用户名: 密码: 验证码:
特殊结构氧化铋的液相合成、生长机理与光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bi2O3是一种重要的功能材料,具有宽带隙、高的折射率和介电常数、优良的光电导性和光致发光性能,己被广泛应用于固体氧化物燃料电池、气体传感器、光电材料、高温超导材料、催化剂、功能陶瓷等诸多领域,具有广阔的应用前景。从理论研究和应用方面来说,其简单温和的制备技术及形貌性能的调控都是值得研究的重要课题。在本论文的工作中,采用液相一步沉淀法成功制备出一系列具有不同微结构的Bi2O3,包括斜棱柱状微结构、分等级的花状微结构和连体四面体状微结构,并对不同微结构的生长形成机制进行了深入研究。本论文研究的主要内容和创新点包括以下几个方面:
     首先,引入SDBS作为控制剂,在低温(50℃)水相中合成出了高纯度的直径约为2μm、长度为几十微米的一维斜棱柱状α-Bi2O3。通过对反应时间及SDBS用量的考察、分析,提出了定向附着(Oriented attachment)与奥斯特瓦尔德熟化(Ostwald ripening)协同作用的生长机制。同时,研究了样品的光学性能。
     其次,在小分子多元醇(丙三醇)协同下,在水热体系中合成出形貌规则、单分散、尺寸为30μm的3D分等级连体花状α-Bi2O3微结构。这种微结构是由宽300nm、厚100nm、端部带尖角的斜棱柱状纳米棒组装而成。在水热反应中,由纳米带,超薄纳米片和斜棱柱状纳米棒等不同构建单元构筑而成的分等级微结构可以在晶体生长的不同阶段获得。通过对α-Bi2O3形态演化的分析,发现在这种独特的分等级微结构的形成过程中存在两种不同类型的自组装—连体花状微结构的自组装和构建单元本身的层层自组装,以此为依据,提出了“两种自组装组合”的形成机制。探讨了丙三醇对连体花状微结构形成的作用,发现其对这种分等级微结构的“中心结点”的形成至关重要。同时对样品的振动特性,光吸收特性和光致发光(PL)特性进行了研究。
     然后,在丙三醇体系中,通过改变温度、压力等反应条件,分别在开放体系(90℃)和水热体系(120℃)合成出由十面体和微米棒(两种不同构建单元)构筑而成的相似的分等级花状微结构。详细分析了同一体系(丙三醇体系),温度和压力影响构建单元形貌及分等级微结构的原因:①影响构建单元形貌的原因:温度和压力的变化改变了丙三醇中的-OH(羟基)与晶体极性晶面的耦合程度,从而改变了α-Bi2O3在[001]方向的生长速率,导致了晶体各向异性的生长。②对分等级微结构的影响:a)在高温和高压下,丙三醇分子优先选择吸附于构建单元,以形成分等级的花状结构。b)空间位阻效应:微米棒的空间位阻远远小于十面体,因而大量的微米棒能够构筑在一起形成花簇(水热体系),而十面体构筑的花状结构大多是不完整的(开放体系)。样品的光吸收性能和荧光性能由于形貌的不同略显不同。
     最后,进行了亚稳态γ-Bi2O3的制备及性能研究工作。在低温(70℃)开放体系,不引入其他氧化物或过渡后离子,只在PEG-400协助下,合成出高温亚稳态的γ-Bi2O3连体四面体。连体四面体微结构通过超薄三角形纳米片的层层自组装构建而成,且γ-Bi2O3的O (氧原子)对“支撑”四面体微结构的构架发挥着重要的作用。体系中NaOH溶液的浓度控制样品的形貌,随着NaOH溶液浓度的增加,样品的形貌由四面体→切边四面体→昆虫状结构。PEG均一有序的长链对产物的相转移起到至关重要的作用,PEG被EG取代,只能合成出α-Bi2O3多面体。与α-Bi2O3的荧光性能比较,归属于晶体表面氧空位(缺陷)的荧光发射谱带在γ-Bi2O3的PL谱图中并没有出现,说明γ-Bi2O3晶体表面的氧空位很少。
     通过本论文的研究,得到了具有特殊微结构的α-Bi2O3和γ-Bi2O3微纳米粉体,完善了水热体系和开放体系在水相温和条件下制备特殊微结构Bi2O3的方法。研究的结果将有助于更深入地理解分等级微观结构的形成,也有助于为氧化铋的新型微观结构增添一些有价值的信息。
Bismuth oxide (Bi2O3) is an important functional material with wide band-gap,high refractive index, dielectric permittivity, high oxygen conductivity, remarkablephotoconductivity and photoluminescence. These unique characteristics make Bi2O3suitable for applications in solid oxide fuel cells, sensors, photoelectric materials, hightemperature superconductor materials, functional ceramics and catalysts. Thedevelopment on its simple and mild preparation and morphology-controlled strategyare important topics, which are worthy of study for theoretical research andapplication. In this paper, various Bi2O3microstructures, including oblique prism-like,hierarchical flowerlike and tetrahedral, were synthesized via a one-step solutionprecipitation method. And on the basis of experiment and characterization, we alsodid an in-depth study on the growth and formation mechanisms of each microstructure.The main research results and innovations of the thesis are given in the followingparts.
     First,1D oblique prism-like Bi2O3have been synthesized in aqueous-phase atlow temperature and ambient pressure in the presence of sodiumdodecylbenzenesulfonate (SDBS). The oblique prism-like Bi2O3have betterdistribution with an average diameter of2μm and length of up to tens of micrometers.A combined growth mechanism of oriented attachment followed by Ostwald ripeningis proposed for the formation of oblique prism-like Bi2O3. The optical absorption andphotoluminescence (PL) characteristics of the prepared sample were investigated.
     Secondly,3D hierarchical siamesed-flowerlike microstructures of α-Bi2O3havebeen synthesized by a glycerin-assisted hydrothermal method. The microflowers of30μm were built up of oblique prism-like nanorobs, with mean width of300nm andthickness of100nm. In the hydrothermal process, hierarchical microstructures constructed by nanoribbons, ultrathin nanoflakes and oblique prism-like nanorobs canbe found at different step of crystal growth. Morphology evolution of α-Bi2O3wasanalyzed and the probable formation mechanism was described as combination of twosteps of self-assembly: layer-by-layer self-assembly of nanoribbons to the obliqueprism-like nanorobs and self-assembly of nanorobs to hierarchicalsiamesed-flowerlike microstructures. Glycerin plays crucial role in the formation ofthe hierarchical structure (the formation of junction). The vibrational properties,optical absorption and photoluminescence (PL) characteristics of the sample wereinvestigated.
     Thirdly, we reported a facile solution precipitation method to fabricate the3Dhierarchical flowerlike microstructures of α-Bi2O3composed of decahedrons and rods.How do temperature and pressure affect morphologies of “petals” and flowerlikemicrostructures in the glycerin system?①At90℃and ambient pressure, the OH(hydroxyl radical) of glycerol molecules are more favorably coupled on the polarfaces, which decreases the growth in the [001] direction of α-Bi2O3to formdecahedral shape.②a) At high temperature and pressure, the coupling effect of OHon polar faces is greatly weakened, which leads to an elongation of crystal shape(rod-like shape), and glycerol molecules are more favorably adsorbed on the tip of thepetals to form hierarchical flowerlike structures. b) In addition, steric hindrance ofdecahedron is much higher than robs, which lead to formation of flower clustercomposed of more rods and incomplete flowerlike microstructures composed of a fewdecahedrons. The small difference of optical absorption and photoluminescence (PL)characteristics arises from diversity of morphology.
     Finally, we studied the synthesis and property of γ-Bi2O3.Metastable γ-Bi2O3siamesed-tetrahedra have been synthesized at70℃with the assistance of PEG (Mw=400). The obtained tetrahedra are built up of ultrathin triangular nanosheets vialayer-by-layer self-assembly. Oxygen atoms in γ-Bi2O3play critical role inunderpinning tetrahedral structures. The concentration of NaOH solution tunes themorphology and PEG influences not only in the morphology but also in phase transferof sample. Compared with the PL spectrum of α-Bi2O3, the emission peak located around567nm disappears, which are caused by the reduction in crystal defects(oxygen vacancies) of γ-Bi2O3.
     In conclusion,distinctive microstructures Bi2O3composed of different buildingblocks are obtained by solution precipitation method. Our findings will help for betterunderstanding of the formation of hierarchical microstructures and will also contributesome valuable information to novel microstructures of Bi2O3.
引文
[1] Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties ofnanocrystals of different shapes [J]. Chem Rev,2005,105(4):1025–1102.
    [2] Law M, Luther J M, Song Q, Hughes B K, Perkins C L, Nozik A J. Structural,optical, and electrical properties of PbSe nanocrystal solids treated thermally or withsimple amines [J]. J Am Chem Soc,2008,130(18):5974–5985.
    [3]Rabenau A. The role of hydrothermal synthesis in preparative chemistry [J].Angew Chem Int Ed Engl,1985,24(12):1026–1040.
    [4] Barrer R M. Synthesis of a zeolitic mineral with chabazite-like sorptive properties[J]. J Chem Soc,1948:127–132.
    [5] Walton R I. Subcritical solvothermal synthesis of condensed inorganic materials[J]. Chem Soc Rev,2002,31(4):230–238.
    [6] Whittingham M S. Hydrothermal synthesis of transition metal oxides under mildconditions [J]. Curr Opin Solid State Mater Sci,1996,1(2):227–232.
    [7] Toedheide K. Water: a comprehensive treatise [M]. Franks F ed. New York:Plenum,1972,463–514.
    [8] Seward T M. Phys. Metal complex formation in aqueous solutions at elevatedtemperatures and pressures [J]. Phys. Chem. Earth,1981,13-14:113–132.
    [9] Bett K E, Cappi J B. Effect of pressure on the viscosity of water [J]. Nature,1965,207:620–621.
    [10] Verma M P. Steam tables for pure water as an ActiveX component in VisualBasic6.0[J]. Comput Geosci,2003,29(9):1155–1163.
    [11] Macdonald D D. The thermodynamics and theoretical corrosion behavior ofmanganese in aqueous systems at elevated temperatures [J]. Corros Sci,1976,16(7):461–482.
    [12] Beverskog B, Puigdomenech I. Revised pourbaix diagrams for iron at25–300℃[J]. Corros Sci,1996,38(12):2121–2135.
    [13] Pourbaix M, Franklin J. Atlas of electrochemical equilibria in aqueous solutions[M].1st ed. Oxford: Pergamon Press,1966.
    [14] Caruso F, Caruso R A, M hwald H. Nanoengineering of inorganic and hybridhollow spheres by colloidal templating [J]. Science,1998,282(5391):1111–1114.
    [15] G ltner C G. Porous Solids from Rigid Colloidal Templates: Morphogenesis [J].Angew Chem Int Ed,1999,38(21):3155–3156.
    [16] Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J].Science,2002,298(5601):2176–2179.
    [17] Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2Microspheres inIonic Liquids [J]. J Am Chem Soc,2003,125(21):6386–6387.
    [18] Yang H G, Zeng H C. Preparation of hollow anatase TiO2nanospheres viaOstwald ripening [J]. J. Phys. Chem. B,2004,108(11):3492–3495.
    [19] He G, Popov G, Nazar L F. Hydrothermal synthesis and electrochemical propertiesof Li2CoSiO4/C nanospheres [J]. Chem Mater,2013,25(7):1024–1031.
    [20] Chang Y, Teo J J, Zeng H C. Formation of colloidal CuO nanocrystallites andtheir spherical aggregation and reductive transformation to hollow Cu2O nanospheres[J]. Langmuir,2005,21(3):1074–1079.
    [21] Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabricationof homogeneous core–shell semiconductors [J]. Small,2005(1):566–571.
    [22] Liu B, Zeng H C. Fabrication of ZnO “dandelions” via a modified kirkendallprocess [J]. J Am Chem Soc,2004,126:16744–16746.
    [23] Zhang L, Yu J C, Zheng Z, Leung C W. Fabrication of hierarchical porous ironoxide films utilizing the Kirkendall effect [J]. Chem Commun,2005:2683–2685.
    [24] Tu K N, G sele U. Hollow nanostructures based on the Kirkendall effect: Designand stability considerations [J]. Appl Phys Lett,2005,86:093111.
    [25] Penn R L, Banfield J F. Imperfect oriented attachment: Dislocation generation indefect-free nanocrystals [J]. Science,1998,281(5379):969–971.
    [26] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: From nanodots tonanorods [J]. Angew Chem Int Ed,2002,41(7):1188–1191.
    [27] Kolthoff I M, Eggertsen F T. Studies on aging and coprecipitation. XXXIV. theaging of freshly precipitated lead chromate [J]. J Am Chem Soc,1941,63(5):1412–1418.
    [28] Zeng H C. Synthetic architecture of interior space for inorganic nanostructures[J]. J Mater Chem,2006,16:649–662.
    [29] Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of“Dandelions”[J]. J Am Chem Soc,2004,126:8124–8125.
    [30] Brice J C. Crystal Growth Processes [M]. New York: John Wiley&Sons,1986.
    [31] Braga D. Crystal engineering, Where from? Where to?[J]. Chem Commun,2003:2751–2754.
    [32] Lehn J-M. Toward self-organization and complexmatter [J]. Science,2002,295(5564):2400–2403.
    [33] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Orderedmesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J].Nature,1992,359:710–712.
    [34] Chang Y, Zeng H C. Manipulative synthesis of multipod frameworks forself-organization and self-amplification of Cu2O microcrystals [J]. Cryst Growth Des,2004,4:273–278.
    [35] McFadyen P, Matijevi E. Copper hydrous oxide sols of uniform particle shapeand size [J]. J Colloid Interface Sci,1973,44:95–106.
    [36] Li W-J, Shi E-W, Zhong W-Z, Yin Z-W. Growth mechanism and growth habit ofoxide crystals [J]. J Cryst Growth,1999,203:186–196
    [37] Cornei N, Tancret N, Abraham F, Mentré O. New ε-Bi2O3Metastable Polymorph[J]. Inorg Chem,2006,45:48864888.
    [38] Gualtieri A F, Immovilli S, Prudenziati M. Powder x-ray diffraction data for thenew polymorphic compound ω-Bi2O3[J]. Powder Diffr,1997,12:9092.
    [39] Atou T, Faqir H, Kikuchi M, Chiba H, Syono Y. A new high-pressure phase ofbismuth oxide [J]. Mater Res Bull,1998,33:289–292.
    [40] Malmros G. The crystal structure of alpha-Bi2O2[J]. Acta Chem Scand,1970,24:384–396.
    [41] Harwig H A. On the structure of bismuthsesquioxide: The α, β, γ, and δ-phase [J].Z Anorg Chem,1978,444(1):151–166.
    [42] Harwig H A. Phase relations in bismuthsesquioxide [J]. Z Anorg Chem,1978,444(1):167–177.
    [43] Harwig H A, Gerards A G. The polymorphism of bismuth sesquioxide [J].Thermochim Acta,1979,28(1):121–131.
    [44] Blower S K, Greaves C. The structure of β-Bi2O3from powder neutrondiffraction data [J]. Acta Cryst C,1988,44(4):587–589.
    [45] Schumb W C, Rittner E S. Polymorphism of Bismuth Trioxide1[J]. J Am ChemSoc,1943,65(6):1055–1060.
    [46] Gattow G, Schütze D. über Wismutoxide. VI. überein Wismut (III)-oxid mith herem Sauerstoffgehalt (β-Modifikation)[J]. Z Anorg Allg Chem,1964,328(1-2):44–68.
    [47] Willis B T M. The anomalous behaviour of the neutron reflexion of fluorite [J].Acta Cryst,1965,18(1):75–76.
    [48] Battle P D, Catlow C R A, Drennan J, Murray A D. The structural properties ofthe oxygen conducting δ phase of Bi2O3[J]. J Phys C: Solid State Phys,1983,16:L561.
    [49] Gobrecht H, Seeck S, Bergt H E, Martens A, Kossman K. über Untersuchungenan Wismutoxid-Aufdampfschichten. I. Herstellung sowie elektrische und optischeEigenschaften [J]. Phys Status Solidi,1969,33:599–606.
    [50] Irmawati R, Noorfarizan Nasriah M N, Taufiq-Yap Y H, Abdul Hamid S B.Characterization of bismuth oxide catalysts prepared from bismuth trinitratepentahydrate: influence of bismuth concentration [J]. Catal.Today,2004,93–95:701709.
    [51] López-Salinas F I, Martínez-Casta ón G A, Martínez-Mendoza J R, Ruiz F.Synthesis and characterization of nanostructured powders of Bi2O3, BiOCl and Bi [J].Mater Lett,2010,64:15551558.
    [52] Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis ofBi2O3by controlled transformation rate thermal analysis: a new route for this oxide?[J]. Solid State Ionics,2003,157:163–169.
    [53] Gujar T P, Shinde V R, Lokhande C D, Han S H. Electrosynthesis of Bi2O3thinfilms and their use in electrochemical supercapacitors [J]. J Pow Sour,2006,161:1479–1485.
    [54] Skorodumova N V, Jonsson A K, Herranen M, Str mme M, Niklasson G A,Johansson B, Simak S I. Random conductivity of δ-Bi2O3films [J]. App Phys Lett,2005,86:241910.
    [55] Condurache-Bota S, Tigau N, Rambu A P, Rusu G G, Rusu G. I. Optical andelectrical properties of thermally oxidized bismuth thin films [J]. Appl Surf Sci,2011,257:1054510550.
    [56] Becker P. Thermal and optical properties of glasses of the system Bi2O3–B2O3[J].Cryst Res Technol,2003,38:7482.
    [57] Ai Z H, Huang Y, Lee S C, Zhang L Z. Monoclinic α-Bi2O3photocatalyst forefficient removal of gaseous NO and HCHO under visible light irradiation [J]. J Alloyand Compd,2011,509:2044–2049.
    [58] Ai Z H,, Ho W K, Lee S C, Zhang L Z. Efficient photocatalytic removal of NOin indoor air with hierarchical bismuth oxybromide nanoplate microspheres undervisible Light [J]. Environ Sci Technol,2009,43(11):4143–4150.
    [59] Ao C H, Lee S C. Indoor air purification by photocatalyst TiO2immobilized onan activated carbon filter installed in an air cleaner [J]. Chem Eng Sci,2005,60(1):103–109.
    [60] Ao C H, Lee S C, Zou S C, Mak C L. Inhibition effect of SO2on NOxand VOCsduring the photodegradation of synchronous indoor air pollutants at parts per billion(ppb) level by TiO2[J]. Appl Catal B: Environ,2004,49(3):187–193.
    [61] Ao C H, Lee S C. Combination effect of activated carbon with TiO2for thephotodegradation of binary pollutants at typical indoor air level [J]. J PhotochemPhotobiol A: Chem,2004,161(2–3):131–140.
    [62] Shie J L, Lee C H, C.S. Chiou C S, Chang C T, Chang C C, Chang C Y.Photodegradation kinetics of formaldehyde using light sources of UVA, UVC andUVLED in the presence of composed silver titanium oxide photocatalyst [J]. J HazardMater,2008,155(1–2):164–172.
    [63] Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, Poli N, Sberveglieri G.In2O3nanowires for gas sensors: morphology and sensing characterization [J]. ThinSolid Films,2007,515(23):8356–8359.
    [64] Singh N, Ponzoni A, Gupta R K, Lee P S, Comini E. Synthesis of In2O3–ZnOcore–shell nanowires and their application in gas sensing [J]. Sensors Actuat B: Chem,2011,160(1):1346–1351.
    [65] K ck A, Tischner A, Maier T, Kast M, Edtmaier C, Gspan C, Kothleitner G.Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4detection [J]. Sensors Actuat B: Chem,2009,138(1):160–167.
    [66] Van Hieu N. Highly reproducible synthesis of very large-scale tin oxidenanowires used for screen-printed gas sensor [J]. Sensors Actuat B: Chem,2010,144(2):425–431.
    [67] Sberveglieri G, Baratto C, Comini E, Faglia G, Ferroni M, Ponzoni A, Vomiero A.Synthesis and characterization of semiconducting nanowires for gas sensing [J].Sensors Actuat B: Chem,2007,121(1):208–213.
    [68] Park Y-W, Jung H-J, Yoon S-G. Bi2O3nanowire growth from high-density Binanowires grown at a low temperature using aluminum–bismuth co-deposited films[J]. Sens Actuators B,2011,156:709–714.
    [69] Sakai G, Jinkawa T, Miura N, Yamazoe N. Selective Detection of NitrogenMonoxide by Using Bismuth Oxide-Based Sensor [J]. Transducers’99,1999:146–149.
    [70] Bhande S S, Mane R S, Ghule A V, Han S-H. A bismuth oxide nanoplate-basedcarbon dioxide gas sensor [J]. Scripta Mater,2011,65(12):1081–1084.
    [71] Adamian Z N, Abovian H V, Aroutiounian V M. Smoke sensor on the base ofBi2O3sesquioxide [J]. Sens. Actuators B,1996,35–36:241–243.
    [72] Adamyan A Z, Adamian Z N, Aroutiounian V M. Smoke sensor with overcomingof humidity cross-sensitivity [J]. Sens. Actuators B,2003,93:416–421.
    [73] Sberveglieri G, Faglia G, Groppelli S, Nelli P. Methods for the preparation ofNO, NO2and H2sensors based on tin oxide thin films, grown by means of the r.f.magnetron sputtering technique [J]. Sens. Actuators B,1992,8:79–88.
    [74] Devi G S, Manorama S V, Rao V J. SnO2/Bi2O3: a suitable system for selectivecarbon monoxide detection [J]. J Electrochem Soc,1998,145:1039–1044.
    [75] Tomchenko A A. Structure and gas-sensitive properties of WO3–Bi2O3mixedthick films [J]. Sens Actuators B,2000,68:48–52.
    [76] Gunji T, Unno M, Arimitsu K, Abe Y, Long N, Bubendorfer A. Preparation ofYBCO and BSCCO superconducting thin films by a new chemical precursor method[J]. Bull Chem Soc Jpn,2005,78:187–191.
    [77] Vehkam ki M, Hatanp T, Ritala M, Leskel M. Bismuth precursors for atomiclayer deposition of bismuth-containing oxide films [J]. J Mater Chem,2004,14:3191–3197.
    [78] Mehring M. From molecules to bismuth oxide-based materials: Potential homo-and heterometallic precursors and model compounds [J]. Coord Chem Rev,2007,251:974–1006.
    [79] Ma M-G, Zhu J-F, Sun R-C, Zhu Y-J. Microwave-assisted synthesis ofhierarchical Bi2O3spheres assembled from nanosheets with pore structure [J]. MaterLett,2010,64:1524–1527.
    [80] Zhang L, Hashimoto Y, Taishi T, Nakamura I, Ni Q-Q. Fabrication offlower-shaped Bi2O3superstructure by a facile template-free process [J]. Appl SurfSci,2011,257:6577–6582.
    [81] Xiong Y, Wu M Z, Ye J, Chen Q W. Synthesis and luminescence properties ofhand-like α-Bi2O3microcrystals [J]. Mater Lett,2008,62(8–9):1165–1168.
    [82] Qiu Y, Yang M, Fan H, Zuo Y, Shao Y, Xu Y, Yang X, Yang S. Phase-transitionsof α-and β-Bi2O3nanowires [J]. Mater Lett,2011,65:780–782.
    [83] Chen R, Shen Z-R, Wang H, Zhou H-J, Liu Y-P, Ding D-T, Chen T-H.Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visiblelight photocatalytic activity [J]. J Alloy and Compd,2011,509:2588–2596.
    [84] Vila M, Díaz-Guerra C, Piqueras J. α-Bi2O3microcrystals and microrods:Thermal synthesis, structural and luminescence properties [J]. J Alloy and Compd,2013,548:188–193.
    [85] Lin G, Tan D, Luo F, Chen D, Zhao Q, Qiu J, Xu Z. Fabrication andphotocatalytic property of α-Bi2O3nanoparticles by femtosecond laser ablation inliquid [J]. J Alloy and Compd,2010,507: L43–L46.
    [86] Jiang H-Y, Cheng K, Lin J. Crystalline metallic Au nanoparticle-loaded α-Bi2O3microrods for improved photocatalysis [J]. Phys Chem Chem Phys,2012,14:12114–12121.
    [87] Liu X, Liu J, Zheng H, Liu X, Li G, Zhang W. Separation mechanism ofphotogenerated charges for p-type α-Bi2O3nanoparticles with surface states [J]. ApplSurf Sci,2012,258:4240–4245.
    [88] Wang L, Cui Z-L, Zhang Z-K. Bi nanoparticles and Bi2O3nanorods formed bythermal plasma and heat treatment [J]. Surf Coat Tech,2007,201(9–11):5330–5332.
    [89] Wang C, Shao C, Wang L, Zhang L, Li X, Liu Y. Electrospinning preparation,characterization and photocatalytic properties of Bi2O3nanofibers [J]. J Colloid InterfSci,2009,333:242–248.
    [90] Shen X-P, Wu S-K, Zhao H, Liu Q. Synthesis of single-crystalline Bi2O3nanowires by atmospheric pressure chemical vapor deposition approach [J]. Physica E,2007,39:133–136.
    [91] Kim H W. Synthesis and characterization of crystalline β-Bi2O3nanobelts [J].Thin Solid Films,2008,516(11):3665–3668.
    [92] Qin F, Li G, Wang R, Wu J, Sun H, Chen R. Template-free fabrication of Bi2O3and (BiO)2CO3nanotubes and their application in water treatment [J]. Chem Eur J,2012,18:16491–16497.
    [93] Goti M, Popovi S, Musi S. Influence of synthesis procedure on themorphology of bismuth oxide particles [J]. Mater Lett,2007,61(3):709–714.
    [94] López-Salinas F I, Martínez-Casta ón G A, Martínez-Mendoza J R, Ruiz F.Synthesis and characterization of nanostructured powders of Bi2O3, BiOCl and Bi [J].Mater Lett,2010,64:1555–1558.
    [95] Sun Y, Wang W, Zhang L, Zhang Z. Design and controllable synthesis ofα-/γ-Bi2O3homojunction with synergetic effect on photocatalytic activity [J]. ChemEng J,2012,211–212:161–167.
    [96] Tseng T K, Choi J, Jung D W, Davidson M, Holloway P H. Three-DimensionalSelf-Assembled Hierarchical Architectures of Gamma-Phase Flowerlike BismuthOxide [J]. Appl Mater﹠Interfaces,2010,2:943–946.
    [97] Shen Y D, Li Y W, Li W M, Zhang J Z, Hu Z G, Chu J H. Growth of Bi2O3ultrathin films by atomic layer deposition [J]. J Phys Chem C,2012,116:34493456.
    [98] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Bi2O3hierarchicalnanostructures: controllable synthesis, growth mechanism, and their application inphotocatalysis [J]. Chem Eur J,2009,15:1776–1782.
    [99] Li L, Yang Y-W, Li G-H, Zhang L-D. Conversion of a Bi nanowire array to anarray of Bi–Bi2O3core–shell nanowires and Bi2O3nanotubes [J]. Small,2006,2:548–553.
    [100] Fan H T, Pan S S, Teng X M, Ye C, Li G H, Zhang L D. δ-Bi2O3thin filmsprepared by reactive sputtering: Fabrication and characterization [J]. Thin Solid Films,2006,513:142–147.
    [101] Takeyama T, Takahashi N, Nakamura T, Ito S. Growth of the Bi2O3thin filmsunder atmospheric pressure by means of halide CVD [J]. J Phys Chem Solids,2004,65:1349–1352.
    [1] Gobrecht H, Seeck S, Bergt H E, Martens A, Kossman K. über Untersuchungenan Wismutoxid-Aufdampfschichten. I. Herstellung sowie elektrische und optischeEigenschaften [J]. Phys Status Solidi,1969,33:599–606.
    [2] Leontie L, Caraman M, Delibas M, Rusu G I. Optical properties of bismuthtrioxide thin films [J]. Mater Res Bull,2001,36:1629–1637.
    [3] Goti M, Popovi S, Musi S. Influence of synthesis procedure on the morphologyof bismuth oxide particles [J]. Mater Lett,2007,61:709–714.
    [4] Skorodumova N V, Jonsson A K, Herranen M, Str mme M, Niklasson G A,Johansson B, Simak S I. Random conductivity of δ-Bi2O3films [J]. Appl Phys Lett,2005,86:241910.
    [5] Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis ofBi2O3by controlled transformation rate thermal analysis: a new route for this oxide?[J]. Solid State Ionics,2003,157:163–169.
    [6] Gujar T P, Shinde V R, Lokhande C D, Han S H. Electrosynthesis of Bi2O3thinfilms and their use in electrochemical supercapacitors [J]. J Pow Sour,2006,161:1479–1485.
    [7] Zhang L S, Wang W Z, Yang J, Chen Z G, Zhang WQ, Zhou L, Liu S W.Sonochemical synthesis of nanocrystallite Bi2O3as a visible-light-drivenphotocatalyst [J]. Appl Catal A: General,2006,308:105–110.
    [8] Kar S, Santra S, Chaudhuri S. Direct Synthesis of Indium Nanotubes from IndiumMetal Source [J]. Cryst Growth&Des,2008,8:344–346.
    [9] Chen Z G. Pei F, Pei Y T, Hosson J D. A Versatile Route for the Synthesis ofSingle Crystalline Oxide Nanorods: Growth Behavior and Field EmissionCharacteristics [J]. Cryst Growth&Des,2010,10:2585–2590.
    [10] Irmawati R, Noorfarizan Nasriah M N, Taufiq-Yap Y H, Abdul Hamid B.Characterization of bismuth oxide catalysts prepared from bismuth trinitratepentahydrate: influence of bismuth concentration [J]. Catal Today,2004,93–95:701–709.
    [11] Yang B, Mo M, Hu H, Li C, Yang X, Li Q, Qian Y. A Rational Self-SacrificingTemplate Route to β-Bi2O3Nanotube Arrays [J]. Eur J Inorg Chem,2004,2004:1785–1787.
    [12] Yang Q, Li Y, Yin Q, Wang P, Cheng Y. Hydrothermal synthesis of bismuth oxideneedles [J]. Mater Lett,2002,55:46–49.
    [13] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. Electrospinningpreparation, characterization and photocatalytic properties of Bi2O3nanofibers [J]. JColloid and Interface Science,2009,333:242–248.
    [14] Kim H W. Synthesis and characterization of crystalline β-Bi2O3nanobelts [J].Thin Solid Films,2008,516:3665–3668.
    [15] Wang L, Cui Z L, Zhang Z K. Bi nanoparticles and Bi2O3nanorods formed bythermal plasma and heat treatment [J]. Surf and Coat Technology,2007,201:5330–5332.
    [16] Xiong Y, Wu M, Ye J, Chen Q. Synthesis and luminescence properties ofhand-like α-Bi2O3microcrystals [J]. Mater Lett,2008,62:1165–1168.
    [17] Zeng H C. Synthetic architecture of interior space for inorganic nanostructures[J]. J Mater Chem,2006,16:649–662.
    [18] Zhang J, Wang Y, Zheng J, Huang F, Chen D, Lan Y, Ren G, Lin Z, Wang C.Oriented Attachment Kinetics for Ligand Capped Nanocrystals: Coarsening ofThiol-PbS Nanoparticles [J]. J Phys Chem B,2007,111:1449–1454.
    [19] Li Z, Xu F, Sun X, Zhang W. Oriented Attachment in Vapor: Formation of ZnOThree-Dimensional Structures by Intergrowth of ZnO Microcrystals [J]. Cryst Growth&Des,2008,8:805–807.
    [20]王俊珍,付希贤,杨秋华等. Bi2O3对染料的光催化降解性能[J].应用化学,2002,19:483–485.
    [21] Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterizationof quantum-size titanium dioxide [J]. J Phys Chem,1988,92:5196–5201.
    [22] Blasse G, Meijerink A, Nomes M, Zuidema J. Unusual Bismuth luminescence inStrontium Tetraborate (SrB4O7: Bi)[J]. J Phys Chem Solids,1994,55:171–174.
    [23] Peng M, Wang C, Chen D, Qiu J, Jiang X, Zhu C. Investigations on bismuth andaluminum co-doped germanium oxide glasses for ultra-broadband opticalamplification [J]. J Non-Cryst Solids,2005,351:2388–2393.
    [24] Bordun O M. Luminescence of Bismuth-Activated Ceramics of Yttrium andScandium Oxides [J]. J Appl Spectrosc,2002,69:67–71.
    [25] Meng X, Qiu J, Peng M, Chen D, Zhao Q, Jiang X, Zhu C. Infrared broadbandemission of bismuth-doped barium-aluminum-borate glasses [J]. Opt Express,2005,13:1635–1642.
    [26] Komatsu M, Oyoshi K, Hishita S, Matsuishi K, Onari S, Arai T. Visiblephotoluminescence in thermally annealed Bi implanted SiO2films [J]. Mater ChemPhys,1998,54:286–288.
    [27] Blasse G, Zhiran H. Winnubst A J A, Burggraaf A J. The luminescence of yitriastabilized zirconia doped with Bi2O3[J]. Mater Res Bull,1984,19:1057–1062.
    [28] Vila M, Díaz-Guerra C, Piqueras J. Luminescence and Raman study of α-Bi2O3ceramics [J]. Mater Chem Phys,2012,133:559–564.
    [29] Zorenko Y, Gorbenko V, Voznyak T, Jary V, Nikl M. Luminescencespectroscopy of the Bi3+single and dimer centers in Y3Al5O12:Bi single crystallinefilms [J]. J Lumin,2010,130:1963–1969.
    [30] Srivastava A M. Luminescence of divalent bismuth in M2+BPO5(M2+=Ba2+, Sr2+and Ca2+)[J]. J Lumin,1998,78:239–243.
    [31] Gaft M, Reisfeld R, Panczer G, Boulon G, Saraidarov T, Erlish S. Theluminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4[J]. Opt Mater,2001,16:279–290.
    [32] Kumari L, Lin J, Ma Y. One-dimensional Bi2O3nanohooks: synthesis,characterization and optical properties [J]. J Phys: Condens Matter,2007,19:406204.
    [33] Suzuki T, Ohishi Y. Ultrabroadband near-infrared emission from Bi-dopedLi2O–Al2O3–SiO2glass [J]. Appl Phys Lett,2006,88:191912
    [1] Douglas T. A bright bio-inspired future [J]. Science,2003,299:1192–1193.
    [2] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. Mesoporoustitania spheres with tunable chamber stucture and enhanced photocatalytic activity[J].J Am Chem Soc,2007,129:8406–8407.
    [3] Murphy C J, Jana N R. Controlling the aspect ration of inorganic nanorobs andnonowire [J]. Adv Mater,2002,14:80–82.
    [4] Raula M, Rashid M H, Paira T K, Dinda E, Mandal T K. Ascorbate-assisted growthof hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalyticproperties [J]. Langmuir,2010,26:8769–8782.
    [5] Wang C, Han X J, Zhang X L, Hu S R, Zhang T, Wang J Y, Du Y C, Wang X H, Xu P.Controlled synthesis and morphology-dependent electromagnetic properties ofhierarchical cobalt assemblies [J]. J Phys Chem C,2010,114:14826–14830.
    [6] Gobrecht H, Seeck S, Bergt H E, Martens A, Kossman K. über Untersuchungenan Wismutoxid-Aufdampfschichten. I. Herstellung sowie elektrische und optischeEigenschaften [J]. Phys Status Solidi,1969,33:599–606.
    [7] Irmawati R, Noorfarizan Nasriah M N, Taufiq-Yap Y H, Abdul Hamid S B.Characterization of bismuth oxide catalysts prepared from bismuth trinitratepentahydrate: influence of bismuth concentration [J]. Catal.Today,2004,93–95:701–709.
    [8] Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis ofBi2O3by controlled transformation rate thermal analysis: a new route for this oxide?[J]. Solid State Ionics,2003,157:163–169.
    [9] Goti M, Popovi S, Musi S. Influence of synthesis procedure on the morphologyof bismuth oxide particles [J]. Mater Lett,2007,61:709–714.
    [10] Gujar T P, Shinde V R, Lokhande C D, Han S H. Electrosynthesis of Bi2O3thinfilms and their use in electrochemical supercapacitors [J]. J Pow Sour,2006,161:1479–1485.
    [11] Skorodumova N V, Jonsson A K, Herranen M, Str mme M, Niklasson G A,Johansson B, Simak S I. Random conductivity of δ-Bi2O3films [J]. Appl Phys Lett,2005,86:241910.
    [12] Condurache-Bota S, Tigau N, Rambu A P, Rusu G G, Rusu G. I. Optical andelectrical properties of thermally oxidized bismuth thin films [J]. Appl Surf Sci,2011,257:10545–10550.
    [13] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. Electrospinningpreparation, characterization and photocatalytic properties of Bi2O3nanofibers [J]. J.Colloid Interface Science,2009,333:242–248.
    [14] Kim H W. Synthesis and characterization of crystalline β-Bi2O3nanobelts [J].Thin Solid Films,2008,516:3665–3668.
    [15] Kumari L, Lin J H, Ma Y R. One-dimensional Bi2O3nanohooks: synthesis,characterization and optical properties [J]. J Phys: Condens Matter,2007,19:406204–406215.
    [16] Jamshidifar M, Vedadi A, Govan D S, Marhic M E. Continuous-wave parametricamplification in bismuth-oxide fibers [J]. Opt Fiber Technology,2010,16:458–466.
    [17] Rico-Fuentes O, Sánchez-Aguilera E, Velasquez C, Ortega-Alvarado R, Alonso JC, Ortiz A. Characterization of spray deposited bismuth oxide thin films and theirthermal conversion to bismuth silicate [J]. Thin Solid Films,2005,478:96–102.
    [18] Xiong Y, Wu M, Ye J, Chen Q. Synthesis and luminescence properties ofhand-like α-Bi2O3microcrystals [J]. Mater Lett,2008,62:1165–1168.
    [19] Ma M G, Zhu J F, Sun R C, Zhu Y J, Microwave-assisted synthesis ofhierarchical Bi2O3spheres assembled from nanosheets with pore structure [J]. MaterLett,2010,64:1524–1527.
    [20] Tseng T K, Choi J, Jung D W, Davidson M, Holloway P H. Three-dimensionalself-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide[J]. ACS Appl Mater Interfaces,2010,2:943–946.
    [21] Denisovy V N, Ivlevy A N, Lipiny A S, Mavriny B N, Orlovz V G. Ramanspectra and lattice dynamics of single-crystal α-Bi2O3[J]. J Phys: Condens Matter,1997,9:4967–4978.
    [22] Cabot A, Marsal A, Arbiol J, Morante J R. Bi2O3as a selective sensing materialfor NO detection [J]. Sensors and Act B,2004,99:74–89.
    [23] Prekajski M, Kremenovi A, Babi B, Rosi M, Matovi B,Radosavljevi-Mihajlovi A, Radovi M. Room-temperature synthesis of nanometricα-Bi2O3[J]. Mater Lett,2010,64:2247–2250.
    [24] Yu J, Wang J, Li Z S, Li L, Liu Q, Zhang M L, Liu L H. Assembly of γ-Aluminananorods via supercritical technology [J]. Cryst Growth Des,2012,12:2872–2876.
    [25] Kong J, Liu W, Wang F L, Wang X Z, L. Luan Q, Liu J R, Wang Y, Zhang Z J,Itoh M, Machida K. Fabrication of monodispersed nickel flower-like architectures viaa solvent-thermal process and analysis of their magnetic and electromagneticproperties [J]. J Solid State Chem,2011,184:2994–3001.
    [26] Yu X X, Yu J G, Cheng B, Jaroniec M. Synthesis of hierarchical flower-likeAlOOH and TiO2/AlOOH superstructures and their enhanced photocatalyticproperties [J]. J Phys Chem C,2009,113:17527–17535.
    [27] Prevot V, Caperaa N, Taviot-Guého C, Forano C. Glycine-assisted hydrothermalsynthesis of NiAl-layered double hydroxide nanostructures [J]. Cryst Growth Des,2009,9:3646–3654.
    [28] Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterizationof quantum-size titanium dioxide [J]. J Phys Chem,1988,92:5196–5201.
    [29] Blasse G, Meijerink A, Nomes M, Zuidema J. Unusual Bismuth luminescence inStrontium Tetraborate (SrB4O7:Bi)[J]. J Phys Chem Solids,1994,55:171–174.
    [30] Peng M, Wang C, Chen D, Qiu J, Jiang X, Zhu C. Investigations on bismuth andaluminum co-doped germanium oxide glasses for ultra-broadband opticalamplification [J]. J Non-Cryst Solids,2005,351:2388–2393.
    [31] Bordun O M. Luminescence of Bismuth-Activated Ceramics of Yttrium andScandium Oxides [J]. J Appl Spectrosc,2002,69:67–71.
    [32] Meng X, Qiu J, Peng M, Chen D, Zhao Q, Jiang X, Zhu C. Infrared broadbandemission of bismuth-doped barium-aluminum-borate glasses [J]. Opt Express,2005,13:1635–1642.
    [33] Komatsu M, Oyoshi K, Hishita S, Matsuishi K, Onari S, Arai T. Visiblephotoluminescence in thermally annealed Bi implanted SiO2films [J]. Mater ChemPhys,1998,54:286–288.
    [34] Blasse G, Zhiran H. Winnubst A J A, Burggraaf A J. The luminescence of yitriastabilized zirconia doped with Bi2O3[J]. Mater Res Bull,1984,19:1057–1062.
    [35] Vila M, Díaz-Guerra C, Piqueras J. Luminescence and Raman study of α-Bi2O3ceramics [J]. Mater Chem Phys,2012,133:559–564.
    [36] Zorenko Y, Gorbenko V, Voznyak T, Jary V, Nikl M. Luminescencespectroscopy of the Bi3+single and dimer centers in Y3Al5O12:Bi single crystallinefilms [J]. J Lumin,2010,130:1963–1969.
    [37] Srivastava A M. Luminescence of divalent bismuth in M2+BPO5(M2+=Ba2+, Sr2+and Ca2+)[J]. J Lumin,1998,78:239–243.
    [38] Gaft M, Reisfeld R, Panczer G, Boulon G, Saraidarov T, Erlish S. Theluminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4[J]. Opt Mater,2001,16:279–290.
    [39] Suzuki T, Ohishi Y. Ultrabroadband near-infrared emission from Bi-dopedLi2O–Al2O3–SiO2glass [J]. Appl Phys Lett,2006,88:191912.
    [1] Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO nanostructures [J]. Nano Letters,2002,2:1287–1291.
    [2] R rvik P M, Grande T, Einarsrud M. Hierarchical PbTiO3nanostructures grownon SrTiO3substrates [J]. Cryst Growth Des,2009,9:1979–1984.
    [3] Shen G, Bando Y, Tang C, Golberg D. Self-organized hierarchical ZnS/SiO2nanowire heterostructures [J]. J Phys Chem B,2006,110:7199–7202.
    [4] Liu R, Li S, Yu X, Zhang G, Ma Y, Yao J, Keita B, Nadjo L.Polyoxometalate-assisted galvanic replacement synthesis of silver hierarchicaldendritic structures [J]. Cryst Growth Des,2011,11:3424–3431.
    [5] Zhang S, Wu C, Wu Z, Yu K, Wei J, Xie Y. Construction of PbSe hierarchicalsuperstructures via an alkaline etching method [J]. Cryst Growth Des,2008,8:2933–2937.
    [6] Yin J, Cao H, Zhang J, Qu M, Zhou Z. Synthesis and applications of γ-TungstenOxide hierarchical nanostructures [J]. Cryst Growth Des,2013,13:759–769.
    [7] Raula M, Harunar Rashid M, Paira T, Dinda E, Mandal T. Ascorbate-assistedgrowth of hierarchical ZnO nanostructures: sphere, spindle, and flower and theircatalytic properties [J]. Langmuir,2010,26:8769–8782.
    [8] Wang C, Chen D, Jiao X. Flower-like In2O3nanostructures derived from novelprecursor: synthesis, characterization, and formation mechanism [J]. J Phys Chem C,2009,113:7714–7718.
    [9] Yang M, He J. Fine tuning of the morphology of copper oxide nanostructures andtheir application in ambient degradation of methylene blue [J]. J Colloid and InterfaceSci,2011,355:15–22.
    [10] Gobrecht H, Seeck S, Bergt H E, Martens A, Kossman K. über Untersuchungenan Wismutoxid-Aufdampfschichten. I. Herstellung sowie elektrische und optischeEigenschaften [J]. Phys Status Solidi,1969,33:599–606.
    [11] Irmawati R, Noorfarizan Nasriah M N, Taufiq-Yap Y H, Abdul Hamid S B.Characterization of bismuth oxide catalysts prepared from bismuth trinitratepentahydrate: influence of bismuth concentration [J]. Catal.Today,2004,93–95:701–709.
    [12] López-Salinas F I, Martínez-Casta ón G A, Martínez-Mendoza J R, Ruiz F.Synthesis and characterization of nanostructured powders of Bi2O3, BiOCl and Bi [J].Mater Lett,2010,64:1555–1558.
    [13] Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis ofBi2O3by controlled transformation rate thermal analysis: a new route for this oxide?[J]. Solid State Ionics,2003,157:163–169.
    [14] Gujar T P, Shinde V R, Lokhande C D, Han S H. Electrosynthesis of Bi2O3thinfilms and their use in electrochemical supercapacitors [J]. J Pow Sour,2006,161:1479–1485.
    [15] Skorodumova N V, Jonsson A K, Herranen M, Str mme M, Niklasson G A,Johansson B, Simak S I. Random conductivity of δ-Bi2O3films [J]. App Phys Lett,2005,86:241910.
    [16] Condurache-Bota S, Tigau N, Rambu A P, Rusu G G, Rusu G. I. Optical andelectrical properties of thermally oxidized bismuth thin films [J]. App Surface Sci,2011,257:10545–10550.
    [17] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. Electrospinningpreparation, characterization and photocatalytic properties of Bi2O3nanofibers [J]. J.Colloid Interface Science,2009,333:242–248.
    [18] Kim H W. Synthesis and characterization of crystalline β-Bi2O3nanobelts [J].Thin Solid Films,2008,516:3665–3668.
    [19] Park Y W, Jung H J, Yoon S G. Bi2O3nanowire growth from high-density Binanowires grown at a low temperature using aluminum–bismuth co-deposited films[J]. Sensors and Actuators B,2011,156:709–714.
    [20] Chen R. Shen Z R, Wang H, Zhou H J, Liu Y P, Ding D T, Chen T H. Fabricationof mesh-like bismuth oxide single crystalline nanoflakes and their visible lightphotocatalytic activity [J]. J Allo and Comp,2011,509:2588–2596.
    [21] Vila M, Díaz-Guerra C, Piqueras J. α-Bi2O3microcrystals and microrods:Thermal synthesis, structural and luminescence properties [J]. J Allo and Comp,2013,548:188–193.
    [22] Goti M, Popovi S, Musi S. Influence of synthesis procedure on themorphology of bismuth oxide particles [J]. Mater Lett,2007,61:709–714.
    [23] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Bi2O3hierarchicalnanostructures: controllable synthesis, growth mechanism, and their application inphotocatalysis [J]. Chem Eur J,2009,15:1776–1782.
    [24] Ma M G, Zhu J F, Sun R C, Zhu Y J, Microwave-assisted synthesis ofhierarchical Bi2O3spheres assembled from nanosheets with pore structure [J]. MaterLett,2010,64:1524–1527.
    [25] Zhang L, Hashimotoa Y, Taishia T, Nakamurab I, Nib Q Q. Fabrication offlower-shaped Bi2O3superstructure by a facile template-free process [J]. Appl SurfSci,2011,257:6577–6582.
    [26] Li W J, Shi E W, Zhong W Z, Yin Z W. Growth mechanism and growth habit ofoxide crystals [J]. J Crys Grow,1999203:186–196.
    [27] Wu Y C, Chaing Y C, Huang C Y, Wang S F, Yang H Y. Morphology-controllableBi2O3crystals through an aqueous precipitation method and their photocatalyticperformance [J]. Dyes and Pigments,201398:25–30.
    [28] Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterizationof quantum-size titanium dioxide [J]. J Phys Chem,1988,92:5196–5201.
    [29] N. Talebian, S. M. Amininezhad, M. Doudi, Controllable synthesis of ZnOnanoparticles and their morphology-dependent antibacterial and optical properties, J.Photochem. and Photobio. B: Biology,2013,120:66–73.
    [30] Blasse G, Zhiran H. Winnubst A J A, Burggraaf A J. The luminescence of yitriastabilized zirconia doped with Bi2O3[J]. Mater Res Bull,1984,19:1057–1062.
    [31] Vila M, Díaz-Guerra C, Piqueras J. Luminescence and Raman study of α-Bi2O3ceramics [J]. Mater Chem Phys,2012,133:559–564.
    [32] Zorenko Y, Gorbenko V, Voznyak T, Jary V, Nikl M. Luminescencespectroscopy of the Bi3+single and dimer centers in Y3Al5O12:Bi single crystallinefilms [J]. J Lumin,2010,130:1963–1969.
    [33] Srivastava A M. Luminescence of divalent bismuth in M2+BPO5(M2+=Ba2+, Sr2+and Ca2+)[J]. J Lumin,1998,78:239–243.
    [34] Gaft M, Reisfeld R, Panczer G, Boulon G, Saraidarov T, Erlish S. Theluminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4[J]. Opt Mater,2001,16:279–290.
    [35] Kumari L, Lin J H, Ma Y R. One-dimensional Bi2O3nanohooks: synthesis,characterization and optical properties [J]. J Phys: Condens Matter,2007,19:406204–406215.
    [36] M. Vila, C. Díaz-Guerra, J. Piqueras, Luminescence and Raman study of α-Bi2O3ceramics, Mater Chem. Phys,2012,133:559–564.
    [1] Gobrecht H, Seeck S, Bergt H E, Martens A, Kossman K. über Untersuchungenan Wismutoxid-Aufdampfschichten. I. Herstellung sowie elektrische und optischeEigenschaften [J]. Phys Status Solidi,1969,33:599–606.
    [2] Irmawati R, Noorfarizan Nasriah M N, Taufiq-Yap Y H, Abdul Hamid S B.Characterization of bismuth oxide catalysts prepared from bismuth trinitratepentahydrate: influence of bismuth concentration [J]. Catal.Today,2004,93–95:701–709.
    [3] López-Salinas F I, Martínez-Casta ón G A, Martínez-Mendoza J R, Ruiz F.Synthesis and characterization of nanostructured powders of Bi2O3, BiOCl and Bi [J].Mater Lett,2010,64:1555–1558.
    [4] Monnereau O, Tortet L, Llewellyn P, Rouquerol F, Vacquier G. Synthesis ofBi2O3by controlled transformation rate thermal analysis: a new route for this oxide?[J]. Solid State Ionics,2003,157:163–169.
    [5] Gujar T P, Shinde V R, Lokhande C D, Han S H. Electrosynthesis of Bi2O3thinfilms and their use in electrochemical supercapacitors [J]. J Pow Sour,2006,161:1479–1485.
    [6] Skorodumova N V, Jonsson A K, Herranen M, Str mme M, Niklasson G A,Johansson B, Simak S I. Random conductivity of δ-Bi2O3films [J]. App Phys Lett,2005,86:241910.
    [7] Condurache-Bota S, Tigau N, Rambu A P, Rusu G G, Rusu G. I. Optical andelectrical properties of thermally oxidized bismuth thin films [J]. App Surface Sci,2011,257:10545–10550.
    [8] Becker P. Thermal and optical properties of glasses of the system Bi2O3–B2O3[J].Cryst Res Tech,2003,38:7482.
    [9] Cornei N, Tancret N, Abraham F, Mentré O. New ε-Bi2O3Metastable Polymorph[J]. Inorg Chem,2006,45:48864888.
    [10] Gualtieri A F, Immovilli S, Prudenziati M. Powder x-ray diffraction data for thenew polymorphic compound ω-Bi2O3[J]. Powder Diffr,1997,12:9092.
    [11] Atou T, Faqir H, Kikuchi M, Chiba H, Syono Y. A new high-pressure phase ofbismuth oxide [J]. Mater Res Bull,1998,33:289292.
    [12] Leontie L, Caraman M, Visinoiu A, Rusu GI. On the optical properties ofbismuth oxide thin films prepared by pulsed laser deposition [J]. Thin Solid Film,2005,73:230235.
    [13] Li L, Yang Y W, Li G H, Zhang L D. Conversion of a Bi Nanowire Array to anArray of Bi–Bi2O3Core–Shell Nanowires and Bi2O3Nanotubes [J]. Small,2006,2:548553.
    [14] Sirota B, Reyes-Cuellar J, Kohli P, Wang L, McCarroll M E, Aouadi S M.Bismuth oxide photocatalytic nanostructures produced by magnetron sputteringdeposition [J]. Thin Solid Films,2012,520:61186123.
    [15] Cabot A, Marsal A, Arbiol J, Morante J R. Bi2O3as a selective sensing materialfor NO detection [J]. Sensors and Act B,2004,99:7489.
    [16] Yashima M, Ishimura D. Crystal structure and disorder of the fast oxide-ionconductor cubic Bi2O3[J]. Chem Phys Lett,2003,378:395399.
    [17] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. Electrospinningpreparation, characterization and photocatalytic properties of Bi2O3nanofibers [J]. JCollo and Interface Sci,2009,333:242248.
    [18] Kim H W. Synthesis and characterization of crystalline β-Bi2O3nanobelts [J].Thin Solid Films,2008,516:36653668.
    [19] Park Y W, Jung H J, Yoon S G. Bi2O3nanowire growth from high-density Binanowires grown at a low temperature using aluminum–bismuth co-deposited films[J]. Sensors and Act B,2011,156:709714.
    [20] Chen R, Shen Z R, Wang H, Zhou H J, Liu Y P, Ding D T, et al. Fabrication ofmesh-like bismuth oxide single crystalline nanoflakes and their visible lightphotocatalytic activity [J]. J Allo and Comp,2011,509:25882596.
    [21] Vila M, Díaz-Guerra C, Piqueras J. α-Bi2O3microcrystals and microrods:Thermal synthesis, structural and luminescence properties [J]. J Allo and Comp,2013,548:188193.
    [22] Bohannan E W, Jaynes C C, Shumsky M G, Barton J K, Switzer J A.Low-temperature electrodeposition of the high-temperature cubic polymorph ofbismuth(III) oxide [J]. Solid State Ionics,2000,131:97107.
    [23] Sun Y Y, Wang W Z, Zhang L, Zhang Z J. Design and controllable synthesis ofα-/γ-Bi2O3homojunction with synergetic effect on photocatalytic activity [J]. ChemEng J,2012,211212:161167.
    [24] Shen Y D, Li Y W, Li W M, Zhang J Z, Hu Z G, Chu J H. Growth of Bi2O3Ultrathin Films by Atomic Layer Deposition [J]. J Phys Chem C,2012,116:34493456.
    [25] Tseng T K, Choi J, Jung D W, Davidson M, Holloway P H. Three-DimensionalSelf-Assembled Hierarchical Architectures of Gamma-Phase Flowerlike BismuthOxide [J]. Appl Mater﹠Interfaces,2010,2:943946.
    [26] Poleti D, Karanovi L, Zduji M, Jovaleki E, Brankovi Z. Mechanochemicalsynthesis of γ-Bi2O3[J]. Solid-State Sci,2004,6:239245.
    [27] Deng H Y, Hao W C, Xu H Z, Wang C Z. Effect of Intrinsic Oxygen Vacancy onthe Electronic Structure of γ-Bi2O3: First-Principles Calculations [J]. J Phys Chem C,2012,116:1251–1255.
    [28] Kozhummal R, Berenschot E, Jansen H, Tas N, Zacharias M, Elwenspoek M.Fabrication of micron-sized tetrahedra by Si <111> micromachining and retractionedge lithography [J]. J Micromech Microeng,2012,22:085032(7pp).
    [29] Li W J, Shi E W, Zhong W Z, Yin Z W. Growth mechanism and growth habit ofoxide crystals [J]. J Crys Grow,1999,203:186–196.
    [30] Wu Y C, Chaing Y C, Huang C Y, Wang S F, Yang H Y. Morphology-controllableBi2O3crystals through an aqueous precipitation method and their photocatalyticperformance [J]. Dyes and Pigments,2013,98:25–30.
    [31] Musi S, Drag evi D, Popovi S. Influence of synthesis route on the formationof ZnO particles and their morphologies [J]. J Alloy and Comp2007,429:242–249.
    [32] Singh D P, Ojha A K, Srivastava O N. Synthesis of different Cu(OH)2and CuO(nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wetchemical route [J]. J Phys Chem C,2009,113:3409–3418.
    [33] Zhang D, Fu H, Shi L, Pan C, Li Q, Chu Y, et al. Synthesis of CeO2Nanorodsvia Ultrasonication Assisted by Polyethylene Glycol [J]. Inorg Chem,2007,46:2446–2451.
    [34] Xu Y, Jiao X, Chen D. PEG-Assisted Preparation of Single-Crystalline Cu2OHollow Nanocubes [J]. J Phys Chem C,2008,112:16769–16773.
    [35] Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterizationof quantum-size titanium dioxide [J]. J Phys Chem,1988,92:5196–5201.
    [36] Blasse G, Zhiran H. Winnubst A J A, Burggraaf A J. The luminescence of yitriastabilized zirconia doped with Bi2O3[J]. Mater Res Bull,1984,19:1057–1062.
    [37] Vila M, Díaz-Guerra C, Piqueras J. Luminescence and Raman study of α-Bi2O3ceramics [J]. Mater Chem Phys,2012,133:559–564.
    [38] Zorenko Y, Gorbenko V, Voznyak T, Jary V, Nikl M. Luminescencespectroscopy of the Bi3+single and dimer centers in Y3Al5O12:Bi single crystallinefilms [J]. J Lumin,2010,130:1963–1969.
    [39] Srivastava A M. Luminescence of divalent bismuth in M2+BPO5(M2+=Ba2+, Sr2+and Ca2+)[J]. J Lumin,1998,78:239–243.
    [40] Gaft M, Reisfeld R, Panczer G, Boulon G, Saraidarov T, Erlish S. Theluminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4[J]. Opt Mater,2001,16:279–290.
    [41] Kumari L, Lin J H, Ma Y R. One-dimensional Bi2O3nanohooks: synthesis,characterization and optical properties [J]. J Phys: Condens Matter,2007,19:406204–406215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700