用户名: 密码: 验证码:
以氮杂环为配体的配合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氮杂环配合物作为杂环配合物的一种,因其多变的结构、良好的生物活性和较强的配位能力,一直受到配位化学家们的青睐。随着配位化学的发展,咪唑、吡啶、吡唑、吡咯等含氮杂环类配体已经被大量应用到配合物中。用这些配体构架出来的配合物具有迷人的结构和在荧光、催化、吸附、磁性材料等方面有广阔的应用。本论文中,我们致力于合成以吡啶衍生物为配体的配合物,并研究它们的化学、物理性质。本论文主要选取3-吡啶基咪唑并[1,5-a]吡啶为配体,使其和不同醛在金属离子的作用下,通过原位金属/配体反应得到了一系列结构新颖的配合物,并提出了该原位反应的机理。另外,以四种吡啶二羧酸为配体合成了一系列碱土-稀土金属杂核的配合物和碱土-过渡金属杂核的配合物,并根据这些配合物的结构特点,分别研究了相应配合物的荧光和磁性质。主要结果简述如下:
     1.我们设计了一系列吡啶甲醛、醋酸铵和过渡金属离子在溶剂热条件下的反应,得到了5个原位反应配体L1, L2, L3, L4, L5和14个结构新颖的配合物。Fe(L1)Cl2(1), Fe2(L2)Cl4(2),Fe2(L3)Cl4·EtOH (3), Fe(L4)Cl2(4), Co(L1)Cl2·0.5EtOH (5), Co2(L2)Cl4(6), Co2(L3)Cl4·EtOH (7),Co(L5)Cl2(8),[CuI2(L2)Cl2]In(9),[CuII(L3)Cl][CuICl2]·2EtOH (10),[CuII4(L3)Cl5][Cu2Cl3·2(CuICl2)](11), Cu(L4)Cl·EtOH (12),[L4CuCl]+·[Cu-2-2Cl3](13),2[HL4CuCl]2+·2(CuCl2)-·[CuCl3]·2H2O (14)。这些配合物的结构可以通过调节起始原料的种类和原料比例来控制。这些合成最显著的特点是实现了将吡啶甲醛的醛基可控地分别转化成了酮、亚甲基、叔碳和季碳中心。
     2.我们研究了CuCl2·2H2O(或CuBr2·2H2O)和HPIP(HPIP=3-吡啶基咪唑并[1,5-a]吡啶)分别与甲醛、甲酸、N,N-二甲基甲酰胺(DMF)和乙二醛,在乙酸存在/不存在时的反应。我们发现在CuII存在下,HPIP和甲醛、甲酸、DMF和乙二醛分别反应可以得到以咪唑并[1,5-a]吡啶衍生物为配体的配合物。得到了六个结构新颖的配合物[L6Cu2Cl2][Cu2Cl4]·2EtOH (15),[L6Cu2Br2][Cu2Br4]·2EtOH (16),[(L7)2Cu3](CuCl2)3·2EtOH (17),2{[(L7)2Cu3](CuBr2)3}·EtOH (18),L8Cu2Cl2(19)和L8Cu2Br2(20)。并在研究其原位反应原理的过程中得到了[L6Co2Cl4]·2EtOH (21),[Co2(HPIP)2Cl4](22),[Cu2(HPIP)2Cu2Cl4](23)和L9ZnCl2(24)四种配合物和新配体L9的晶体。
     3.以2,6-吡啶二甲酸为配体,和稀土离子盐、SrCl2·6H2O或Sr(OH)2·8H2O反应,通过调节体系中咪唑的量,合成了21个配位聚合物:[Sr3(pydc)2(Hpydc)2(H2O)2]n·2nH2O (25),[Dy3Sr3(pydc)7(Hpydc)(H2O)9]·6H2O (26),[Ln2Sr3(pydc)6(H2O)18]·nH2O (Ln=Sm (27), Eu (28), n=11; Gd (29), n=16; Tb (30), Dy (31), n=13),[LnSr(pydc)3(H2O)5]·Him·H2O (Ln=Sm(32), Eu (33),Gd (34), Tb (35), Dy(36)),[Ln2Sr(pydc)6(H2O)5]·4Him·C2H5OH·nH2O (Ln=Sm(37), n=4; Eu (38), n=5; Gd (39), n=4; Dy(40) n=5),[LnSr(pydc)3(H2O)4]·Him·3H2O (Ln=Gd (41), Tb (42) Dy (43)),[GdSr(pydc)3(H2O)5]·Him·C2H5OH·3H2O (44)和[Sm2Sr2(pydc)5(H2O)9]·2H2O (45)。并研究了它们的荧光性质。
     4.以2,5-吡啶二甲酸为配体,合成了8个锶和锶-过渡金属的杂核配合物:[Sr(pydc)(H2O)]n(46),[CuSr(pydc)2(H2O)4]n(47),[CoSr(pydc)2(H2O)6]2n·H2O (48),[NiSr(pydc)2(H2O)4]n·3nH2O (49),[Sr(H2O)6]n·n[Ni(pydc)2(H2O)2]·2nH2O (50),[NiSr2(pydc)3(H2O)8]n·2nH2O (51),[ZnSr(pydc)2(H2O)5]n(52)[ZnSr2(pydc)3(H2O)10]n·2nH2O (53)。并且研究了配合物47、48和51的磁性,以及配合物46、52和53的荧光性质。
     5.以2,4-吡啶二甲酸为配体,合成了8个含SrII和SrII-MII(M=Co, Ni, Zn, Cu)的杂核配合物:[Sr(pydc)H2O]n(54),[MSr(pydc)2(H2O)2]n(M=Co (55), Ni (56), Zn (57)),[ZnSr(pydc)2(H2O)7]n·4nH2O (58),[SrCu(pydc)2]n(59),[SrCu(pydc)2(H2O)5]n(60)和[Cu3Sr2(pydc)4(Hpydc)2(H2O)2]n(61)。有趣的是,通过改变反应体系的温度,配合物59(三维网状结构)能可逆地转化为配合物60(一维链状结构)。我们研究了配合物54和57的荧光性质和配合物55、56、61的磁性。
     6.以2,3-吡啶二甲酸为配体,合成了五个三维网状的SrII-MII(M=Co, Ni, Zn, Cu)杂核配位聚合物:[MSr(pydc)2(H2O)2]n(M=Co (62), Ni (63)),[MSr2(pydc)3(H2O)4]n·2nH2O (M=Ni (64), Zn(65)),和[CuSr(pydc)2(H2O)3]n·2nH2O (66)。并研究了配合物62和63的磁性。
The coordination complexes supported by nitrogen-containing heterocyclic ligands have attractedintensive attention of coordination chemists due to their fascinating structures and broad applications asfunctional materials in fluorescence, catalysis, adsorption, and magnetism. Among a varieties ofnitrogen-containing heterocyclic compounds, imidazole, pyridine, pyrazole and pyrrole are favorableligands, owing to their variable structures, good biological activity and strong coordination ability. Inthis thesis, we report the synthesis of coordination complexes based on pyridine derivatives, and theirchemical and physical properties. A number of coordination complexes were prepared bymetal-mediated in situ metal/ligand reactions of3-pyridyl-imidazole[1,5-a] pyridine and differentaldehydes. The plausible mechanisms for these in situ metal/ligand reactions were proposed. In addition,a series of AE-Ln (AE=alkaline earth metal; Ln=lanthanide) heteronuclear complexes andAE-transition metal heteronuclear complexes were synthesized by employing four varieties of pyridinedicarboxylic acids as ligands. And their fluorescence and magnetic properties were studied. Theseresults were briefly described as follows:
     1. Under solvothermal conditions, a series of reactions of picolinaldehyde, ammonium acetate, andtransition-metal ions were conducted. Five new ligands,pyridin-2-yl(3-(pyridin-2-yl)imidazo[1,5-a]pyridine-1-yl)methanone (L1),1,2-di(pyridin-2-yl)-1,2-bis[3-(pyridin-2-yl)imidazo[1,5-a]pyridin-1-yl]ethane (L2),1,1’,1’’-(pyridin-2-ylmethanetriyl)-tris{3-(pyridin-2-yl)imidazo[1,5-a]pyridine}(L3),1,1’-(pyridin-2-ylmethylene)bis{3-(pyridin-2-yl)imidazo[1,5-a]pyridine}(L4), and3-(pyridine-2-yl)-1-(pyridin-2-ylmethyl)imidazo[1,5-a]pyridine (L5) and14novel coordinationcomplexes, Fe(L1)Cl2(1), Fe2(L2)Cl4(2), Fe2(L3)Cl4·EtOH (3), Fe(L4)Cl2(4), Co(L1)Cl2·0.5EtOH(5), Co2(L2)Cl4(6), Co2(L3)Cl4·EtOH (7), Co(L5)Cl2(8),[CuI2(L2)Cl2]n(9),[CuII(L3)Cl][CuICl2]·2EtOH (10),[CuIII4(L3)Cl5][Cu2Cl3·2(CuICl2)](11), Cu(L4)Cl·EtOH (12),[L4CuCl]+·[Cu---2Cl3](13),2[HL4CuCl]2+·2(CuCl2)·[CuCl3]2·2H2O (14) were generated via in situmetal-ligand reactions. The structures of these compounds could be controlled rationally via choosingappropriate starting materials and tuning the ratio of the starting materials. The most striking feature ofthe synthesis is that the controllable transformation of the aldehyde group of picolinaldehyde intoketone and secondary, tertiary, and quaternary carbon centers, respectively, has been realized.
     2. The reactions of CuCl2·2H2O (or CuBr2·2H2O),3-(pyridin-2-yl)imidazo[1,5-a]pyridine (HPIP)and formaldehyde, formic acid, N,N-dimethylformamide (DMF) and glyoxal, respectively, in theabsence/presence of acetic acid under solvothermal conditions were investigated. We found that theCuII-mediated multiple coupling of HPIP and formaldehyde, formic acid, DMF and glyoxal, respectively, where the three bonds of formaldehyde, formic acid, DMF and glyoxal were controllablycleaved, was a very efficient strategy for creating the coordination complexes based on the substitutedimidazo[1,5-a]pyridine. Six novel coordination complexes, namely,[L6Cu2Cl2][Cu2Cl4]·2EtOH (15),[L6Cu2Br2][Cu2Br4]·2EtOH (16),[(L7)2Cu3](CuCl2)3·2EtOH (17),2{[(L7)2Cu3](CuBr2)3}·EtOH (18),L8Cu2Cl2(19) and L8Cu2Br2(20)(L6=tetrakis(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-1-yl)methane,L7=tris(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-1-yl)methane, and L8=1,1,2,2-tetrakis(3-(pyridin-2-yl)-imidazo[1,5-a]pyridin-1-yl)ethane), were generated via in situ metal-ligand reactions. And during thestudy of the mechanism of the in situ meta-ligand reactions, four new complexes, namely,[L6Co2Cl4]·2EtOH (21),[Co2(HPIP)2Cl4](22),[Cu2(HPIP)2Cu2Cl4](23) and L9ZnCl2(24) and onenew ligand L9(bis(3-(pyridin-2-yl)imidazo[1,5-a]-pyridin-1-yl)methane) were generated.
     3. The reactions of pyridine-2,6-dicarboxylic acid (H2pydc), lanthanide salts and SrCl2·6H2O (orSr(OH)2·8H2O), result in21new complexes, namely,[Sr3(pydc)2(Hpydc)2(H2O)2]n·2nH2O (25),[Dy3Sr3(pydc)7(Hpydc)(H2O)9]·6H2O (26),[Ln2Sr3(pydc)6(H2O)18]·nH2O (Ln=Sm (27), Eu (28), n=11; Gd (29), n=16; Tb (30), Dy (31), n=13),[LnSr(pydc)3(H2O)5]·Him·H2O (Ln=Sm(32), Eu (33),Gd (34), Tb (35), Dy(36)),[Ln2Sr(pydc)6(H2O)5]·4Him·C2H5OH·nH2O (Ln=Sm(37), n=4; Eu (38), n=5; Gd (39), n=4; Dy(40) n=5),[LnSr(pydc)3(H2O)4]·Him·3H2O (Ln=Gd (41), Tb (42) Dy (43)),[GdSr(pydc)3(H2O)5]·Him·C2H5OH·3H2O (44)and [Sm2Sr2(pydc)5(H2O)9]·2H2O (45), by employingdifferent amount of imidazole (im) in the reaction system. Their fluorescence properties were studied.
     4. Eight novel SrIIand SrII-transition metal heteronuclear complexes of compositions,[Sr(pydc)(H2O)]n(46),[CuSr(pydc)2(H2O)4]n(47),[CoSr(pydc)2(H2O)6]2n·H2O (48),[NiSr(pydc)2(H2O)4]n·3nH2O (49),[Sr(H2O)6]n·n[Ni(pydc)2(H2O)2]·2nH2O (50),[NiSr2(pydc)3(H2O)8]n·2nH2O (51),[ZnSr(pydc)2(H2O)5]n(52)[ZnSr2(pydc)3(H2O)10]n·2nH2O (53),were afforded by employing pyridine-2,5-dicarboxylic acid as the ligand. The magnetic properties of47,48and51were studied, and the luminescent properties of46,52and53were investigated.
     5. The employment of pyridine-2,4-dicarboxylic acid (H2pydc) in the construction of SrIIandSrII-MII(M=Co, Ni, Zn and Cu) coordination polymers were reported. Eight complexes ofcompositions,[Sr(pydc)H2O]n(54),[MSr(pydc)2(H2O)2]n(M=Co (55), Ni (56), Zn (57)),[ZnSr(pydc)2(H2O)7]n·4nH2O (58),[SrCu(pydc)2]n(59),[SrCu(pydc)2(H2O)5]n(60) and[Cu3Sr2(pydc)4(Hpydc)2(H2O)2]n(61), have been synthesized. Interestingly, complex59(3-D network)can be reversibly transformed into60(1-D chain) by controlling the temperature of the reaction mixture.The luminescent properties of54and57were measured and the magnetic properties of55,56and61were investigated.
     6. Five new3D SrII-MII(M=Co, Ni, Zn, Cu) heterometal coordination polymers based onpyridine-2,3-dicarboxylic acid (H2pydc), namely,[MSr(pydc)2(H2O)2]n(M=Co (62), Ni (63)),[MSr2(pydc)3(H2O)4]n·2nH2O (M=Ni (64), Zn (65)),和[CuSr(pydc)2(H2O)3]n·2nH2O (66) have beensynthesized. The magnetic properties of complexes62and63have been investigated.
引文
[1] Wang, J.; Mason, R.; Van Derveer, D.; Feng, K.; Bu, X. R. Convenient preparation of a novel classof imidazo[1,5-a]pyridines: decisive role by ammonium acetate in chemoselectivity. J. Org. Chem.2003,68(13),5415-5418.
    [2] Wang, J.; Dyers, L., Jr.; Mason, R., Jr.; Amoyaw, P.; Bu, X. R. Highly efficient and directheterocyclization of dipyridyl ketone to N,N-bidentate ligands. J. Org. Chem.2005,70(6),2353-2356.
    [3] Yamaguchi, E.; Shibahara, F.; Murai, T. Direct sequential C3and C1arylation reaction ofimidazo[1,5-a]pyridine catalyzed by a1,10-phenanthroline–palladium complex. Chem. Lett.2011,40(9),939-940.
    [4] Mitra, K.; Biswas, S.; Chattopadhyay, S. K.; Lucas, C. R.; Adhikary, B. Synthesis and X-ray crystalstructures of two luminescent imidazopyridinium derivatives from the correspondingN-(aryl)-pyridine-2-aldimines. J. Chem. Crystallogr.2007,37(8),567-571.
    [5] Garino, C.; Ruiu, T.; Salassa, L.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I.Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containingpyridylimidazo[1,5-a]pyridine ligands. Eur. J. Inorg. Chem.2008,(23),3587-3591.
    [6] Barge, A.; Botta, M.; Casellato, U.; Tamburini, S.; Vigato, P. A. Selectivity of asymmetricmacrocyclic compartmental lanthanide(III) complexes towards alkali and alkaline-earth metal ions.Eur. J. Inorg. Chem.2005,(8),1492-1499.
    [7] Kim, D.; Wang, L.; Hale, J. J.; Lynch, C. L.; Budhu, R. J.; Maccoss, M.; Mills, S. G.; Malkowitz, L.;Gould, S. L.; DeMartino, J. A.; Springer, M. S.; Hazuda, D.; Miller, M.; Kessler, J.; Hrin, R. C.;Carver, G.; Carella, A.; Henry, K.; Lineberger, J.; Schleif, W. A.; Emini, E. A. Potent1,3,4-trisubstituted pyrrolidine CCR5receptor antagonists: effects of fused heterocycles onantiviral activity and pharmacokinetic properties. Bioorg. Med. Chem. Lett.2005,15(8),2129-2134.
    [8] Davey, D.; Erhardt, P. W.; Lumma, W. C.; Wiggins, J. J.; Sullivan, M.; Pang, D.; Cantor, E.Cardiotonic agents.1. Novel8-aryl-substituted imidazo[1,2-a]-and-[1,5-a]pyridines andimidazo[1,5-a]pyridinones as potential positive inotropic agents. J. Med. Chem.1987,30,1337-1342.
    [9] Brown, L. J.; Gude, C.; rODriguez, H.; Steele, R. E. Fadrozole hydrochloride: a potent, selective,nonsteroidal inhibitor of aromatase for the treatment of estrogen-dependent disease. J. Med. Chem.1991,34,725-736.
    [10] Ford, N. F.; Browne, L. J.; Campbell, T.; Gemenden, C.; Goldstein, R.; Gude, G.; Wasley, J. W. F.lmidazo[1,5-a]pyridines: a new class of thromboxane A2synthetase inhibitors. J. Med. Chem.1985,28,164-170.
    [11] Deacon, G. B.; Junk, P. C.; Leary, S. G. Novel Heterobimetallic neodymium/calcium8-quinolinolate complexes prepared directly from the metals. Z. Anorg. Allg. Chem.2004,630(11),1541-1543.
    [12] Bluhm, M. E.; Ciesielski, M.; G rls, H.; D ring, M. Copper-catalyzed oxidative heterocyclizationby atmospheric oxygen. Angew. Chem. Int. Ed.2002,41(16),2962-2965.
    [13] Chandler, B. D.; oté, Adrien P.; Cramb, D. T.; Hill, J. M.; Shimizu, G. K. H. A sponge-likeluminescent coordination framework via an Aufbau approach. Chem. Commun.2002,(17),1900-1901.
    [14] Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kynast, U.; Meyer, G.; Moore, J.; Sierau, J.; Urbatsch, A.Novel rare earth quinolinolate complexes. J. Alloys Compd.2008,451(1-2),436-439.
    [15] Guckian, A. L.; Doering, M.; Ciesielski, M.; Walter, O.; Hjelm, J.; O'Boyle, N. M.; Henry, W.;Browne, W. R.; McGarvey, J. J.; Vos, J. G. Assessment of intercomponent interaction in phenylenebridged dinuclear ruthenium(II) and osmium(II) polypyridyl complexes. Dalton Trans.2004,(23),3943-3949.
    [16] Salassa, L.; Garino, C.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I.Computational and spectroscopic studies of new rhenium(I) complexes containingpyridylimidazo[1,5-a]pyridine ligands: charge transfer and dual emission by fine-tuning of excitedstates. Organometallics2008,27(7),1427-1435.
    [17] Volpi, G.; Garino, C.; Salassa, L.; Fiedler, J.; Hardcastle, K. I.; Gobetto, R.; Nervi, C. Cationicheteroleptic cyclometalated iridium complexes with1-pyridylimidazo[1,5-]pyridine ligands:exploitation of an efficient intersystem crossing. Chem. Eur. J.2009,15(26),6415-6427.
    [18] Kundu, N.; Maity, M.; Chatterjee, P. B.; Teat, S. J.; Endo, A.; Chaudhury, M. Reporting a uniqueexample of electronic bistability observed in the form of valence tautomerism with a copper(II)helicate of a redox-active nitrogenous heterocyclic ligand. J. Am. Chem. Soc.2011,133(50),20104-20107.
    [19] Kundu, N.; Abtab, S. M. T.; Kundu, S.; Endo, A.; Teat, S. J.; Chaudhury, M. Triple-strandedhelicates of zinc(II) and cadmium(II) involving a new redox-active multiring nitrogenousheterocyclic ligand: synthesis, structure, and electrochemical and photophysical properties. Inorg.Chem.2012,51(4),2652-2661.
    [20] Kundu, N.; Bhattacharya, K.; Abtab, S. M. T.; Chaudhury, M.‘One-pot’ synthesis of multi-ringheteroaromatic compounds involving a pair of imidazo[1,5-a]pyridine moiety: reporting aninteresting bis-bidentate ligand capable of forming helicates. Tetrahedron Lett.2012,53(22),2719-2721.
    [21] Mukherjee, A.; Dhar, S.; Nethaji, M.; Chakravarty, A. R. Ternary iron(II) complex with an emissiveimidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity. DaltonTrans.2005,34(2),349-353.
    [22] Roy, M.; Chakravarthi, B. V. S. K.; Jayabaskaran, C.; Karande, A. A.; Chakravarty, A. R. Impact ofmetal binding on the antitumor activity and cellular imaging of a metal chelator cationicimidazopyridine derivative. Dalton Trans.2011,40(18),4855-4864.
    [23] Huq, F.; Abdullah, A.; Chowdhury, A.; Cheng, H.; Tayyem, H.; Beale, P. Studies on the synthesisand characterization, binding with DNA and activity of cis-bis{imidazo(1,2-a)-pyridine}-dichloroplatinum(II). Asian J. Chem.2006,18(3),1637-1648.
    [24] Wu, J.-J.; Cao, M.-L.; Ye, B.-H. Spontaneous chiral resolution of mer-[CoII(N,N,O-L3)2]enantiomers mediated by π-π interactions. Chem. Commun.2010,46(21),3687-3689.
    [25] Alvarez, C. M.; Alvarez-Miguel, L.; Garcia-Rodriguez, R.; Miguel, D. Complexes with3-(pyridin-2-yl)imidazo[1,5-a]pyridine ligands by spontaneous dimerization of pyridine-2-carbox-aldehyde within the coordination sphere of manganese(II) in a one-pot reaction. Dalton Trans.2012,41(23),7041-7046.
    [26] Harder, S. Intramolecular C-H activation in alkaline-earth metal complexes. Angew. Chem. Int. Ed.2003,42(29),3430-3434.
    [27] Zhang, X. F.; Deng, Z. P.; Huo, L. H.; Feng, Q. M.; Gao, S. Four alkali-induced3D strontium(II)coordination polymers constructed from imidazole-4,5-dicarboxylate: syntheses, crystal structures,and properties. Eur. J. Inorg. Chem.2012,(33),5506-5514.
    [28] Fromm, K. M.; Gueneau, E. D. Structures of alkali and alkaline earth metal clusters with oxygendonor ligands. Polyhedron2004,23(9),1479-1504.
    [29] Fromm, K. M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev.2008,252(8-9),856-885.
    [30] Cingi. M. B.; Lanfredi, A. M. M.; Triripicchio, A.; Tiripicchio Camellini, M. The crystal andmolecular structures of magnesium di-o-phthalatocuprate(II) dihydrate and strontiumdi-o-phthalatocuprate(II) trihydrate. Acta Cryst. B1978,34,406-411.
    [31] Beale, J. P.; Cunningham, J. A.; Philips, D. J. The crystal structure of the copper-magnesiumcomplex with the binucleating schiff base of ethylenediamine with3-formylsalycylic acid. Inorg.Chim. Acta1979,33,113-118.
    [32]陶偌偈;臧双全;于兆文过渡金属-碱土金属铜镁异双核配合物的合成、晶体结构和性质研究.无机化学学报2002,18(9),907-910.
    [33] Zasurskaya, L. A.; Polyakova, I. N.; Polynova, T. N.; Poznyak, A. L.; Sergienko, V. S. Crystalstructure of calcium trans-N-(nitrilotriacetato)(pyridine-2-carboxylato)cobaltate(III) hexahydrate,Ca[Co(Nta)(Pic)]2]·6H2O. Crystallography Reports2002,47(5),783-790.
    [34] Yang, Y.-Y.; Huang, Z.-Q.; Chen, X.-M.; Weng Ng, S. The [tetra(pyridinioacetato)copper]2+as atridentate chelate to alkaline-eearth metal cation: crystal structure of
    [Cu2Ca2(C5H5NCH2CO2)10(H2O)3](ClO4)8·H2O. Z. Anorg. Allg. Chem.2003,629(11),1901-1903.
    [35] Das, B.; Baruah, J. B. Coordinated cations in dipicolinato complexes of divalent metal ions. Inorg.Chim. Acta2010,363(7),1479-1487.
    [36] Li, R. F.; Liu, X. F.; Li, Y. N.; Zhang, T. Synthesis and crystal structure of one-dimensionalheterotrimetallic coordination polymer{[(Dipic)2Cu]4·{Mg(H2O)2Na4(H2O)14}n·nNa2(H2O)10·2nCH3OH. Russ. J. Coord. Chem.2011,37(7),541-546.
    [37] Zou, Y.; Liu, W.; Gao, S.; Xie, J.; Meng, Q.-J. A novel molecular ladder structure of Cu(II)-Ba(II)coordination polymer exhibiting ferromagnetic coupling. Chem. Commun.2003,(23),2946.
    [38] Liu, W.-L.; Zou, Y.; Lu, C.-S.; Dang, D.-B.; Li, Y.-Z.; Yao, Y.-G.; Meng, Q.-J. Self-assembly,structure and magnetic properties of carboxylate-bridged Cu(II)-M(II)(M=Mg, Ca, Sr, Ba)complexes with a new metalloligand as a building block. Polyhedron2004,23(13),2125-2134.
    [39] Kelly, N. R.; Goetz, S.; Batten, S. R.; Kruger, P. E. Coordination behaviour and network formationwith4,4’,6,6’-tetracarboxy-2,2’-bipyridine and4,4’-dicarboxy-2,2’-bipyridine ligands with rareand alkaline earth metals. CrystEngComm2008,10(1),68.
    [40]陶偌偈;李付安;臧双全;梅崇珍;牛景扬具有二维超分子结构的{[Ni(oxbe)]2Mg(H2O)2}·2DMF·DMA的合成及晶体结构.化学通报2005,33-36.
    [41] Mei, C.; Li, K.; Zhang, P. Poly[[tetra-aqua-bis(1H-imidazole-kappaN)bis-[2-(oxaloamino)-benzoato(3-)]dicopper(II)barium(II)] dihydrate]. Acta Cryst. E,2008,64, m356.
    [42] Mei, C.; Li, K.; Zhang, P. Triaqua-bis(1H-imidazole)bis-[mu(2)-2-(oxalo-amino)benzoato(3-)]dicopper(II)calcium(II) hepta-hydrate. Acta Cryst. E,2008,64, m278.
    [43] Guo, D.; Zhang, B. G.; Duan, C. Y.; Cao, X.; Meng, Q.-J. A novel ferrocene–barium sandwichsheet-shaped coordination polymer and its solid-state electrochemistry. Dalton Trans.2003,282-284.
    [44] Sen, S.; Choudhury, C. R.; Karan, N. K.; Datta, A.; Mitra, S.; Singh, R. K. B.; Gramlich, V. Onenovel polynuclear complex [Cu2(bpc)2(N3)4Ca(H2O)2Na2(H2O)2]nhaving three different transitionand non-transition metal centres. Inorg. Chem. Commun.2003,6(10),1311-1314.
    [45]苏扬;臧双全;倪春林;李一志;孟庆金过渡金属-碱土金属铜钙四核配合物Cu2Ca2L2(H2O)6·2H2O的合成和晶体结构.无机化学学报2004,20(7),845-848.
    [46] Courcot, B.; Firley, D.; Fraisse, B.; Becker, P.; Gillet, J. M.; Pattison, P.; Chernyshov, D.; Sghaier,M.; Zouhiri, F.; Desmaele, D.; Angelo, J.; Bonhomme, F.; Geiger, S.; Ghermani, N. E. Crystal andelectronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexesof the quinoline half of styrylquinoline-type HIV-1integrase inhibitors. J. Phys. Chem. B2007,111(21),6042-6050.
    [47] Cao, R.; Lü, J.; Batten, S. R. Copper5-sulfoisophthalato quasi-planar squares in coordinationpolymers modulated by alkaline-earth metals: a way to molecular squares? CrystEngComm2008,10(6),784-789.
    [48] Ma, L. F.; Wang, L. Y.; Huo, X. K.; Wang, Y. Y.; Fan, Y. T.; Wang, J. G.; Chen, S. H. Chain, pillar,layer, and different pores: a N-[(3-carboxyphenyl)-sulfonyllglycine ligand as a versatile buildingblock for the construction of coordination polymers. Cryst. Growth Des.2008,8(2),620-628.
    [49] Teo, P.; Koh, L. L.; Hor, T. S. Na+and Ca2+ion selective pyridylcarboxylate rings of Pd(II) andPt(II). Dalton Trans.2009,(29),5637-5646.
    [50] Ma, L.-F.; Li, B.; Sun, X.-Y.; Wang, L.-Y.; Fan, Y.-T. Hydrothermal syntheses and characterizationsof three ZnIIcoordination polymers tuned by pH value and base. Z. Anorg. Allg. Chem.2010,636(8),1606-1611.
    [51] Chen, Y. M.; Zheng, L. N.; She, S. S.; Chen, Z.; Hu, B.; Li, Y. H. Two novel heterometallicCu(II)-Sr(II) coordination polymers based on3,5-pyrazole dicarboxylic acid: synthesis, crystalstructures and magnetic properties. Dalton Trans.2011,40(18),4970-4975.
    [52] Lazarescu, A.; Shova, S.; Bartolome, J.; Alonso, P.; Arauzo, A.; Balu, A. M.; Simonov, Y. A.;Gdaniec, M.; Turta, C.; Filoti, G.; Luque, R. Heteronuclear (Co-Ca, Co-Ba)2,3-pyridinedicarboxylate complexes: synthesis, structure and physico-chemical properties. Dalton Trans.2011,40(2),463-471.
    [53] Kirillov, A. M.; Karabach, Y. Y.; Kirillova, M. V.; Haukka, M.; Pombeiro, A. J. L. Topologicallyunique2D heterometallic CuII/Mg coordination polymer: synthesis, structural features, andsatalytic use in alkane hydrocarboxylation. Cryst. Growth Des.2012,12(3),1069-1074.
    [54] Kong, X.-J.; Li, X.-Z.; Ren, S.; Zhu, L.-N. Syntheses, structures, and properties ofseven-coordinate calcium(II) and five-coordinate lead(II) complexes with1-D structures. J. Coord.Chem.2012,65(20),3641-3652.
    [55] Starynowicz, P. Structure of tetraaquahexadecakis(2-pyridinecarboxylato)tetraneodymium-dibarium-1l’6-Hydrate. Acta Cryst. C1991,4732-35.
    [56] Swarnabala, G.; Rajasekharan, M. V.[Ca(dipicH2)(OH2)3][Ce(dipic)3]·5H2O: A one-dimensionalcoordination polymer with alternating CeN3O6and CaNO7Polyhedra (dipicH2=pyridine-2,6-dicarboxylic Acid). Inorg. Chem.1998,371483-1485.
    [57] Prasad, T. K.; Rajasekharan, M. V. Inter-conversion of1-D coordination polymers in theCe-Sr-dipicH2system (dipicH2=dipicolinic acid). Inorg. Chem. Commun.2005,8(12),1116-1119.
    [58] Prasad, T. K.; Sailaja, S.; Rajasekharan, M. V.1-Dimensional and2-dimensional coordinationnetwork structures in the Ba-Ce-dipicH2system (dipicH2=dipicolinic acid). Polyhedron2005,24(12),1487-1496.
    [59] Li, M.; Yuan, L.; Li, H.; Sun, J. A3D heterometallic metal–organic framework constructed fromluminescent building blocks, exhibiting reversible dehydration and rehydration procedure. Inorg.Chem. Commun.2007,10(11),1281-1284.
    [60] Zhao, X.-Q.; Zuo, Y.; Gao, D.-L.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures, andluminescence properties of a series of LnIII-BaIIheterometal-organic frameworks. Cryst. GrowthDes.2009,9(9),3948-3957.
    [61] Shuai, Q.; Chen, S.; Geng, H.; Gao, S. A heteropolymetallic coordination polymer containingalkaline-earth (Ae) cation, lanthanide (Ln) cation and alkali (A) cation. Inorg. Chim. Acta2011,379(1),145-150.
    [62] Shi, F.; Deng, J.; Dai, H. Poly[[dodeca-aqua-bis-(mu(3)-pyridine-2,6-dicarboxyl-ato)tetra-kis-(μ2-pyridine-2,6-dicarboxyl-ato)tri-calciumdieuropium(III)]·10.5-hydrate]. Acta Cryst. E,2012,68,m685-686.
    [63] Turta, C.; Melnic, S.; Bettinelli, M.; Shova, S.; Benelli, C.; Speghini, A.; Caneschi, A.; Gdaniec, M.;Simonov, Y.; Prodius, D.; Mereacre, V. Synthesis, crystal structure, magnetic and luminescenceinvestigations of new2Ln3+-Sr2+heteronuclear polymers with2-furoic acid. Inorg. Chim. Acta2007,360(9),3047-3054.
    [64] Fang, M.; Chang, L.; Liu, X.; Zhao, B.; Zuo, Y.; Chen, Z. Fabrication and properties of eight novellanthanide-organic frameworks based on4-hydroxypyran-2,6-dicarboxylate and4-hydroxypyridine-2,6-dicarboxylate. Cryst. Growth Des.2009,9(9),4006-4016.
    [65] Fox, O. D.; Dalley, N. K.; Harrison, R. G. A metal-assembled, pH-dependent, resorcinarene-basedcage molecule. J. Am. Chem. Soc.1998,120(28),7111-7112.
    [66] Fox, O. D.; Dalley, N. K.; Harrison, R. G. Structure and small molecule binding of a tetranucleariron(II) resorc[4]arene-based cage complex. Inorg. Chem.1999,38(25),5860-5863.
    [67] Fox, O. D.; Leung, J. F. Y.; Hunter, J. M.; Dalley, N. K.; Harrison, R. G. Metal-assembled cobalt(II)resorc[4]arene-based cage molecules that reversibly capture organic molecules from water and actas NMR shift reagents. Inorg. Chem.2000,39(4),783-790.
    [68] Harrison, R. G.; Fox, O. D.; Meng, M. O.; Dalley, N. K.; Barbour, L. J. Cation control of pore andchannel size in cage-based metal-organic porous materials. Inorg. Chem.2002,41(4),838-843.
    [69] Harrison, R. G.; Dalley, N. K.; Nazarenko, A. Y. Metal-promoted assembly of organic-based cagesinto a porous material. Chem. Commun.2000,(15),1387-1388.
    [70] Saha, D.; Maity, T.; Dey, T.; Koner, S. One-dimensional chain copper(II) complex: Synthesis,X-ray crystal structure and catalytic activity in the epoxidation of styrene. Polyhedron2012,35(1),55-61.
    [71] Zurawski, A.; Rybak, J. C.; Meyer, L. V.; Matthes, P. R.; Stepanenko, V.; Dannenbauer, N.;Wurthner, F.; Muller-Buschbaum, K. Alkaline earth imidazolate coordination polymers byχ∞[AE(Im)2(ImH)2-3], Mg, Ca, Sr, Ba, χ=1-2. Dalton Trans.2012,41(14),4067-4078.
    [72] Hamilton, J. M.; Anhorn, M. J.; Oscarson, K. A.; Reibenspies, J. H.; Hancock, R. D. Complexationof metal ions, including alkali-earth and lanthanide(III) ions, in aqueous solution by the ligand2,2’,6’,2’’-terpyridyl. Inorg. Chem.2011,50(7),2764-2770.
    [73] Lin, X.; Doble, D. M.; Blake, A. J.; Harrison, A.; Wilson, C.; Schroder, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125(31),9476-9483.
    [74] Chandler, B. D.; Cramb, D. T.; Shimizu, G. K. H. Microporous metal-organic frameworks formedin a stepwise manner from luminescent building blocks. J. Am. Chem. Soc.2006,12810403-10412.
    [75] Evans, W. J.; Giarikos, D. G.; Greci, M. A.; Ziller, J. W. Direct synthesis of heterometalliceuropium/barium complexes: H2[Eui2Ba6O2(OPr)16(THF)4] and EuBa2(OC6H4Me-4)7(diglyme)2-(DME). Eur. J. Inorg. Chem.2002,453-456.
    [76] Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Urbatsch, A. Syntheses at elevated temperature andstructures of lanthanoid/alkaline earth heterobimetallic derivatives of2-methyl-8-hydroxyquinoline.Eur. J. Inorg. Chem.2010,(18),2787-2797.
    [77] Xu, Y.; Che, Y.-X.; Cheng, F.-Y.; Zheng, J.-M. Synthesis, structures, and adsorption properties oftwo new LaIII-MgIIheterometallic polymers. Eur. J. Inorg. Chem.2011,5299-5304.
    [78] Mishra, A.; Pushkar, Y.; Yano, J.; Yachandra, V. K.; Wernsdorfer, W.; Abboud, K. A.; George, C.Single-molecule magnetism properties of the first strontium-manganese cluster[SrMn14O11(OMe)3(O2CPh)18(MeCN)2]. Inorg. Chem.2008,47,1940-1948.
    [79]帅琪从单金属到混金属碱土芳香羧酸配合物的合成与结构[D]西安:西北大学,2008。
    [80]高延林《锶的利用与开发》[M].青海人民出版社1995。
    [1] Garino, C.; Ruiu, T.; Salassa, L.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I.Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containingpyridylimidazo[1,5-a]pyridine ligands. Eur. J. Inorg. Chem.2008,3587-3591.
    [2] Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernández, R.; Brown, J. M.; Lassaletta, J. M.Imidazo[1,5-a]pyridine: a versatile architecture for stable N-heterocyclic carbenes. J. Am. Chem.Soc.2005,127,3290-3291.
    [3] Roseblade, S. J.; Ros, A.; Monge, D.; Alcarazo, M.; álvarez, E.; Lassaletta, J. M.; Fernández, R.Imidazo[1,5-a]pyridin-3-ylidene/thioether mixed C/S ligands and complexes thereof.Organometallics2007,26,2570-2578.
    [4] Roy, M.; Chakravarthi, B. V. S. K.; Jayabaskaran, C.; Karande, A. A.; Chakravarty, A. R. Impact ofmetal binding on the antitumor activity and cellular imaging of a metal chelator cationicimidazopyridine derivative. Dalton Trans.2011,40,4855-4864.
    [5] Mukherjee, A.; Dhar, S.; Nethaji, M.; Chakravarty, A. R. Ternary iron(II) complex with an emissiveimidazopyridine arm from schiff base cyclizations and its oxidative DNA cleavage activity. DaltonTrans.2005,349-353.
    [6] Wu, J. J.; Cao, M. L.; Ye, B. H. Spontaneous chiral resolution of mer-[CoII(N,N,O-L3)2] enantiomersmediated by π–π interactions. Chem. Commun.2010,46,3687-3689.
    [7] Guckian, A. L.; D ring, M.; Ciesielski, M.; Walter, O.; Hjelm, J.; O’Boyle, N. M.; Henry, W.;Browne, W. R.; McGarvey, J. J.; Vos, J. G. Assessment of intercomponent interaction in phenylenebridged dinuclear ruthenium(II) and osmium(II) polypyridyl complexes. Dalton Trans.2004,3943-3949.
    [8] Bluhm, M. E.; Ciesielski, M.; G rls, H.; Walter, O.; D ring, M. Complexes of schiff bases andintermediates in the copper-catalyzed oxidative heterocyclization by atmospheric oxygen. Inorg.Chem.2003,42,8878-8885.
    [9] Ligtenbarg, A. G. J.; Spek, A. L.; Hage, R.; Feringa, B. L. Vanadium(V) complexes based on abis(pyridine)-imine ligand (HL); synthesis and crystal structure of a dioxovanadium(V) complexinvolving a ligand cyclisation. J. Chem. Soc., Dalton Trans.1999,659-662.
    [10] Bluhm, M. E.; Folli, C.; Pufky, D.; Kr ger, M.; Walter, O.; D ring, M.3-Aminoiminoacrylate,3-aminoacrylate, and3-amidoiminomalonate complexes as catalysts for the dimerization of olefins.Organometallics2005,24,4139-4152.
    [11] Ashauer, U.; Wolff, C.; Haller, R.1H-and13C-NMR-spektroskopische untersuchungen von3-arylsubstituierten2-azaindolizinen. Arch. Pharm.(Weinheim)1986,319,43-52.
    [12] Bower, J. D.; Ramage, C. R. The Carbohydrates of gramineae. V. The constitution of ahemicellulose of the endosperm of wheat (triticum vulgare). J. Chem. Soc.1955,2834-2837.
    [13] Winterfeld, K.; Franzke, H. Synthese von3-substituierten2-azaindolizin-abk mmlingen. Angew.Chem.1963,75,1101-1102.
    [14] Moulin, A.; Garcia, S.; Martinez, J.; Fehrentz, J. A. Synthesis of substitutedimidazo[1,5-a]pyridines starting from N-2-pyridylmethyl amides using the Lawesson’s reagent andmercury (II) acetate. Synthesis2007,17,2667-2673.
    [15] Shibahara, F.; Kiagawa, A.; Yamaguchi, E.; Murai, T. Synthesis of2-azaindolizines by using aniodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamidesand an investigation of their photophysical properties. Org. Lett.2006,8,5621-5624.
    [16] Tahara, S.; Shibahara, F.; Maruyama, T.; Murai, T. Iodine-mediated cyclization ofN-thioacyl-1-(2-pyridyl)-1,2-aminoalcohols and their subsequent condensation leading to theformation of novel bis(1-imidazo[1,5-a]pyridyl)arylmethanes. Chem. Commun.2009,7009-7011.
    [17] Bourdais, J.; Omar, A. M. E. Polycyclic azines. III. Synthesis of3-aminoimidazo[1,5-a]pyridinederivatives by cyclodesulfurization of N’-substituted-N-(2-pyridylmethyl)thioureas withdicyclohexylcarbodiimide. J. Heterocycl. Chem.1980,17,555-558.
    [18] Wang, J.; Dyers, L. Jr.; Mason, R. Jr., Amoyaw, P.; Bu, X. R. Highly efficient and directheterocyclization of dipyridyl ketone to N,N-bidentate ligands. J. Org. Chem.2005,70,2353-2356.
    [19] Wang, J.; Mason, R.; VanDerveer, D.; Feng, K.; Bu, X. R. Convenient preparation of a novel classof imidazo[1,5-a]pyridines: decisive role by ammonium acetate in chemoselectivity. J. Org. Chem.2003,68,5415-5418.
    [20] Chen, X. M.; Tong, M. L. Solvothermal in situ metal/ligand reactions: a new bridge betweencoordination chemistry and organic synthetic chemistry. Acc. Chem. Res.2007,40,162-170.
    [21] Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses. Coord. Chem. Rev.2005,249,1201-1219.
    [22] Zhao, H.; Qu, Z. R.; Ye, H. Y.; Xiong, R. G. In situ hydrothermal synthesis of tetrazole coordinationpolymers with interesting physical properties. Chem. Soc. Rev.2008,37,84-100.
    [23] Lu, J. Y.; Cabrera, B. R.; Wang, R. J.; Li. J. Chemical rearrangement under hydrothermalconditions: formation of polymeric chains (CuX)2(dpiz) and (CuX)3(dpiz)(X=Cl, Br; dpiz=dipyrido[1,2-a:2’,3’-d]imidazole) and crystal structures of [(CuCl)2(C10H7N3)] and
    [(CuBr)3(C10H7N3)]. Inorg. Chem.1998,37,4480-4481.
    [24] Debatin, F.; Thomas, A.; Kelling, A.; Hedin, N.; Bacsik, Z.; Senkovska, I.; Kaskel, S.; Junginger,M.; Müller, H.; Schilde, U.; J ger, C.; Friedrich, A.; Holdt, H. J. In situ synthesis of animidazolate-4-amide-5-imidate ligand and formation of a microporous zinc–organic frameworkwith H2-and CO2-storage ability. Angew. Chem. Int. Ed.2010,49,1258-1262.
    [25] Wang, M. S.; Guo, G. C.; Zou, W. Q.; Zhou, W. W.; Zhang, Z. J.; Xu, G.; Huang, J. S.Photochromism of a3D CdIIcomplex with two captured ligand isomers generated in situ from thesame precursor. Angew. Chem. Int. Ed.2008,47,3565-3567.
    [26] Wu, M. F.; Liu, Z. F.; Wang, S.-H.; Chen, J.; Xu, G.; Zheng, F. K.; Guo, G. C.; Huang, J. S.Structures and photoluminescence of zinc(II) coordination polymers based on in situ generated1H-tetrazolate-5-propionic acid ligands. CrystEngComm2011,13,6386-6392.
    [27] Dey, C.; Das, R.; Saha, B. K.; Poddar, P.; Banerjee, R. Design and in situ synthesis of a Cu-basedporous framework featuring isolated double chain magnetic character. Chem. Commun.2011,47,11008-11010.
    [28] Yong, G. P.; Qiao, S.; Wang, Z. Y. A one-dimensional coordination polymer based on novel radicalanion ligand generated in situ: notable magnetic and luminescence properties. Cryst. Growth Des.2008,8,1465-1467.
    [29] Rowland, C. E.; Cahill, C. L. Hydrothermal synthesis of uranyl squarates and squarate-oxalates:hydrolysis trends and in situ oxalate formation. Inorg. Chem.2010,49,6716-6724.
    [30] Bernini, M. C.; Snejko, N.; Gutierrez-Puebla, E.; Brusau, E. V.; Narda, G. E.; Monge, M.Structure-directing and template roles of aromatic molecules in the self-assembly formationprocess of3D holmium–succinate MOFs. Inorg. Chem.2011,50,5958-5968.
    [31] Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic investigations of porphyrin syntheses. I.preliminary studies on ms-tetraphenylporphin. J. Am. Chem. Soc.1964,86,3145-3149.
    [32] Wilams, D. R.; Heidebrecht, R. W. Jr. Total synthesis of (+)-4,5-deoxyneodolabelline. J. Am. Chem.Soc.2003,125,1843-1850.
    [33] Kataoka,Y.; Akiyama, H.; Makihira, I.; Tani, K. Anovel C C single-bond formation accompanyingC O bond cleavage by use of a ketone, an alkylating reagent, and a low-valent vanadium complexin the presence of a catalytic amount of molecular oxygen. J. Org. Chem.1997,62,8109-8113.
    [34] Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric total synthesis of apentacyclic lycopodium alkaloid: huperzine-Q. Angew. Chem. Int. Ed.2011,50,8025-8028.
    [35] Snyder, S. A.; Sherwood, T. C.; Ross, A. G. Total syntheses of dalesconol A and B. Angew. Chem.Int. Ed.2011,49,5146-5150.
    [36] Shimokawa, J.; Harada, T.; Yokoshima, S.; Fukuyama, T. Total synthesis of gelsemoxonine. J. Am.Chem. Soc.2011,133,17634-17637.
    [37] Schnermann, M. J.; Overman, L. E. Enantioselective total synthesis of aplyviolene. J. Am. Chem.Soc.2011,133,16425-16427.
    [38] Fischer, M.; V gtle, F. Dendrimers: from design to application-a progress report. Angew. Chem. Int.Ed.1999,38,884-905.
    [39] Trost, B. M.; Jiang, C. H. The simple vs. reformed conditional analysis of dispositions. Synthesis2006,148(2),369-379.
    [40] Fuji, K. Asymmetric creation of quaternary carbon centers. Chem. Rev.1993,93,2037-2066.
    [41] Olah, G. A.; Rasul, G.; York, C.; Prakash, G. K. S. Superacid-catalyzed condensation ofbenzaldehyde with benzene. study of protonated benzaldehydes and the role of superelectrophilicactivation. J. Am. Chem. Soc.1995,117,11211-11214.
    [42] Sheldrick, G. M. SHELXS-97, Program for crystal structure solution, University of G ttingen,Germany,1997.
    [43] Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures from diffractiondata, University of G ttingen, Germany,1997.
    [1] Roy, M.; Chakravarthi, B. V. S. K.; Jayabaskaran, C.; Karande, A. A.; Chakravarty, A. R. Impactof metal binding on the antitumor activity and cellular imaging of a metal chelator cationicimidazopyridine derivative. Dalton Trans.2011,40,4855-4864.
    [2] Mukherjee, A.; Dhar, S.; Nethaji, M.; Chakravarty, A. R. Ternary iron(II) complex with anemissive imidazopyridine arm from schiff base cyclizations and its oxidative DNA cleavageactivity. Dalton Trans.2005,349-353.
    [3] Garino, C.; Ruiu, T.; Salassa, L.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I.Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containingpyridylimidazo[1,5-a]pyridine ligands. Eur. J. Inorg. Chem.2008,3587-3591.
    [4] Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernández, R.; Brown, J. M.; Lassaletta, J. M.Imidazo[1,5-a]pyridine: a versatile architecture for stable N-heterocyclic carbenes. J. Am. Chem.Soc.2005,127,3290-3291.
    [5] Roseblade, S. J.; Ros, A.; Monge, D.; Alcarazo, M.; álvarez, E.; Lassaletta, J. M.; Fernández, R.Imidazo[1,5-a]pyridin-3-ylidene/thioether mixed C/S ligands and complexes thereof.Organometallics2007,26,2570-2578.
    [6] Tahara, S.; Shibahara, F.; Maruyama, T.; Murai, T. Iodine-mediated cyclization ofN-thioacyl-1-(2-pyridyl)-1,2-aminoalcohols and their subsequent condensation leading to theformation of novel bis(1-imidazo[1,5-a]pyridyl)arylmethanes. Chem. Commun.2009,7009-7011.
    [7] Moulin, A.; Garcia, S.; Martinez, J.; Fehrentz, J. A. Synthesis of substituted imidazo[1,5-a]pyridinesstarting from N-2-pyridylmethyl amides using the Lawesson’s reagent and mercury (II) acetate.Synthesis2007,17,2667-2673.
    [8] Shibahara, F.; Kiagawa, A.; Yamaguchi, E.; Murai, T. Synthesis of2-azaindolizines by using aniodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamidesand an investigation of their photophysical properties. Org. Lett.2006,8,5621-5624.
    [9] Bourdais, J.; Omar, A. M. E. Polycyclic azines. III. Synthesis of3-aminoimidazo[1,5-a]pyridinederivatives by cyclodesulfurization of N’-substituted-N-(2-pyridylmethyl)thioureas withdicyclohexylcarbodiimide. J. Heterocycl. Chem.1980,17,555-558.
    [10] Bower, J. D.; Ramage, C. R. The constitution of a hemicellulose of the endosperm of wheat(triticum vulgare). J. Chem. Soc.1955,2834-2837.
    [11] Winterfeld, K.; Franzke, H. Synthese von3-substituierten2-azaindolizin-abk mmlingen. Angew.Chem.1963,75,1101-1102.
    [12] Chen, Y. M.; Li, L.; Chen, Z.; Liu, Y. L.; Hu, H. L.; Chen, W. Q.; Liu, W.; Li, Y. H.; Lei, T.; Cao,Y. Y.; Kang, Z. H.; Lin, M. S.; Li, W. Metal-mediated controllable creation of secondary-, tertiary-and quaternary-carbon centers: a powerful strategy for synthesis of iron, cobalt and coppercomplexes with in situ generated substituted1-pyridineimidazo-[1,5-a]pyridine ligands. Inorg.Chem.2012,51,9705-9713.
    [13] Niyomura, O.; Yamaguchi, Y.; Tamura, S.; Minoura, M.; Okamoto, Y. Reaction of2-(aminomethyl)pyridine with selenium dioxide: synthesis and structure of selenium-bridgedimidazo[1,5-a]pyridine derivatives. Chem. Lett.2011,40,449-451.
    [14] Sheldrick, G. M. SHELXS-97, Program for crystal structure solution, University of G ttingen,Germany,1997.
    [15] Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures from diffractiondata, University of G ttingen, Germany,1997.
    [16]童少平,臧兴杰,马淳安。催化臭氧化降解技术中的两个问题,环境工程学报2008,2,19-22.
    [17] Branka, S. S.; Jasenka, P..; Volker, M.; Nevenka, K. Free radical-scavenging activity and DNAdamaging potential of auxins IAA and2-methyl-IAA evaluated in human neutrophils by thealkaline comet assay. J. Biochem. Mol. Toxicology2010,24,165-173.
    [18] Adler, A. D.; Longo, F. R.; Shergalis, W. Mechanistic investigations of porphyrin syntheses. I.preliminary studies on ms-tetraphenylporphin. J. Am. Chem. Soc.1964,86,3145-3149.
    [19] Wilams, D. R.; Heidebrecht, R. W. Jr. Total synthesis of (+)-4,5-deoxyneodolabelline. J. Am.Chem. Soc.2003,125,1843-1850.
    [20] Kataoka, Y.; Akiyama, H.; Makihira, I.; Tani, K. A novel C C single-bond formationaccompanying C O bond cleavage by use of a ketone, an alkylating reagent, and a low-valentvanadium complex in the presence of a catalytic amount of molecular oxygen. J. Org. Chem.1997,62,8109-8113.
    [21] Wang, S.; Oldham, W. J. Jr.; Hudack, R. A. Jr.; Bazan, G. C. Synthesis, morphology, and opticalproperties of tetrahedral oligo(phenylenevinylene) materials. J. Am. Chem. Soc.2000,122,5695-5709.
    [22] Simard, M.; Su, D.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation.Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc.1991,113,4696-4698.
    [23] Desiraju, G. R. Designer crystals: intermolecular interactions, network structures andsupramolecular synthons. Chem. Commun.1997,1475-1482.
    [24] MacNicol, D. D.; Toda, F.; Bishop, R. Comprehensive Supramolecular Chemistry[B] Pergamon:New York,1996.
    [25] Desiraju, G. R. Crystal Engineering[B] Elsevier: New York, Amsterdam,1989.
    [26] Wilson, L. M.; Grffin, A. C. Synthesis of molecular ‘jacks’: rigid tetrahedral molecules withp-phenylene arms. J. Mater. Chem.1993,3,991-994.
    [27] Sengupta, S.; Sadhukhan, S. K. Fourfold heck reactions on the tetraphenylmethane tripod: Modelstudies towards construction of centrally based three dimensional networks. Tetrahedron Lett.1998,39,1237-1238.
    [28] Zhao, H.; Tanjutco, C.; Thayumanavan, S. Design and synthesis of stable triarylamines forhole-transport applications. Tetrahedron Lett.2001,42,4421-4424.
    [29] Robinson, M. R.; Wang, S.; Bazan, G. C.; Cao, Y. Electroluminescence from well-definedtetrahedral oligophenylenevinylene tetramers. Adv. Mater.2000,12,1701-1704.
    [30] Hawker, C. J.; Fréchet, J. M. J. Preparation of polymers with controlled molecular architecture. Anew convergent approach to dendritic macromolecules. J. Am. Chem. Soc.1990,112,7638-7647.
    [31] Schwab, P. F. H.; Levin, M. D.; Michl, J. Molecular rods.1. simple axial rods. Chem. Rev.1999,99,1863-1934.
    [32] Gurvinder, S. J.; Donald, J.; McKenney, D. L.; Singleton, G. P.; Alain, R. B. Rates of hydroxylradical reactions. part14. rate constant and mechanism for the reaction of hydroxyl radical withformic acid. J. Phys. Chem.1986,90,6557-6562.
    [33] Silva, G. da Hydroxyl radical regeneration in the photochemical oxidation of glyoxal: kinetics andmechanism of the HC(O)CO+O2reaction. Phys. Chem. Chem. Phys.2010,12,6698-6705.
    [34] Salter, R. J.; Blitz, M. A.; Heard, D. E.; Pilling, M. J.; Seakins, P. W. New chemical source of theHCO radical following photoexcitation of glyoxal,(HCO)2. J. Phys. Chem. A2009,113,8278-8285.
    [35] Feierabend, K. J.; Flad, J. E.; Brown, S. S.; Burkholder, J. B. HCO quantum yields in thephotolysis of HC(O)C(O)H (glyoxal) between290and420nm. J. Phys. Chem. A2009,113,7784-7794.
    [36] Muzart, J. N,N-Dimethylformamide: much more than a solvent. Tetrahedron2009,65,8313-8323.
    [1] Choppin, G. R.; Peterman, D. R. Applications of lanthanide luminescence spectroscopy to solutionstudies of coordination chemistry. Coord. Chem. Rev.1998,174,283-299.
    [2] Bettencourt-Dias, A. De, Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans.2007,36,2229-2241.
    [3] Hebbink, G. A.; Stouwdam, J. W.; Reinhoudt, D. N.; Van Veggel, F. C. J. M. Lanthanide(III)-dopednanoparticles that emit in the near-infrared. Adv. Mater.2002,14,1147–1150.
    [4] Horrocks, Jr. W. D.; Sudnick, D. R. Lanthanide ion luminescence probes of the structure ofbiological macromolecules. Acc. Chem. Res.1981,14,384–392.
    [5] Sculimbrene B. R.; Imperiali, B. Lanthanide-binding tags as luminescent probes for studying proteininteractions. J. Am. Chem. Soc.2006,128,7346–7352.
    [6] Livramento, J. B.; Toth, E.; Sour, A.; Borel, A.; Merbach, A. E.; Ruloff, R. High relaxivity confinedto a small molecular space: a metallostar-nased, potential MRI contrast agent. Angew. Chem., Int.Ed.2005,44,1480-1484.
    [7] Benmelouka, M.; Van Tol, J.; Borel, A.; Port, M.; Helm, L.; Brunel L. C.; Merbach, A. E. A high-frequencyEPR study of frozen solutions of GdIIIcomplexes: straightforward determination of the zero-field splittingparameters and simulation of the NMRD profiles. J. Am. Chem. Soc.2006,128,7807-7816.
    [8] Rocha, J.; Carlos, L. D.; Paz, F. A.; Ananias, D. Luminescent multifunctional lanthanides-basedmetal-organic frameworks. Chem. Soc. Rev.2011,40,926-940.
    [9] Edelmann, F. T. Lanthanide amidinates and guanidinates in catalysis and materials science: acontinuing success story. Chem. Soc. Rev.2012,41,7657-7672.
    [10] Eliseeva, S. V.; Bunzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences.Chem. Soc. Rev.2010,39,189-227.
    [11] H ller, C. J.; Mai, M.; Feldmann, C.; Müller-Buschbaum, K. The interaction of rare earth chlorideswith4,4’-bipyridine for the reversible formation of template based luminescent Ln-N-MOFs. J.Chem. Soc., Dalton Trans.2010,39,461-468.
    [12] Mao, J. G. Structures and luminescent properties of lanthanide phosphonates. Coord. Chem. Rev.2007,251,1493-1520.
    [13] Li, J. R.; Bu, X. H.; Zhang, R. H. Novel lanthanide coordination polymers with a flexibledisulfoxide ligand,1,2-bis(ethylsulfinyl)ethane: structures, stereochemistry, and the influences ofcounteranions on the framework formations. Inorg. Chem.2004,43,237-244.
    [14] Bu, X. H.; Weng, W.; Li, J. R.; Chen, W.; Zhang, R. H. Novel five-connectedlanthanide(III) bis(sulfinyl) coordination polymers forming a unique two-dimensional (3/4,5)network. Inorg. Chem.2002,41,413-415.
    [15] Hamilton, J. M.; Anhorn, M. J.; Oscarson, K. A.; Reibenspies, J. H.; Hancock, R. D. Complexationof metal ions, including alkali-earth and lanthanide(III) ions, in Aqueous Solution by the Ligand2,2’,6’,2’’-Terpyridyl. Inorg. Chem.2011,50,2764-2770.
    [16] Deacon, G. B.; Junk, P. C.; Moxey, G. J.; Ruhlandt-Senge, K.; St Prix, C.; Zuniga, M. F.Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare eartharyloxo complexes featuring intramolecular metal-π-arene interactions. Chem. Eur. J.2009,15,5503-5519.
    [17] Turta, C.; Melnic, S.; Bettinelli, M.; Shova, S.; Benelli, C.; Speghini, A.; Caneschi, A.; Gdaniec,M.; Simonov, Y.; Prodius, D.; Mereacre, V. Synthesis, crystal structure, magnetic andluminescence investigations of new2Ln3+-Sr2+heteronuclear polymers with2-furoic acid. Inorg.Chim. Acta2007,360,3047-3054.
    [18] Lin, X.; Doble, D. M.; Blake, A. J.; Harrison, A.; Wilson, C.; Schr der, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125,9476-9483.
    [19] Chandler, B. D.; Cramb, D. T.; Shimizu, G. K. H. Microporous metal-organic frameworks formedin a stepwise manner from luminescent building blocks. J. Am. Chem. Soc.2006,128,10403-10412.
    [20] Evans, W. J.; Giarikos, D. G.; Greci, M. A.; Ziller, J. W. Direct synthesis of heterometalliceuropium/barium complexes: Hi2[Eu2Ba6O2(OPr)16(THF)4] and EuBa2(OC6H4Me-4)7(diglyme)2-(DME). Eur. J. Inorg. Chem.2002,453-456.
    [21] Zhu, T.; Ikarashi, K.; Ishigaki, T.; Uematsu, K.; Toda, K.; Okawa, H.; Sato, M. Structure andluminescence of sodium and lanthanide(III) coordination polymers with pyridine-2,6-dicarboxylicacid. Inorg. Chim. Acta2009,362,3407-3414.
    [22] Zhao, X. Q.; Zuo, Y.; Gao, D. L.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures, andluminescence properties of a Sseries of LnIII-BaIIheterometal-organic frameworks. Cryst. GrowthDes.2009,9,3948-3957.
    [23] Chandler, B. D.; oté, A. P.; Cramb, D. T.; Hill, J. M.; Shimizu, G. K. H. A sponge-likeluminescent coordination framework via an Aufbau approach. Chem. Commun.2002,1900-1901.
    [24] Zurawski, A.; Rybak, J. C.; Meyer, L. V.; Matthes, P. R.; Stepanenko, V.; Dannenbauer, N.;Wurthner, F.; Müller-Buschbaum, K. Alkaline earth imidazolate coordination polymers by solventfree melt synthesis as potential host lattices for rare earth photoluminescence:x∞[AE(Im)2(ImH)2-3],Mg, Ca, Sr, Ba, x=1-2. Dalton Trans.2012,41,4067-4078.
    [25] Chen, Y. M.; Zheng, L. N.; She, S. X.; Chen, Z.; Hu, B., Li, Y. H. Two novel heterometallicCuII-SrII coordination polymers based on3,5-pyrazoledicarboxylic acid: synthesis, crystalstructures and magnetic properties. Dalton Trans.2011,40,4970-4975.
    [26] Chen, Y. M.; She, S. X.; Zheng, L. N.; Hu, B.; Chen, W. Q.; Xu, B.; Chen, Z.; Zhou, F. Y.; Li, Y.H. Heteronuclear M(II)–Ln(III)(M=Co, Mn; Ln=La, Pr, Sm, Gd, Dy and Er) coordinationpolymers: synthesis, structures and magnetic properties. Polyhedron2011,30,3010-3016.
    [27] Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev.2005,34,1048-1077.
    [28] Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev.2010,110,2729-2755.
    [29] Cai, S. L.; Zheng, S. R.; Wen, J. F.; Zhang, W. G. Construction of luminescent three-dimensionalLn(III)-Zn(II) heterometallic coordination polymers based on2-pyridyl Imidazole dicarboxylate.CrystEngComm2012,14,8236-8243.
    [30] Zhao, X. Q.; Cui, P.; Zhao, B.; Shi, W.; Cheng, P. Investigation on structures, luminescent andmagnetic properties of LnIII–M (M=FeIIIIHS, Co) coordination polymers. Dalton Trans.2011,40,805-819.
    [31] Zhao, B.; Gao, H. L.; Chen, X. Y.; Cheng, P.; Shi, W.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Apromising MgII-ion-selective luminescent probe: structures and properties of Dy-Mn polymers withhigh symmetry. Chem. Eur. J.2006,12,149-158.
    [32] Huang, Y. G.; Yuan, D. Q.; Gong, Y. Q.; Jiang, F. L.; Hong, M. C. Synthesis, structure andluminescent properties of lanthanide–organic frameworks based on pyridine-2,6-dicarboxylic acid.J. Mol. Struct.2008,872,99-104.
    [33] Mays, H.; Ilgenfritz. G. Intercluster exchange rates in AOT water-in-oil microemulsions:percolation, material transport mechanism and activation energy. J. Chem. Soc., Faraday Trans.1996,92,3145-3150.
    [34] Decadt, R.; Van Hecke, K.; Depla, D.; Leus, K.; Weinberger, D.; Van Driessche, I.; Van Der Voort,P.; Van Deun, R. Synthesis, crystal structures, and luminescence properties of carboxylate basedrare-earth coordination polymers. Inorg. Chem.2012,51,11623-11634.
    [35] Sheldrick, G. M. SHELXS-97, Program for the solution of crystal structures, University ofGottingen, Gottingen, Germany,1997.
    [36] Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures, University ofGottingen, Gottingen, Germany,1997.
    [37] Palmer, K. J.; Wong, R. Y.; Lewis, J. C. The crystal structure of strontium dipicolinate tetrahydrate,SrC7H3NO4.4H2O. Acta Crystallogr. Sect. B1972,28,223-228;
    [38] Prasad, T. K.; Rajasekharan, M. V. Inter-conversion of1-D coordination polymers in theCe-Sr-dipicH2system (dipicH2=dipicolinic acid). Inorg. Chem. Commun.2005,8,1116-1119.
    [39] Guo, X. F.; Feng, M. L.; Xie, Z. L.; Li, J. R.; Huang, X. Y. The first examples of lanthanideselenite-carboxylate compounds: syntheses, crystal structures and properties. Dalton Trans.2008,3101–3106.
    [40] Li, S. Z.; Zhang, D. D.; Guo, Y. Y.; Ma, P. T.; Zhao, J. W.; Wang, J. P.; Niu, J. Y. A series of3Drare-earth-metal-organic frameworks with isolated guest feggin dilicotungstate gragments as sniontemplates. Eur. J. Inorg. Chem.2011,5397-5404.
    [41] Wu, W. P.; Wang, Y. Y.; Wang, C. J.; Wu, Y. P.; Liu, P.; Shi, Q. Z. Structural characterization andluminescence behavior of a2D silver (I) coordination polymer assembled frompyridine-2,6-dicarboxylic acid N-oxide. Inorg. Chem. Commun.2006,9,645–648.
    [42] Hu, F. L.; Yin, X. H.; Lu, J.; Mi, Y.; Zhuang, J. C.; Luo, W. Q. Crystal structure, bioactivities, andelectrochemistry properties of four diverse complexes with a new pyrazole ligand. J. Coord. Chem.2010,63,263–272.
    [43] Zhou, W. L.; Xu, Y.; Han, L. J.; Zhu, D. R. Solvothermal syntheses, crystal structures andlumnescence properties of three new lanthanide sulfate fluorides. Dalton Trans.2010,39,3681-3686.
    [44] Zhang, D.; Zheng, L.; Qiu, X. M.; Xu, Y.; Fu, J.; Zhu, D. R. Structural systematic design oforganic templated samarium sulfates and their luminescence property. RSC Adv.2012,2,217-225.
    [45] Yi, X. Y.; Gu, Z. G.; Wang, M. F.; Jia, H. Y.; Peng, H. M.; Ying, Y.; Gong, X.; Li, W. S.; Sun, F.Q.; Cai, Y. P. Construction of one2D samarium-organic framework based on2,4’-biphenyldicarboxylate. Inorg. Chem. Commun.2011,14,458-462.
    [46] Bag, P.; Dutta, S.; Biswas, P.; Maji, S. K.; Florke, U.; Nag, K. Fixation of carbon dioxide bymacrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimericcarbonato-bridged compounds with μ3-η2:η2:η2bonding. Dalton Trans.2012,41,3414-3423.
    [47] Chen, X. Y.; Liu, G. K. The standard and anomalous crystal-field spectra of Eu3+. J. Solid StateChem.2005,178,419–428.
    [48] Pavithran, R.; Saleesh Kumar, N. S.; Biju, S.; Reddy, M. L. P.; Alves, Jr S.; Freire, R. O.3-Phenyl-4-benzoyl-5-isoxazolonate complex of Eu3+with trinoctylphosphine oxide as a promisinglight-conversion molecular device. Inorg. Chem.2006,45,2184-2192.
    [49] Pavithran, R.; Reddy, M. L. P.; Alves Jr, S.; Freire, R. O.; Rocha, G. B.; Lima, P. P. Synthesis andluminescent properties of novel europium(III) heterocyclic β-diketone complexes with lewis bases:structural analysis using the sparkle/AM1model. Eur. J. Inorg. Chem.2005,20,4129-4137.
    [50] Shi, M.; Li, F.; Yi, T.; Zhang, D.; Hu, H.; Huang, C. Tuning the Triplet Energy Levels ofPyrazolone Ligands to Match the5D0Level of Europium(III). Inorg. Chem.2005,44,8929-8936.
    [1] Fromm, K. M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev.2008,252(8-9),856-885.
    [2] Zhao, X. Q.; Zuo, Y.; Gao, D. L.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures andluminescence properties of a series of LnIII BaIIheterometal-organic frameworks. Cryst. GrowthDes.2009,9(9),3948-3957.
    [3] Zurawski, A.; Rybak, J. C.; Meyer, L. V.; Matthes, P. R.; Stepanenko, V.; Dannenbauer, N.; Wurthner,F.; Muller-Buschbaum, K. Alkaline earth imidazolate coordination polymers by solvent free meltsynthesis as potential host lattices for rare earth photoluminescence:x∞[AE(Im)2(ImH)2-3],(Mg, Ca,Sr, Ba, x=1-2). Dalton Trans.2012,41,(14),4067-4078.
    [4] Hamilton, J. M.; Anhorn, M. J.; Oscarson, K. A.; Reibenspies, J. H.; Hancock, R. D. Complexationof metal ions, including alkali-earth and lanthanide(III) ions, in aqueous solution by the ligand2,2',6',2''-terpyridyl. Inorg. Chem.2011,50(7),2764-2770.
    [5] Lin, X.; Doble, D. M.; Blake, A. J.; Harrison, A.; Wilson, C.; Schroder, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125(31),9476-83.
    [6] Chandler, B. D.; Cramb, D. T.; Shimizu, G. K. H. Microporous metal-organic frameworks formed ina stepwise manner from luminescent building blocks. J. Am. Chem. Soc.2006,128,10403-10412.
    [7] Evans, W. J.; Giarikos, D. G.; Greci, M. A.; Ziller, J. W., Direct synthesis of heterometalliceuropium/barium complexes: H2[Eu2Ba6O2(OiPr)16(THF)4] and EuBa2(OC6H4Me-4)7(diglyme)2-(DME). Eur. J. Inorg. Chem.2002,453-456.
    [8] Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Urbatsch, A., Syntheses at elevated temperature andstructures of lanthanoid/alkaline earth heterobimetallic derivatives of2-methyl-8-hydroxyquinoline.Eur. J. Inorg. Chem.2010,(18),2787-2797.
    [9] Chandler, B. D.; oté, Adrien P.; Cramb, D. T.; Hill, J. M.; Shimizu, G. K. H. A sponge-likeluminescent coordination framework via an aufbau approach electronic supplementary information(ESI) available: characterisation data. Chem. Commun.2002,(17),1900-1901.
    [10] Xu, Y.; Che, Y. X.; Cheng, F. Y.; Zheng, J. M. Synthesis, structures, and adsorption properties oftwo new LaIII-MgIIheterometallic polymers. Eur. J. Inorg. Chem.2011,5299-5304.
    [11] Swarnabala, G.; Rajasekharan, M. V.,[Ca(dipicH2)(OH2)3][Ce(dipic)3]5H2O: A one-dimensionalcoordination polymer with alternating CeN3O6and CaNO7polyhedra (dipicH2)pyridine-2,6-dicarboxylic acid. Inorg. Chem.1998,37,1483-1485.
    [12] Barge, A.; Botta, M.; Casellato, U.; Tamburini, S.; Vigato, P. A. Selectivity of asymmetricmacrocyclic compartmental lanthanide(III) complexes towards alkali and alkaline-earth metal ions.Eur. J. Inorg. Chem.2005,(8),1492-1499.
    [13] Li, M.; Yuan, L.; Li, H.; Sun, J. A3D heterometallic metal-organic framework constructed fromluminescent building blocks, exhibiting reversible dehydration and rehydration procedure. Inorg.Chem. Commun.2007,10(11),1281-1284.
    [14] Zhang, X.; Huang, Y. Y.; Cheng, J. K.; Yao, Y. G.; Zhang, J.; Wang, F. Alkaline earth metal iondoped Zn(II)-terephthalates. CrystEngComm2012,14,4843-4849.
    [15] Lin, X.; Doble, D. M. J.; Blake, A. J.; Harrison, A.; Wilson, C.; Schr der, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125,9476-9483.
    [16] Zhang, C. X.; Zhang, Y.; Yang, Y. Synthesis, characterization and crystal structure of a novelthree-dimensional supramolecular architecture formed by manganese(II) andpyridine-2,5-dicarboxylic acid. J. Coord. Chem.2006,59(4),389-393.
    [17] Liang, Y.; Cao, R.; Su, W.; Hong, M.-C.; Zhang, W. Syntheses, structures, and magnetic porpertiesof two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction. Angew. Chem.Int. Ed.2000,39(18),3304-3307.
    [18] Wibowo, A. C.; Smith, M. D.; zur Loye, H. C. Structural diversity of metal–organic materialscontaining bismuth(III) and pyridine-2,5-dicarboxylate. Cryst. Growth Des.2011,11(10),4449-4457.
    [19] Zhang, X.; Huang, D.; Chen, C.; Liu, Q.; Liao, D.; Li, L. Synthesis, structural characterization andmagnetic property of metal2,5-pyridine dicarboxylate complex. Inorg. Chem. Commun.2005,8(1),22-26.
    [20] Süss-Fink, G.; Cuervo, L. G.; Therrien, B.; Stoeckli-Evans, H.; Shul’pin, G. B. Mono andoligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure,and catalytic potential. Inorg. Chim. Acta2004,357(2),475-484.
    [21] Mundwiler, S.; Kundig, M.; Orthnner, K.; Alberto, R. A new [2+1] mixed ligand concept based on
    [99(m)Tc(OH2)3(CO)3]+: a basic study. Dalton Trans.2004,1320-1328.
    [22] Zhang, X.; Huang, D.; Chen, C.; Liu, Q.; Liao, D. Z.; Li, L. Synthesis, structural characterizationand magnetic property of metal2,5-pyridine dicarboxylate complex. Inorg. Chem. Commun.2005,8,22-26.
    [23] Xu, Y.; Han, L.; Lin, Z.-Z.; Liu, C.-P.; Yuan, D.-Q.; Zhou, Y.-F.; Hong, M.-C. Oxidation-state andcoordination-site specificity influencing dimensional extension and properties of two ironcomplexes with similar helical chains. Eur. J. Inorg. Chem.2004,4457-4462.
    [24] Kumagai, H.; Sobukawa, H.; Kurmoo, M. Hydrothermal syntheses, structures and magneticproperties of coordination frameworks of divalent transition metals. J. Mater. Sci.2007,43(7),2123-2130.
    [25] Xia, Z. Q.; Wei, Q.; Chen, S. P.; Feng, X. M.; Xie, G.; Qiao, C. F.; Zhang, G. C.; Gao, S. L.Copper(II)-lanthanide(III) coordination polymers constructed from pyridine-2,5-dicarboxylic acid:Preparation, crystal structure and photoluminescence. J. Solid State Chem.2013,197,489-498.
    [26] Liang, Y.; Hong, M. C.; Su, W.; Cao, R.; Zhang, W. Preparations, structures, and magneticproperties of a series of novel copper(II)-lanthanide(III) coordination polymers via hydrothermalreaction. Inorg. Chem.2001,40,4574-4582.
    [27] Zhang, S.; Wang, K.; Zhang, D.; Ma, P.; Niu, J.; Wang, J.2-D and3-D organic–inorganic hybridlanthanide molybdates linking by pyridine-2,5-dicarboxylate. CrystEngComm2012,14(24),8677-8683.
    [28] Wang, X. C.; Liu, C. B.; Li, C. X.; Yan, Y. S.; Che, G. B. Chin J. Inorg. Chem.2010,26(11),2126-2130.
    [29] Mahata, P.; Natarajan, S. Pyridine-and imidazoledicarboxylates of zinc: hydrothermal synthesis,structure, and properties. Eur. J. Inorg. Chem.2005,(11),2156-2163.
    [30] Song, Y.; Yan, B.; Chen, Z., Hydrothermal synthesis and crystal structure of a novel luminescenteuropium complex of2,5-pyridinedicarboxylic acid. J. Coord. Chem.2005,58,(9),811-816.
    [31]梁玉仓,洪茂春,曹荣,翁家宝,孙道峰,苏伟平含吡啶-2,5-二羧酸稀土-锌配位聚合物的合成结构和性能.无机化学学报2002,18(1),99-106.
    [32] Wibowo, A. C.; Vaughn, S. A.; Smith, M. D.; zur Loye, H. C. Novel bismuth and lead coordinationpolymers synthesized with pyridine-2,5-dicarboxylates: two single component “white” lightemitting phosphors. Inorg. Chem.2010,49(23),11001-11008.
    [33] Gao, Q.; Jiang, F. L.; Wu, M. Y.; Huang, Y. G.; Yuan, D. Q.; Wei, W.; Hong, M. C.,Indium(III)-2,5-pyridine dicarboxylate complexes with mononuclear,1D chain,2D layer and3Dchiral frameworks. CrystEngComm2009,11(5),918-926.
    [34] Saha, D.; Maity, T.; Dey, T.; Koner, S. One-dimensional chain copper(II) complex: synthesis, X-raycrystal structure and catalytic activity in the epoxidation of styrene. Polyhedron2012,35(1),55-61.
    [35] Yue, Q.; Yang, J.; Yuan, H. M.; Chen, J. S. A three-dimensional framework constructed fromgadolinium(III) and molybdenum through linkage of pyridine-2,5-dicarboxylate groups. J. Mol.Struct.2007,827(1-3),114-120.
    [36] Wang, X.; Qin, C.; Wang, E.; Hu, C.; Xu, L. Hydrothermal synthesis and structural characterizationof a novel three-dimensional supramolecular framework constructed by zinc salt andpyridine-2,5-dicarboxylate. J. Mol. Struct.2004,698(1-3),75-80.
    [37] Chen, Y. M.; Zheng, L. N.; She, S. S.; Chen, Z.; Hu, B.; Li, Y. H. Two novel heterometallicCu(II)-Sr(II) coordination polymers based on3,5-pyrazoledicarboxylic acid: synthesis, crystalstructures and magnetic properties. Dalton Trans.2011,40(18),4970-4975.
    [38] Chen, Y. M.; Cao, Y. Y.; Chen, W. Q.; Gao, Q.; Li, L.; Gao, D. D.; Liu, W.; Li, Y. H.; Li, W. Sevennovel Sr(II)-Sm(III) and Sr(II)-Dy(III) coordination polymers: construction of five classes ofstructural topologies using different amounts of imidazole. Dalton Trans.2013,42(27),10011-10018.
    [39] Chen, Y. M.; Chen, W. Q.; Ju, Z. H.; Gao, Q.; Lei, T.; Liu, W.; Li, Y. H.; Gao, D. D.; Li, W.Synthesis, structures and luminescent properties of a series of novel Sr(II)-Ln(III)(Ln=Eu, Gd,Tb) coordination polymers. Dalton Trans.2013,42(29),10495-10502.
    [40] Chen, Y.; Gao, Q.; Gao, D.; Wang, D.; Li, Y.; Liu, W.; Li, W., Syntheses, structures and luminescentproperties of a series of ladder-shaped [Ln2Sr3] heterometal-organic frameworks. J. Coord. Chem.2013,66(21),3829-3838.
    [41] Cao, Y. Y.; Chen, Y. M.; Liu, W.; Li, Y. H. Syntheses and crystal structures of five SrII-LnIII(Ln=Nd, Pr, Er) heterometallic coordination polymers. Chin. J. Struct. Chem.2013,32(12),1859-1867.
    [42] Huang, Y. G.; Wang, X. T.; Jiang, F. L.; Gao, S.; Wu, M. Y.; Gao, Q.; Wei, W.; Hong, M. C.Cobalt-lanthanide coordination polymers constructed with metalloligands: a ferromagnetic coupledquasi-1D Dy3+chain showing slow relaxation. Chem. Eur. J.2008,14(33),10340-7.
    [43] Sun, Y. G.; Gu, X. F.; Ding, F.; Smet, P. F.; Gao, E. J.; Poelman, D.; Verpoort, F., Synthesis, crystalstructures, and properties of novel heterometallic La/Pr Cu K and Sm/Eu/Tb Cu coordinationpolymers. Cryst. Growth Des.2010,10(3),1059-1067.
    [44] Wei, Y.; Hou, H.; Li, L.; Fan, Y.; Zhu, Y. From dicarboxylic acid to tetranuclear metallamacrocycliccomplex and1D and2D polymers. Cryst. Growth Des.2005,5(4),1405-1413.
    [45] Wen, L. L.; Lu, Z. D.; Lin, J. G.; Tian, Z. F.; Zhu, H. Z.; Meng, Q. J. Syntheses, structures, andphysical properties of three novel metal-organic frameworks constructed from aromaticpolycarboxylate acids and flexible imidazole-based synthons. Cryst. Growth Des.2007,7(1),93-99.
    [46] Wibowo, A. C.; Smith, M. D.; zur Loye, H. C. A new kagome lattice coordination polymer basedon bismuth and pyridine-2,5-dicarboxylate: structure and photoluminescent properties. Chem.Commun.2011,47(26),7371-7373.
    [47] Zheng, S. L.; Chen, X. M., RecentAdvances in luminescent monomeric, multinuclear, andpolymeric Zn(II) and Cd(II) coordination Complexes. Aust. J. Chem.2004,57,703-712.
    [48] Zheng, S. L.; Zhang, J. P.; Chen, X. M.; Huang, Z. L.; Lin, Z. Y.; Wong, W. T. Syntheses, structures,photoluminescence, and theoretical studies of a novel class of d10metal complexes of1H-[1,10]phenanthrolin-2-one. Chem. Eur. J.2003,9(16),3888-3896.
    [49] Sheldrick, G. M. SHELXS-97, Program for crystal structure solution, University of G ttingen,Germany,1997.
    [50] Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures from diffractiondata, University of G ttingen, Germany,1997.
    [1] Harder, S. Intramolecular C-H activation in alkaline-earth metal complexes. Angew. Chem. Int. Ed.2003,42,(29),3430-3434.
    [2] Zhang, X. F.; Deng, Z. P.; Huo, L. H.; Feng, Q. M.; Gao, S. Four alkali-induced3D strontium(II)coordination polymers constructed from imidazole-4,5-dicarboxylate: syntheses, crystal structures,and properties. Eur. J. Inorg. Chem.2012,(33),5506-5514.
    [3] Fromm, K. M.; Gueneau, E. D. Structures of alkali and alkaline earth metal clusters with oxygendonor ligands. Polyhedron2004,23(9),1479-1504.
    [4] Fromm, K. M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev.2008,252(8-9),856-885.
    [5] Zhang, X.; Huang, Y. Y.; Cheng, J. K.; Yao, Y. G.; Zhang, J.; Wang, F. Alkaline earth metal iondoped Zn(II)-terephthalates. CrystEngComm2012,14,4843-4849.
    [6] Akine, S.; Tadokoro, T.; Nabeshima, T. Oligometallic template strategy for synthesis of amacrocyclic dimer-type octaoxime ligand for its cooperative complexation. Inorg. Chem.2012,51(21),11478-86.
    [7] Insausti, M.; Pizarro, J. L.; Lezama, L.; Cortes, R.; Bocanegra, E. H.; Arriortua, M. I.; Rojo, T.Synthesis and crystal structure of MCu(edta)·4H2O: molecular precursors for MCuO2(M=Ca, Sr,Ba). Chem. Mater.1994,6(5),707-713.
    [8] Cao, R.; Lü, J.; Batten, S. R. Copper5-sulfoisophthalato quasi-planar squares in coordinationpolymers modulated by alkaline-earth metals: a way to molecular squares. CrystEngComm2008,10(6),784-789.
    [9] Ferrando-Soria, J.; Rood, M. T. M.; Julve, M.; Lloret, F.; Journaux, Y.; Pasán, J.; Ruiz-Pérez, C.;Fabelo, O.; Pardo, E. Influence of the alkaline earth cations on the topology of MII/CuIImixed-metal–organic frameworks (M=Ca, Sr and Ba). CrystEngComm2012,14(3),761-764.
    [10] Gil de Muro, I.; Mautner, F. A.; Insausti, M.; Lezama, L.; Arriortua, M. I.; Rojo, T. Study of thetwo-dimensional [MM’(C3H2O4)2(H2O)4](M=Ba, Sr and M’=Cu, Mn) systems: synthesis,structure, magnetic properties, and thermal decomposition. Inorg. Chem.1998,37,3243-3251.
    [11] Aromi, G.; Roubeau, O.; Helliwell, M.; Teat, S. J.; Winpenny, R. E. P. Novel topologies in NiIIcluster chemistry: Incorporation of alkalin-earth metals in the new [Ni6Mg2] and [Ni8M](M=Sr,Ba) cages. Dalton Trans.2003,3436-3442.
    [12] Lin, X.; Doble, D. M. J.; Blake, A. J.; Harrison, A.; Wilson, C.; Schr der, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125,9476-9483.
    [13] Lazarescu, A.; Shova, S.; Bartolome, J.; Alonso, P.; Arauzo, A.; Balu, A. M.; Simonov, Y. A.;Gdaniec, M.; Turta, C.; Filoti, G.; Luque, R. Heteronuclear (Co–Ca, Co–Ba)2,3-pyridinedicarboxylate complexes: synthesis, structure and physico-chemical properties. DaltonTrans.2011,40(2),463-471.
    [14] Prodius, D.; Turta, C.; Mereacre, V.; Shova, S.; Gdaniec, M.; Simonov, Y.; Lipkowski, J.; Kuncser,V.; Filoti, G.; Caneschi, A. Synthesis, structure and properties of heterotrinuclear carboxylatecomplexes [Fe2M(Ca, Sr, Ba)O(CCl3COO)6(THF)n]. Polyhedron2006,25(10),2175-2182.
    [15] Kostakis, G. E.; Ako, A. M.; Powell, A. K. Structural motifs and topological representation of Mncoordination clusters. Chem. Soc. Rev.2010,39(6),2238-2271.
    [16] Deacon, G. B.; Junk, P. C.; Moxey, G. J.; Ruhlandt-Senge, K.; St Prix, C.; Zuniga, M. F.Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare eartharyloxo complexes featuring intramolecular metal-pi-arene interactions. Chem. Eur. J.2009,15(22),5503-5519.
    [17] Zurawski, A.; Rybak, J. C.; Meyer, L. V.; Matthes, P. R.; Stepanenko, V.; Dannenbauer, N.;Wurthner, F.; Muller-Buschbaum, K. Alkaline earth imidazolate coordination polymers by solventfree melt synthesis as potential host lattices for rare earth photoluminescence:x∞[AE(Im)2(ImH)2-3],AE=Mg, Ca, Sr, Ba, x=1-2. Dalton Trans.2012,41(14),4067-78.
    [18] Hamilton, J. M.; Anhorn, M. J.; Oscarson, K. A.; Reibenspies, J. H.; Hancock, R. D. Complexationof metal ions, including alkali-earth and lanthanide(III) ions, in aqueous solution by the ligand2,2',6',2''-terpyridyl. Inorg. Chem.2011,50(7),2764-70.
    [19] Prasad, T. K.; Rajasekharan, M. V. Inter-conversion of1-D coordination polymers in theCe-Sr-dipicH2system (dipicH2=dipicolinic acid). Inorg. Chem. Commun.2005,8(12),1116-1119.
    [20] Zhao, X. Q.; Zuo, Y.; Gao, D. L.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures, andluminescence properties of a series of LnIII BaIIheterometal-organic frameworks. Cryst. GrowthDes.2009,9(9),3948-3957.
    [21] Xu, Y.; Che, Y.-X.; Cheng, F.-Y.; Zheng, J. M. Synthesis, structures, and adsorption properties oftwo new LaIII-MgIIheterometallic polymers. Eur. J. Inorg. Chem.2011,5299-5304.
    [22] Swarnabala, G.; Rajasekharan, M. V.[Ca(dipicH2)(OH2)3][Ce(dipic)3]·5H2O: A one-dimensionalcoordination polymer with alternating CeN3O6and CaNO7polyhedra (dipicH2)pyridine-2,6-dicarboxylic acid. Inorg. Chem.1998,37,1483-1485.
    [23] Chen, Y. M.; Zheng, L. N.; She, S. S.; Chen, Z.; Hu, B.; Li, Y. H. Two novel heterometallicCu(II)-Sr(II) coordination polymers based on3,5-pyrazoledicarboxylic acid: synthesis, crystalstructures and magnetic properties. Dalton Trans.2011,40(18),4970-4975.
    [24] Chen, Y. M.; Cao, Y. Y.; Chen, W. Q.; Gao, Q.; Li, L.; Gao, D. D.; Liu, W.; Li, Y. H.; Li, W.Seven novel Sr(II)-Sm(III) and Sr(II)-Dy(III) coordination polymers: construction of five classesof structural topologies using different amounts of imidazole. Dalton Trans.2013,42(27),10011-10018.
    [25] Chen, Y. M.; Chen, W. Q.; Ju, Z. H.; Gao, Q.; Lei, T.; Liu, W.; Li, Y. H.; Gao, D. D.; Li, W.Synthesis, structures and luminescent properties of a series of novel Sr(II)-Ln(III)(Ln=Eu, Gd,Tb) coordination polymers. Dalton Trans.2013,42(29),10495-502.
    [26] Chen, Y. M.; Gao, Q.; Gao, D. D.; Wang, D. R.; Li, Y. H.; Liu, W.; Li, W. Syntheses, structuresand luminescent properties of a series of ladder-shaped [Ln2Sr3] heterometal-organic frameworks.J. Coord. Chem.2013,66(21),3829-3838.
    [27] Cao, Y. Y.; Chen, Y. M.; Liu, W.; Li, Y. H. Syntheses and crystal structures of five SrII-LnIII(Ln=Nd, Pr, Er) heterometallic coordination polymers. Chin. J. Struct. Chem.2013,32(12),1859-1867.
    [28] Chen, Y. M.; She, S. S.; Gao, Q.; Gao, D. D.; Wang, D. R.; Li, Y. H.; Liu, W.; Li, W. Synthesis,structures and properties of the first series of SrII-MII(M=Cu, Co, Ni and Zn) coordinationpolymers based on pyridine-2,5-dicarboxylic acid. CrystEngComm2014,16(6),1091-1102.
    [29] Lin, X.; Doble, D. M.; Blake, A. J.; Harrison, A.; Wilson, C.; Schroder, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125(31),9476-83.
    [30] Chandler, B. D.; Cramb, D. T.; Shimizu, G. K. H. Microporous metal-organic frameworks formedin a stepwise manner from luminescent building blocks. J. Am. Chem. Soc.2006,128,10403-10412.
    [31] Evans, W. J.; Giarikos, D. G.; Greci, M. A.; Ziller, J. W. Direct synthesis of heterometalliceuropium/barium complexes: Hi2[Eu2Ba6O2(OPr)16(THF)4] and EuBa2(OC6H4Me-4)7(diglyme)2-(DME). Eur. J. Inorg. Chem.2002,453-456.
    [32] Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Urbatsch, A. Syntheses at elevated temperature andstructures of lanthanoid/alkaline earth heterobimetallic derivatives of2-methyl-8-hydroxyquinoline.Eur. J. Inorg. Chem.2010,2787-2797.
    [33] Chandler, B. D.; Coté, Adrien P.; Cramb, D. T.; Hill, J. M.; Shimizu, G. K. H. A sponge-likeluminescent coordination framework via an aufbau approach electronic supplementary information(ESI) available: characterisation data. Chem. Commun.2002,1900-1901.
    [34] Barge, A.; Botta, M.; Casellato, U.; Tamburini, S.; Vigato, P. A. Selectivity of asymmetricmacrocyclic compartmental lanthanide(III) complexes towards alkali and alkaline-earth metal ions.Eur. J. Inorg. Chem.2005,1492-1499.
    [35] Li, M.; Yuan, L.; Li, H.; Sun, J. A3D heterometallic metal–organic framework constructed fromluminescent building blocks, exhibiting reversible dehydration and rehydration procedure. Inorg.Chem. Commun.2007,10(11),1281-1284.
    [36] Sheldrick, G. M. SHELXS-97, Program for crystal structure solution, University of G ttingen,Germany,1997.
    [37] Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures from diffractiondata, University of G ttingen, Germany,1997.
    [38] Ma, J.; Jiang, F. L.; Chen, L.; Wu, M. Y.; Zhang, S. Q.; Xiong, K. C.; Han, D.; Hong, M. C.Temperature-controlled reduction of Cu(II) and structural transformation on the assembly ofcoordination network. CrystEngComm2012,14(12),4181-4187.
    [39] O'Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks andrelated materials into their underlying nets. Chem. Rev.2012,112(2),675-702.
    [40] Yan, S.; Li, X.; Zheng, X. Effect of the carboxyl groups on the assembly of copperpyridinedicarboxylate complexes. J. Mol. Struct.2009,929(1-3),105-111.
    [41] Das, A.; Pilet, G.; Luneau, D.; El Fallah, M. S.; Ribas, J.; Mitra, S. Porous coordination polymer ofcopper(II) assembled from mixed organic ligands pyridine-2,4-dicarboxylic acid andtrans-1,2-bis(4-pyridyl)ethylene: Synthesis, crystal structure and magnetic study. Inorg. Chim. Acta2005,358(15),4581-4587.
    [42] Zhang, X. M.; Chen, X. M. A New porous3-D framework constructed from fivefold parallelinterpenetration of2-D (6,3) nets: a mixed-valence copper(I,II) coordination polymer[CuI2CuII(4,4’-bpy)2(pydc)2]·4H2O. Eur. J. Inorg. Chem.2003,413-417.
    [43] Sarma, D.; Natarajan, S. Usefulness of in situ single crystal to single crystal transformation (SCSC)studies in understanding the temperature-dependent dimensionality cross-over and structuralreorganization in copper-containing metal–organic frameworks (MOFs). Cryst. Growth Des.2011,11(12),5415-5423.
    [44] Zhang, X.; Huang, Y. Y.; Lin, Q. P.; Zhang, J.; Yao, Y. G. Using alkaline-earth metal ions to tunestructural variations of1,3,5-benzenetricarboxylate coordination polymers. Dalton Trans.2013,42(6),2294-2301.
    [45] Akine, S.; Taniguchi, T.; Nabeshima, T. Helical metallohost-guest complexes via site-selectivetransmetalation of homotrinuclear complexes. J. Am. Chem. Soc.2006,128,15765-15774.
    [46] Zheng, S. L.; Chen, X.-M. Recent advances in luminescent monomeric, multinuclear, andpolymeric Zn(II) and Cd(II) coordination complexes. Aust. J. Chem.2004,57(8),703-712.
    [47] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Luminescent metal-organic frameworks.Chem. Soc. Rev.2009,38(5),1330-52.
    [48] Du, M.; Jiang, X.-J.; Zhao, X.-J., Molecular tectonics of mixed-ligand metal-organic frameworks:positional isomeric effect, metal-directed assembly, and structural diversification. Inorg. Chem.2007,46(10),3984-3995.
    [49] Dunn, T. M. Spin-orbit coupling in the first and second transition series. Trans. Faraday Soc.1961,57,1441-1444.
    [50] Muro, I. G.; Insausti, M.; Lezama, L.; Pizarro, J. L.; Arriortua, M. I.; Rojo, T. Structural,spectroscopic, magnetic and thermal properties in the [SrM(C3H2O4)2(H2O)5]·2H2O (M=Mn, Fe,Co, Ni) system: precursors of SrMO3–xmixed oxides. Eur. J. Inorg. Chem.1999,935-943.
    [1] Cao, R.; Lü, J.; Batten, S. R. Copper5-sulfoisophthalato quasi-planar squares in coordinationpolymers modulated by alkaline-earth metals: a way to molecular squares. CrystEngComm2008,10(6),784-789.
    [2] Fromm, K. M. Coordination polymer networks with s-block metal ions. Coord. Chem. Rev.2008,252(8-9),856-885.
    [3] Harder, S. Intramolecular C-H activation in alkaline-earth metal complexes. Angew. Chem. Int. Ed.2003,42(29),3430-3434.
    [4] Zhang, Y.; Luo, X. B.; Yang, Z. L.; Li, G. Metal-organic frameworks constructed from imidazoledicarboxylates bearing aromatic substituents at the2-position. CrystEngComm2012,14(21),7382-7397.
    [5] Lin, X.; Doble, D. M.; Blake, A. J.; Harrison, A.; Wilson, C.; Schroder, M. Cationic assembly ofmetal complex aggregates: structural diversity, solution stability, and magnetic properties. J. Am.Chem. Soc.2003,125(31),9476-83.
    [6] Chen, Y. M.; Zheng, L. N.; She, S. S.; Chen, Z.; Hu, B.; Li, Y. H. Two novel heterometallicCu(II)-Sr(II) coordination polymers based on3,5-pyrazoledicarboxylic acid: synthesis, crystalstructures and magnetic properties. Dalton Trans.2011,40(18),4970-4975.
    [7] Chen, Y. M.; Cao, Y. Y.; Chen, W. Q.; Gao, Q.; Li, L.; Gao, D. D.; Liu, W.; Li, Y. H.; Li, W. Sevennovel Sr(II)-Sm(III) and Sr(II)-Dy(III) coordination polymers: construction of five classes ofstructural topologies using different amounts of imidazole. Dalton Trans.2013,42(27),10011-10018.
    [8] Chen, Y. M.; Chen, W. Q.; Ju, Z. H.; Gao, Q.; Lei, T.; Liu, W.; Li, Y. H.; Gao, D. D.; Li, W.Synthesis, structures and luminescent properties of a series of novel Sr(II)-Ln(III)(Ln=Eu, Gd,Tb) coordination polymers. Dalton Trans.2013,42(29),10495-502.
    [9] Chen, Y. M.; Gao, Q.; Gao, D. D.; Wang, D. R.; Li, Y. H.; Liu, W.; Li, W. Syntheses, structures andluminescent properties of a series of ladder-shaped [Ln2Sr3] heterometal-organic frameworks. J.Coord. Chem.2013,66(21),3829-3838.
    [10] Cao, Y. Y.; Chen, Y. M.; Liu, W.; Li, Y. H. Syntheses and crystal structures of five SrII-LnIII(Ln=Nd, Pr, Er) heterometallic coordination polymers. Chin. J. Struct. Chem.2013,32(12),1859-1867.
    [11] Chen, Y. M.; She, S. S.; Gao, Q.; Gao, D. D.; Wang, D. R.; Li, Y. H.; Liu, W.; Li, W. Synthesis,structures and properties of the first series of SrII–MII(M=Cu, Co, Ni and Zn) coordinationpolymers based on pyridine-2,5-dicarboxylic acid. CrystEngComm2014,16(6),1091-1102.
    [12] Zhang, X.; Huang, Y. Y.; Cheng, J. K.; Yao, Y. G.; Zhang, J.; Wang, F. Alkaline earth metal iondoped Zn(II)-terephthalates. CrystEngComm2012,14,4843-4849.
    [13] Zhang, X.; Huang, Y. Y.; Lin, Q. P.; Zhang, J.; Yao, Y. G. Using alkaline-earth metal ions to tunestructural variations of1,3,5-benzenetricarboxylate coordination polymers. Dalton Trans.2013,42(6),2294-2301.
    [14] Xu, Y.; Che, Y.-X.; Cheng, F.-Y.; Zheng, J.-M. Synthesis, structures, and adsorption properties oftwo New LaIII-MgIIheterometallic polymers. Eur. J. Inorg. Chem.2011,5299-5304.
    [15] Lazarescu, A.; Shova, S.; Bartolome, J.; Alonso, P.; Arauzo, A.; Balu, A. M.; Simonov, Y. A.;Gdaniec, M.; Turta, C.; Filoti, G.; Luque, R. Heteronuclear (Co–Ca, Co–Ba)2,3-pyridinedicarboxylate complexes: synthesis, structure and physico-chemical properties. DaltonTrans.2011,40(2),463-471.
    [16] Barszcz, B.; Hodorowicz, M.; Jab ońska-Wawrzycka, A.; Masternak, J.; Nitek, W.; Stadnicka, K.Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2,3-dicarboxylic acid:synthesis, crystal structure and spectroscopic investigation. Polyhedron2010,29(4),1191-1200.
    [17] Starosta, W.; Leciejewicz, J. Catenated polymeric molecular patterns in structures of two calcium(II)complexes with pyridine-2,3-dicarboxylate (quinolinic) and water ligands. J. Coord. Chem.2009,62(8),1240-1248.
    [18] Mahata, P.; Ramya, K. V.; Natarajan, S. Pillaring of CdCl2-like layers in lanthanide metal-organicframeworks: synthesis, structure, and photophysical properties. Chem. Eur. J.2008,14(19),5839-5850.
    [19] Frisch, M.; Cahill, C. L. Thorium(IV) coordination polymers in the pyridine and pyrazinedicarboxylic acid systems. Cryst. Growth Des.2008,8(8),2921-2928.
    [20] Li, M.; Xiang, J.; Yuan, L.; Wu, S.; Chen, S.; Sun, J. Syntheses, structures, and photoluminescenceof three novel coordination polymers constructed from dimeric d10metal units. Cryst. Growth Des.2006,6(9),2036-2040.
    [21] Wang, G.-H.; Li, Z. G.; Jia, H. Q.; Hu, N. H.; Xu, J. W. Metal-organic frameworks based on thepyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, andphotoluminescence. CrystEngComm2009,11(2),292.
    [22] Zhang, H. T.; Li, Y. Z.; Wang, H. Q.; Nfor, E. N.; You, X. Z. From loop-like chain to helix: a resultof symmetry breaking triggered by the replacement of coordination water. CrystEngComm2005,7(94),578.
    [23] Yan, S.; Li, X.; Zheng, X. Effect of the carboxyl groups on the assembly of copperpyridinedicarboxylate complexes. J. Mol. Struct.2009,929(1-3),105-111.
    [24] Yin, H.; Liu, S.-X. Copper and zinc complexes with2,3-pyridinedicarboxylic acid or2,3-pyrazinedicarboxylic acid: polymer structures and magnetic properties. J. Mol. Struct.2009,918(1-3),165-173.
    [25] Maji, T. K.; Mostafa, G.; Matsuda, R.; Kitagawa, S. Guest-induced asymmetry in a metal organicporous solid with reversible single-crystal-to-single-crystal structural transformation. J. Am. Chem.Soc.2005,127(49),17152-17153.
    [26] Patrick, B. O.; Stevens, C. L.; Storr, A.; Thompson, R. C. Structural and magnetic properties ofthree copper(II) pyridine-2,3-dicarboxylate coordination polymers incorporating the same chainmotif. Polyhedron2003,22(22),3025-3035.
    [27] Sheldrick, G. M. SHELXS-97, Program for crystal structure solution, University of G ttingen,Germany,1997.
    [28] Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal structures from diffractiondata, University of G ttingen, Germany,1997.
    [29] Chen, Y. M.; She, S. S.; Zheng, L. N.; Hu, B.; Chen, W. Q.; Xu, B.; Chen, Z.; Zhou, F. Y.; Li, Y. H.Heteronuclear M(II)-Ln(III)(M=Co, Mn; Ln=La, Pr, Sm, Gd, Dy and Er) coordination polymers:Synthesis, structures and magnetic properties. Polyhedron2011,30(18),3010-3016.
    [30] O'Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks andrelated materials into their underlying nets. Chem. Rev.2012,112(2),675-702.
    [31] Halcrow, M. A. Jahn-Teller distortions in transition metal compounds, and their importance infunctional molecular and inorganic materials. Chem. Soc. Rev.2013,42(4),1784-95.
    [32] Applegate, B. E.; Barckholtz, T. A.; Miller, T. A. Explorations of conical intersections and theirramifications for chemistry through the Jahn-Teller effect. Chem. Soc. Rev.2003,32(1),38-49.
    [33] Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.;Terzis, A. CoIIchemistry of2,6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co clusterexhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed.2006,45,432-435.
    [34] Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in amixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)]∞featuringmagneticΔ-chains. Chem. Commun.2006,34,3603-3605.
    [35] Kurmoo, M.; Kumagai, H.; Hughes, S. M.; Kepert, C. J. Reversible guest exchange andferrimagnetism (Tc=60.5K) in a porous cobalt(II)-hydroxide layer structure pillared withtrans-1,4-cyclohexanedicarboxylate. Inorg. Chem.2003,42,6709-6722.
    [36] Yi, T.; Ho-Chol, C.; Gao, S.; Kitagawa, S. Tuning of the spin states in trinuclear cobalt compoundsof pyridazine by the second simple bridging ligand. Eur. J. Inorg. Chem.2006,1381-1387.
    [37] Hu, X. X.; Xu, J. Q.; Cheng, P.; Chen, X. Y.; Cui, X. B.; Song, J. F.; Yang, G. D.; Wang, T. G. Anew route for preparing coordination polymers from hydrothermal reactions involving in situligand synthesis. Inorg. Chem.2004,43,2261-2266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700