillers [J]. Nanotechnology,2008,19(21):215701.
    [175] Yu Y, Song G, Sun L. Determinant role of tunneling resistance in electrical conductivity ofpolymer composites reinforced by well dispersed carbon nanotubes [J]. Journal of AppliedPhysics,2010,108(8):084319.
    [176] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbonnanotubes [J].1996.
    [177] Alamusi, Hu N, Fukunaga H, et al. Piezoresistive strain sensors made from carbonnanotubes based polymer nanocomposites [J]. Sensors,2011,11(11):10691-10723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700