用户名: 密码: 验证码:
稀土元素改性铜基催化剂上乙烷氧氯化制氯乙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烷氧氯化制氯乙烯是全世界广泛研究的具有广阔市场前景和环境和谐的新型工艺。本文通过氧化镁改性氧化铝载体制备了负载型CuCl2基催化剂,并利用稀土元素作为催化助剂对催化剂进行改性,采用XRD、BET、H2-TPR、NH3-TPD、SEM、TEM、ICP、UV-Vis和XPS等方法对改性后催化剂的物化性质、表面酸性及氧化还原性质进行了表征,而且通过催化反应评价考察了稀土元素助剂改性催化剂对乙烷氧氯化反应催化性能的影响。
     考察了Pr助剂含量对催化剂结构、表面酸性、氧化还原性质和乙烷氧氯化活性的作用,结果表明Pr助剂减弱了CuCl2与MgO-γ-Al2O3之间的相互作用,使表面Cu物种含量增加,电子由Pr助剂转移到活性组分Cu物种上,Pr助剂加速了Cu(Ⅱ)→Cu(Ⅰ)→Cu(Ⅱ)氧化还原反应的进行,同时,Pr助剂使Cu物种粒径变小,促进了Cu物种在催化剂表面的分散。
     Y助剂改性CuCl2基催化剂表面存在了较多的氧物种,有利于催化反应中的CuI→CuII转化,促进了Cl2中间产物的生成;Y助剂的添加有效调节催化剂表面酸中心性质,减弱了酸强度,产生比较多弱酸活性中心,减少了积碳在反应中的形成,经过120小时活性测试后,乙烷转化率维持在93.8%以上,氯乙烯选择性仍然大于43.0%。
     采用水热法合成了稀土元素(La、Ce、Pr)改性的TiO2载体,稀土元素La,Ce,Pr半径远远大于Ti4+半径,吸附在TiO2载体的外表面,抑制了TiO2粒度进一步的增长,使得TiO2粒径变小;稀土元素La,Ce,Pr改性TiO2载体与未改性TiO2载体相比,比表面积显著增大,稀土元素La,Ce,Pr改性TiO2载体负载CuCl2和KCl催化剂表面氧化还原性质与未改性TiO2载体相比,加快了CuII→CuI→CuII氧化还原过程,促进了Cu活性物种的还原,提高了乙烷氧氯化反应活性。
Vinyl chloride monomer (VCM) is an important monomer in the manufacture ofpolyvinyl chloride (PVC). Nowadays, VCM is commercially produced by threeprocesses: acetylene process, ethylene oxychlorination and ethane oxychlorination.Acetylene process of production of vinyl chloride involves reacting hydrogen chlorideand acetylene in the presence of a mercuric chloride catalyst. The method has beenoutdated all over the world for the high energy consumption and serious environmentpollution, it is yet predominant in China. The ethylene oxychlorination processincludes the cracking of ethylene dichloride (EDC) and the direct chlorination ofethylene or oxychlorination of ethylene with oxygen and hydrogen chloride. Ethyleneoxychlorination process is the principal way to produce vinyl chloride all over theworld. But the expense of ethylene as the raw material is usually high due to thedecrease in storage of petroleum. Furthermore, the technique of the process iscomplicated. The oxychlorination reaction of ethane is a promising and economicroute to produce vinyl chloride, because ethane as a raw material is much cheaper andwidely distributed. Many foreign institution have made great efforts to researchproduction of vinyl chloride by ethane oxychlorination process. By contrast there hasbeen little report about this technology in our country. Therefore, Study of preparationof vinyl chloride by ethane oxychlorination process is of great scientific value. Ethaneoxychlorination process includes two independent catalytic reactions: the oxidation ofHCl with the copper based catalysts and dehydrochlorination of dichlroethanedepended on the surface nature of the catalyst. Many kinds of catalysts have beeninvestigated for the reaction.
     In this work, a series of rare earth element modified copper-base catalysts wereprepared by conventional impregnation method and the catalytic activity for ethaneoxychlorination reaction was also investigated. The catalysts were characterized bymeans of XRD, BET, H2-TPR, NH3-TPD, SEM, TEM, ICP, UV-Vis and XPS to discuss the structure, surface acidity, redox properties of the catalysts and the catalyticperformance. The main experimental results and conclusions are as follows:
     1. Ethane oxychlorination over Pr modified CuCl2-KCl/MgO-γ-Al2O3catalyst
     Pr modified CuCl2-KCl/MgO-γ-Al2O3catalysts were prepared by animpregnation method and the influence of Pr additive content on the structure surfaceacidity, redox properties of the catalysts and catalytic performance of ethaneoxychlorination was investigated. It was found that the Cu species must be anamorphous phase, or in the form of nanoclusters, which cannot be detected by XRD.Addition of Pr decreased the interaction between active species CuCl2and γ-Al2O3and made the active species more dispersed. The experiment results showed theelectronic transformation from Pr to Cu species, which accelerated the conversion ofredox couple (Cu+/Cu2+). The latter will promote the conversion of C2H6andselectivity to C2H3Cl. More amorphous CuCl2species were present on the surface ofsupport due to the presence of Pr species in the samples. At the same time, theaddition of Pr can reduce the particle sizes of the copper species and improve thedispersion in the catalysts. The ethane conversion and selectivity of vinyl chloridereached97.5%and52.0%respectively for Pr6O11-CuCl2-KCl/MgO-γ-Al2O3catalystwhile praseodymium content was5wt%with the reaction condition: T=500℃,GHSV=3200h-1and VC2H6/VHCl/Vair=1/2/5.
     2. Y2O3modified CuCl2catalyst for Ethane Oxychlorination
     A series of Y2O3promoter modified CuCl2-based catalysts were prepared by theincipient impregnation method. Effect of Y2O3promoter on the structure, redoxproperties, acidity as well as catalytic performance of CuCl2-based catalyst for ethaneoxychlorination was discussed. With modification by Y2O3promoter, there were moresurface oxygen species on the surface of CuCl2-based catalysts, which increased theselectivity of the vinyl chloride. The Y2O3promoter adjusted surface acidity andincreased weak acid sites of the support, which contributed to decrease the amount ofdeposited coke. Y2O3promoter modified Pr-Cu/Yxcatalysts showed the better activityand stability than the unmodified ones. The ethane conversion and the selectivity ofvinyl chloride and ethylene were98.5%,55.8%and34.7%, respectively. Moreoverthe catalytic activity for Pr-Cu/Y3catalysts was still high after120h reaction, theconversion of ethane and selectivity of vinyl chloride was more than93.8%and43.0%, respectively.
     3. Study of the nature of Cu-based catalysts supported on rare earth element(La, Ce, Pr) modified TiO2support
     The different TiO2support were prepared using hydrothermal treatment method.The structure and physico-chemical properties of the rare earth element La, Ce, Pr,motified TiO2support were searched by BET, XPS, XRD, SEM, NH3-TPD andH2-TPR. Furthermore, the catalytic activity of La, Ce, Pr, motified TiO2supportedCuCl2and KCl catalysts were evaluated. It was found that the addition of La, Ce andPr promoter to TiO2support increased the surface area and reduced the particle size ofthe support. Because the radius of La, Ce and Pr atom was much bigger than that of Tiatom, La, Ce and Pr additives were adsorbed on the external surface of the supportand inhibited the growth of the crystallite size. The SEM result indicated that thereexisted a great deal of pore, which improved the dispersion of the active species. TheLa, Ce and Pr promoter decreased the reduction temperature of CuCl2-based catalystsuppored on TiO2support, which accelerated the reduction-oxidation step forCuII→CuI→CuIIand was responsible for the excellent catalytic performance. The La,Ce and Pr species modified TiO2support showed that the number of strong acid sitesdecreased and that of weak acid sites increased, which increased of the catalyticactivity for ethane oxychlorination.
引文
[1]李红海,李婧,吴天祥.氯乙烯单体深加工应用的研究现状[J].聚氯乙烯,2011,39:6-34.
    [2]徐兆瑜.聚氯乙烯生产、市场和技术新进展[M].塑料,2004,33(1):64-69.
    [3]蓝凤祥.聚氯乙烯生产与加工应用手册[M].化学工业出版社,1996.
    [4]罗河胜.实用聚氯乙烯[M].广东科技出版社,1990.
    [5]区英鸿.塑料手册[M].兵器工业出版社,1991.
    [6]李志英.硬PVC塑料异型材和塑料窗制造与应用[M].中国建材工业出版社,1997.
    [7]王书芳,白素荣.氯碱化工生产工艺(聚氯乙烯及有机氟分册)[M].北京工业出版社,1995.
    [8]潘祖仁,邱文豹,王贵恒.塑料工业手册(聚氯乙烯)[M].1999.
    [9]蓝凤祥.世界聚氯乙烯工业技术进展[J].聚氯乙烯,2001,3:1-17.
    [10]董洪斌,张礼安,杨风文,郭继生.我国聚氯乙烯市场浅析[J].化工技术经济,2002,20(5):38.
    [11]龚云表,石安富.合成树脂与塑料手册[M].上海科学技术出版社,1993.
    [12]吴翠红,栾立杰,丁希良,殷树青,徐晓东.国内聚氯乙烯市场前景[J].聚氯乙烯,2003,3:10-12.
    [13]陈杰.国内外聚氯乙烯工业生产技术进展[J].当代石油石化,2002,10(3):17-22.
    [14]钱伯章,朱建芳.聚氯乙烯的市场分析和技术进展[J].中国氯碱,2005,10:1-6.
    [15]邴涓林,朱平,李承志.2005年中国聚氯乙烯行业动态与分析[J].中国石油和化工经济分析,2006,10:38-44.
    [16]白海丹,贺宁.聚氯乙烯,2012,41:1-34.
    [17]李永磊,邱瑞玲.聚氯乙烯,2011,39:1-4.
    [18]邴涓林.2012年中国PVC产业状况分析[J].聚氯乙烯,2013,41:1-8.
    [19]李颖,姚丽芹,李静繁.聚氯乙烯现状分析及展望[J].中国氯碱,2006,3:1-3.
    [20]薛之化.未来中国聚氯乙烯生产原料来源分析[J].聚氯乙烯,2005,10:1-8.
    [21]邴涓林,朱平,李承志.国内聚氯乙烯行业发展前景分析[J].聚氯乙烯,2005,6:1-6.
    [22]徐文渊,蒋长安.天然气利用手册[M].中国石化出版,2002.
    [23] MONDELLI C, AMRUTE A P, KRUMEICH F, SCHMIDT T. ShapedRuO2/SnO2–Al2O3Catalyst for Large-Scale Stable Cl2Production by HClOxidation[J].ChemCatChem,2011,3:657-660.
    [24] P REZ-RAM REZ J, MONDELLI C, SCHMIDT T, et al. Sustainablechlorine recycling via catalysed HCl oxidation: from fundamentals toimplementation[J].Energ.Environ.Sci.,2011,4:4786-4800.
    [25]天津化工厂.聚氯乙烯生产与操作[M].燃料化学工业出版社,1968.
    [26]化学工业部锦西化工研究院.聚氯乙烯,1989.
    [27]包积福,夏鹏忠,马文娟.氯乙烯生产工艺技术改进探讨[J].化工管理,2013,12:224.
    [28]毕海静.国内聚氯乙烯现状及发展方向[J].聚氯乙烯,2005,9:7-11.
    [29]国内外简讯[R].聚氯乙烯,2013,,41:47-48.
    [30]王小燕,李国栋.氯乙烯合成用无汞催化剂研究进展[J].聚氯乙烯,2012.40:8-34.
    [31]吴刚强,郎中敏,赵磊琰.氯乙烯单体合成工艺研究进展[J].内蒙古石油化工,2011,24:1-3.
    [32]王红霞.氯乙烯技术现状及进展[J].石油化工,2002,31:483-487.
    [33]韦海鸥,王志萍,项曙光,韩方煜.平衡氧氯化法生产VCM的工艺研究进展[J].河北化工,2008,31:10-13.
    [34]鲁德威格施米德哈默,鲁道夫斯特拉斯,彼得黑尔斯曼,克劳斯哈塞尔沃特,格哈德达默.乙烯氧氯化法:CN,85104821[P].1986.
    [35]扬G H,考福J A,约翰斯顿V J.乙烯氧氯化生产二氯乙烷的方法:CN,1141282[P].1997.
    [36]法图托P,马塞拉A,维奥D.单级固定床的乙烯氧氯化反应:CN,1169710[P].1998.
    [37]朱洪法,王红霞,齐兰芝,田杰,余江蓬,刘棣生,南秀琴.纯氧法乙烯氧氯化制二氯乙烷的催化剂及其制备方法:CN,1280880[P].2001.
    [38]唐亮.乙烯氧氯化制二氯乙烷催化剂的研究[J].聚氯乙烯,2005,1:22-30.
    [39] KURTA S A, MYKYTYN I M, KHABER M V. Influence of regenerationconditions on the activity of the catalyst for oxidative chlorination ofethylene [J].Russ.J.Appl.Chem.,2005,78:1110-1113.
    [40] MUDDADA N B, OLSBYE U, LEOFANTI G, GIANOLIO D, BONINO F,BORDIGA S, FUGLERUD T, VIDOTTO S, MARSELLA A, LAMBERTIC. Quantification of copper phases, their reducibility and dispersion indoped-CuCl2/Al2O3catalysts for ethylene oxychlorination[J].DaltonT.,2010,39:8437-8449.
    [41] MUDDADA N B, OLSBYE U, FUGLERUD T, VIDOTTO S, MARSELLAA, BORDIGA S, GIANOLIO D, LEOFANTI G, LAMBERTI C. The role ofchlorine and additives on the density and strength of Lewis and Br nstedacidic sites of γ-Al2O3support used in oxychlorination catalysis: A FTIRstudy[J].J. Catal.,2011,284(2):236-246.
    [42] AL-ZAHRANI S M,ALJODAI A M,WAGIALLA K M. Modelling andsimulation of1,2-dichloroethane production by ethylene oxychlorinationin fluidized-bed reactor[J].Chem.Eng.Sci,2001,56:621-626.
    [43] GO K S, KIM Y, REAL S S, KIM S D.1,2-Dichloroethane production bytwo-step oxychlorination reactions in a fluidized bed reactor[J].Chem. Eng.Sci.,2010,65:499-503.
    [44] Gianolio D, Muddada N B, Olsbye U, Lamberti C. Doped-CuCl2/Al2O3catalysts for ethylene oxychlorination: Influence of additives on the natureof active phase and reducibility[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2012,284:53-57.
    [45]郑进.乙烷氧氯化制备氯乙烯工艺[J].中国氯碱,2004,3:14-16.
    [46]郑进.积极开发乙烷氧氯化法制备氯乙烯新工艺[J].中国化工信息,2003,39:14-15.
    [47]王俐.世界氯乙烯工艺发展近况[J].化工技术经济,2005,23(12):7-12.
    [48]胡国埏.国外氯乙烯生产技术经济比较[J].中国氯碱,2001,1:37-44.
    [49] CARROLL R T,ELMER J,LOUIS E. Oxychlorination of lower alkanes:US,3173962[P].1965.
    [50] KROENKE W J, NICHOLAS P P. Process for the oxychlorination of analkane using a solid solution catalyst containing iron cations:US,4375569[P].1983.
    [51] KROENKE W J, CARROLL R T,MAGISTRO A J. Catalyst for thepreparation of ethylene and vinyl chloride from ethane:US,4159968[P].1979.
    [52] GELPERIN E I, SHCHEGLOVA G G. Catalyst for oxychlorination ofethane:SU,555906[P].1977.
    [53] RIGEL H,SCHINDLER H D, SZE M C. Low cost hydrocarbon chlorination[J].Chem. Eng. Progr.,1973,69:89-94.
    [54] VILLADSEN J, LIVBERG H. Supported liquid-phase catalysts[J]. Catal.Rev. Sci. Eng.,1978,17:203-214.
    [55] ALLEN J A, CLARK A J. Oxychlorination catalysts[J].Rev. Pure Appl.Chem.,1971,21:145-165.
    [56] BARCLAY J L. Process for producing vinyl chloride:GB,1492945[P].1977.
    [57] KUCK M A. Novel process for the oxychlorination of ethane:US,3987118[P].1976.
    [58]珀蒂A,巴舍拉尔R,克莱尔A,科雷亚Y.氧氯化的方法和催化剂及其产生1,2-二氯乙烷的应用:CN,1057642[P].1992.
    [59]珀蒂A,巴舍拉尔R,克莱尔R,科雷亚Y.氧氯化的方法和催化剂及其产生1,2-二氯乙烷的应用:CN,1101336[P].1995.
    [60] RIEGEL H,SCHINDLER H D. Vinyl Chloride Process:US,3879480[P].1975.
    [61] SZE M C,RIEGEL H. Production of vinyl chloride:US,3879481[P].1975.
    [62] RIEGEL H. Vinyl chloride process:US,3879482[P].1975.
    [63]克莱格I M,哈德曼R.氧氯化方法:CN,1115574[P].1996.
    [64] PYKE D R,REID R. Chlorination of alkanes:GB,2095245[P].1982.
    [65]高为华.乙烷氧氯化制氯乙烯研究进展[J].石油化工,2004,33(增刊):1571-1573.
    [66]冯海强,南秀琴,尹文龙,高为华.乙烷氧氯化制氯乙烯反应性能的研究I反应条件对乙烷氧氮化反应性能的影响[J].石油化工,2001,30(增刊):292-294.
    [67] LI C, ZHOU G, WANG L, DONG S, LI J, CHENG T. Effect of ceria on theMgO-γ-Al2O3supported CeO2/CuCl2/KCl catalysts for ethaneoxychlorination [J].Appl.Catal.A:Gen.,2011,400:104-110.
    [68] Lǚ X J,LIU J,ZHOU G D,ZHEN K J,LI W X,CHENG T X. Ethaneoxychlorination over γ-Al2O3supported CuCl2-KCl-LaCl3[J].Catal. Lett.,2005,100:153-159.
    [69] LIU J,Lǚ X J,ZHOU G D,ZHEN K J,ZHANG W X,CHENG T X. Effectof KCl on CuCl2/γ-Al2O3catalyst for oxychlorination of ethane [J].React.Kinet. Catal. Lett.,2006,88:315-323.
    [70] CHEN Z T,HAN M H,WANG D Z,WEI F. Influence of Cerium on thestability of copper-based oxychlorination catalyst[J].Chinese J. Catal.,2008,29:951-953.
    [71] PERINGER E, PODKOLZIN S G, JONES M E, OLINDO R, LERCHER JA. LaCl3-based catalysts for oxidative chlorination of CH4[J].Top.Catal.,2006,38:211-220.
    [72] SIMON G. P, ERIC E S, MARK E J, ELVIRA P, JOHANNES A L. MethylChloride Production from Methane over Lanthanum-Based Catalysts[J].J.AM. CHEM.SOC.,2007,129:2569-2576.
    [73] HICKMAN D A, JONES M E, JOVANOVIC Z R, OLKEN M M,PODKOLZIN S G, STANGLAND E E, THOMPSON R K. ReactorScale-up for Fluidized Bed Conversion of Ethane to Vinyl Chloride[J].Ind.Eng.Chem. Res.,2010,49:10674-10681.
    [74]胡瑞生,宋丽峰,李洋洋,李森.一种乙烷氧氯化制氯乙烯催化剂的制备方法:中国,103055877[P].2013-04-24.
    [75]蓝凤祥.国外氯乙烯单体新工艺开发动向[J].化工科技动态,1994,11:5-7.
    [76] HAYMON T D,HENLEY J P,HICKMAN D A. Oxidative chlorinationprocess and catalysts for vinyl chloride manufacture from ethane andethylene with air feed and alternative hydrogen chloride-processingmethods:WO,2002094752[P].2002.
    [77] FLID M R,KURLYANDSKAYA I I,TREGER YU A,GUZHNOVSKAYAT D. The ethane oxidative chlorination process and efficient catalyst for it.The Proceeding of3rd World Congress on Oxidation Catalysis[C]. SanDiego: Elsevier Science B V,1997:305-313.
    [78] MICHAEL C I, HARDMAN R. Oxychlorination process:US,5763710[P].1998.
    [79]郭亚军,代少勇,董红星,龚凡.氯乙烯制备工艺研究进展[J].化学与粘合,2002,6:277-279.
    [1] RIGEL H,SCHINDLER H D,SZE M C. Low cost hydrocarbon chlorinationChem[J].Eng.Progr.,1973,69:89-94.
    [2] ALLEN J A, CLARK A J. Oxychlorination catalysts[J].Rev.Pure Appl.Chem.,1971,21:145-165.
    [3] VILLADSEN J, LIVBERG H. Supported liquid-phase catalysts[J]. Catal.Rev.Sci.Eng.,1978,17:203-214.
    [4] ZAHIR M H, SATO K, IWAMOTO Y. Development of hydrothermallystable sol–gel derived La2O3-doped Ga2O3–Al2O3composite mesoporousmembrane[J]. J. Membrane Sci.,2005,247:95-101.
    [5] VANDER A P, WECKHUYSEN B M. Low-temperature catalytic destructionof CCl4, CHCl3and CH2Cl2over basic oxides[J]. PCCP,2004,6:5256.
    [6] SKOUFA Z, HERACLEOUS E, LEMONIDOU A A. Unraveling thecontribution of structural phases in Ni–Nb–O mixed oxides in ethaneoxidative dehydrogenation[J].Catal.Today,2012,192:169-176.
    [7] GARCIA C L, RESASCO D E. Promoter action of KCl on CuCl2/SiO2catalysts used for oxychlorination of methane[J].Appl.Catal.,1987,29:55-66.
    [8] GARCIA C L, RESASCO D E. High-temperature oxychlorination catalysts:role of LaCl3as an inhibitor of segregation of active species duringheating/cooling cycles[J].J.Catal.,1990,122:151-165.
    [9] PERINGER E, SALZINGER M, HUTT M, LEMONIDOU A A, LERCHER JA. Modified Lanthanum Catalysts for Oxidative Chlorination ofMethane[J].Top.Catal.,2009,52:1220-1231.
    [10] ZHANG T, TROLL C, RIEGER B, KINTRUP J, SCHLüTER OFK,WEBER R. Oxychlorination of CO to phosgene in a three-step reactioncycle and corresponding catalytic mechanism[J].J.Catal.,2010,270:76-85.
    [11] MENINI L, GUSEVSKAYA E V. Aerobic oxychlorination of phenolscatalyzed by copper(II) chloride[J].Appl.Catal.A:Gen.,2006,309:122-128.
    [12] LEOFANTI G, PADOVAN M, GARILLI M, CARMELLO D, MARRA G L,ZECCHINA A, SPOTO G, BORDIGA S, PALOMINO T G, LAMBERTI C.Alumina-supported copper chloride:1characterization of freshly preparedcatalyst[J].J.Catal.,2000,189:91-104.
    [13] LEOFANTI G, PADOVAN M, GARILLI M, CARMELLO D, MARRA G L,ZECCHINA A, SPOTO G, BORDIGA S, PALOMINO T G, LAMBERTI C.Alumina-supported copper chloride:2Effect of aging and thermaltreatments[J]. J.Catal.,2000,189:105-116.
    [14] LEOFANTI G, PADOVAN M, GARILLI M, CARMELLO D, MARRA G L,ZECCHINA A, SPOTO G, BORDIGA S, PALOMINO T G, LAMBERTI C.Alumina-supported copper chloride:3Effect of exposure to ethylene[J].J.Catal.,2000,202:279-295.
    [15] LEOFANTI G, PADOVAN M, GARILLI M, CARMELLO D, MARRA G L,ZECCHINA A, SPOTO G, BORDIGA S, PALOMINO T G, LAMBERTI C.Alumina-supported copper chloride:4Effect of exposure of O2and HCl[J].J.Catal.,2000,205:375-381.
    [16] CARMELLO D, FINOCCHIO E, MARSELLA A, CREMASCHI B,LEOFANTI G, PADOVAN M, BUSCA G. An FT-IR and reactor study ofthe dehydrochlorination activity of CuCl2/γ-Al2O3based oxychlorinationcatalysts [J].J.Catal.,2000,191:354-363.
    [17] CONTE M, DAVIES T, CARLEY A, HERZING A, KIELY C,HUTCHINGS G. Selective formation of chloroethane by thehydrochlorination of ethene using zinc catalysts[J].J.Catal.,2007,252:23-29.
    [18] LóPEZ E, HERACLEOUS E, LEMONIDOU A A, BORIO D O. Study of amultitubular fixed-bed reactor for ethylene production via ethane oxidativedehydrogenation[J].Chem.Eng.J.,2008,145:308-315.
    [19] BAIKER A, HOLSTEIN W L. Impregnation of alumina with copperchloride modeling of impregnation kinetics and internal copperprofiles[J].J.Catal.,1983,84:178-188.
    [20] LAMBERTI C, BORDIGA S, BONINO F, PRESTIPINO C, BERLIER G,CAPELLO L, ACAPITO F D, ZECCHINA A. Determination of theoxidation and coordination state of copper on different Cu-based catalystsby XANES spectroscopy in situ or in operando conditions[J].Phys.Chem.Chem.Phys.,2003,5:4502–4509.
    [21] MONDELLI C, AMRUTE A P, SCHMIDT T, PEREZ-RAMIREZ J. Adelafossite-based copper catalyst for sustainable Cl2production by HCloxidation[J].Chem.Commun.,2011,47:7173-7175.
    [22] GáLVEZ M E, ASCASO S, SUELVES I, MOLINER R, JIMéNEZ R,GARCíA X, GORDON A, LáZARO M J. Soot oxidation in the presenceof NO over alumina-supported bimetallic catalysts K–Me (Me=Cu, Co, V)[J].Catal. Today,2011,176:361-364.
    [23] KUMAR P A, REDDY M P, JU L K, HYUN-SOOK B, PHIL H H. Lowtemperature propylene SCR of NO by copper aluminacatalyst[J].J.Mol.Catal. A:Chem.,2008,291:66-74.
    [24] BOND G C, NAMIJO S N, WAKEMAN J S. Thermal analysis of catalystprecursors part2influence of support and metal precursor on thereducibility of copper catalysts[J].J.Mol.Catal.,1991,64:305-319.
    [25] PAUL A S, KEITH R, PATRICIO N R, STEPHEN A L, MARIA A,MARTIN L, MICHAEL J D. Nature of oxide-supported copper(Ⅱ) ionsand copper derived from copper(Ⅱ) chloride[J].J.Chem.Soc.FaraduyTrans.,1987,83:1347-1353.
    [26] MENINI L, DA CRUZ SANTOS J C, GUSEVSKAYA E V.Copper-Catalyzed Oxybromination and Oxychlorination of PrimaryAromatic Amines Using LiBr or LiCl and Molecular Oxygen[J].Adv.Synth.Catal.,2008,350:2052-2058.
    [27] HAN M, CHANG P, HU G, CHEN Z, WANG D, WEI F. Conversion ofhydrogen chloride to chlorine by catalytic oxidation in a two-zonecirculating fluidized bed reactor[J].Chemical Engineering and Processing:Process Intensification,2011,50:593-598.
    [28] HALL P G, HEATON P, ROSSEINSKY D R. Adsorption and conductivitystudies in oxychlorination catalysis part1physical characterization of thecatalysts[J].J.Chem.Soc.,Faraday Trans.,1984,80:2777-2783.
    [29] ZHENG X, ZHANG X, WANG S, WANG X, WU S. Effect of Addition ofBase on Ceria and Reactivity of CuO/CeO2Catalysts for Low-TemperatureCO Oxidation[J].Journal of Natural Gas Chemistry,2007,16:179-185.
    [30] DOTSON R L. Selected properties and electronics spectra for a series of copper,alkali, alkaline earth, and lanthanide metal chloride oxychlorination catalysts onalumina[J].J.Catal.,1974,33:210-218.
    [31] STROHMEIER B R, LEYDEN D E, SCOTT FIELD R S, HERCULES D M.Surface spectroscopic characterization of Cu/Al2O3catalysts[J].J.Catal.,1985,94:514-530.
    [32] OTT R J, BAIKER A. Impregnation of γ-alumina with copper chlorideEquilibrium behavior impregnation profiles and immobilization kinetics[J].Stud.Surf.Sci.Catal.,1982,16,685-696.
    [33] ILINICH O, RUETTINGER W, LIU X, FARRAUTO R. Cu–Al2O3–CuAl2O4water–gas shift catalyst for hydrogen production in fuel cell applications:Mechanism of deactivation under start–stop operatingconditions[J].J.Catal.,2007,247:112-118.
    [34] KROENKE W J, NICHOLAS P P. Process for the oxychlorination of an alkaneusing a solid solution catalyst containing iron cations: US,4375569[P].1983.
    [35] PYKE D R, REID R. Chlorination of alkanes:GB,2095245[P].1982.
    [36] CLEGG I M, HARDMAN R. Oxychlorination process:US,5763710[P].1998.
    [37] SIMON G P, ERIC E S, MARK E J, ELVIRA P, JOHANNES A L. MethylChloride Production from Methane over Lanthanum-Based Catalysts[J].J.AM.CHEM.SOC.,2007,129:2569-2576.
    [38] PERINGER E, PODKOLZIN S G, JONES M E, OLINDO R, LERCHER J A.LaCl3-based catalysts for oxidative chlorination of CH4[J].Top.Catal.,2006,38:211-220.
    [39] DANIEL A H, MARK E J, ZORAN R J, MICHAEL M O, SIMON G P, ERIC ES, KIRK T. Reactor Scale-up for Fluidized Bed Conversion of Ethane to VinylChloride[J].Ind.Eng.Chem.Res.,2010,49:10674–10681.
    [40] FLID M R,KURLYANDSKAYA I I,TREGER YU A,GUZHNOVSKAYA T D.The ethane oxidative chlorination process and efficient catalyst for it. In TheProceeding of3rd World Congress on Oxidation Catalysis[C]. San Diego:Elsevier Science B V,1997:305-313.
    [41]甄开吉,王国甲,毕颖丽,李荣生,阚秋斌.催化作用基础[M].北京:科学出版社:2005.
    [42] LI C, ZHOU G, WANG L, DONG S, LI J, CHENG T. Effect of ceria on theMgO-γ-Al2O3supported CeO2/CuCl2/KCl catalysts for ethane oxychlorination[J].Appl.Catal.A:Gen.,2011,400:104-110.
    [43] LI C, ZHOU G, WANG L, LI Z, XUE Y, CHENG T. Effect of impregnationprocedure of La2O3precursor on copper-based catalysts for ethaneoxychlorination[J].Catal.Commun.,2011,13:22-25.
    [44] FAN X, LI W, YANG Y N, ZHANG J Y. Influence of soluble aluminium on thethermal decomposition of praseodymium trinitratealumina and the study of thealumina support effect[J].Appl.Catal.,1988,38:89-101.
    [45] GARILLI M, CARMELLO D, CREMASCHI B, LEOFANTI G, PADOVAN M,ZECCHINA A, SPOTO G, BORDIGA S, LAMBERTI C. Copper species inCuCl2/γ-Al2O3catalyst for ethylene oxychlorination[J].Stud.Surf.Sci. Catal.,2000,130:1817-1822.
    [46] BLANCO J, FAYOS J, GARCIA DE LA BANDA J F, SORIA J. Study ofsupported copper chloride catalysts by electron paramagnetic resonance andX-ray diffraction[J].J.Catal.,1973,31:257-263.
    [47] FORTINI E M, GARCIA C L, RESASCO D E. Characterization of activespecies in alumina and silica supported CuCl2catalysts by EPR[J].React.Kinet.Catal.Lett.,1988,36:223-227.
    [48] FORTINI E M, GARCIA C L, RESASCO D E. Stabilization of the active phaseby interaction with the support in CuCl2oxychlorination catalysts[J]. J.Catal.,1986,99:12-18.
    [49] CARLO L, CARMELO P, LUCIANA C, SILVIA B, ADRIANO Z, GIUSEPPE S,SOFIA D M A M, BARBARA C, MARCO G, SANDRO V, GIUSEPPE L. TheCuCl2/Al2O3Catalyst Investigated in Interaction with Reagents[J].Int.J.Mol.Sci.,2001,2:230-245.
    [50] TANKOV I, PAWELEC B, ARISHTIROVA K, DAMYANOVA S. Structure andsurface properties of praseodymium modified alumina[J].Applied SurfaceScience,2011,258:278-284.
    [51] GIN-YA A,NOBUHITO I. The Binary Rare Earth Oxides[J].Chem.Rev.,1998,98:1479-1514.
    [52] PRIETO G, CONCEPCIóN P, MARTíNEZ A, MENDOZA E. New insights intothe role of the electronic properties of oxide promoters in Rh-catalyzed selectivesynthesis of oxygenates from synthesis gas[J]. J.Catal.,2011,280:274-288.
    [53] GAMBA O, MORENO S, MOLINA R. Catalytic performance of Ni–Prsupported on delaminated clay in the dry reforming of methane[J].Int.J.Hydrogen Energy.,2011,36:1540-1550.
    [54] YE Q, YAN L, WANG H, CHENG S, WANG D, KANG T, et al. Enhancedcatalytic performance of rare earth-doped Cu/H-Sep for the selective catalyticreduction of NO with C3H6[J].Appl.Catal.A:Gen.,2012,431-432:42-48.
    [55] ABOUSSA D K, BERNAL S, BLANCO G, CALVINO J J, CIFREDO G A,LóPEZ-HARO M, PINTADO J M, EL BEGRANI M S, STéPHAN O,TRASOBARES S. Actual constitution of the mixed oxide promoter in aRh/Ce1xPrxO2y/Al2O3catalyst Evolution throughout the preparationsteps[J].Surf. Interface Anal.,2008,40:242-245.
    [56] KANG Z C, EYRING L. Lattice Oxygen Transfer in Fluorite-Type OxidesContaining Ce, Pr, and/or Tb. J[J].Solid State Chem.,2000,155:129-137.
    [57] DAI H. SrCl2-Promoted REOx(RE=Ce, Pr, Tb) Catalysts for the SelectiveOxidation of Ethane: A Study on Performance and Defect Structures for EtheneFormation[J].J.Catal.,2001,199:177-192.
    [58] LI X L,ZHANG R F. Spectroscopy and Spectral Analysis[J].1996,16(3):119.
    [59] LI Z, ZHOU G, LI C, CHENG T. Effect of Pr on copper-based catalysts forethane oxychlorination[J].Catal.Commun.,2013,40:42-46.
    [60] BRAND O D S, GALV O R M, DA GRA A M, DA ROCHA M C,BARGIELA P, SALES E A. Pt and Pd catalysts supported on Al2O3modifiedwith rare earth oxides in the hydrogenation of tetralin in the presence ofthiophene[J].Catal. Today,2008,133-135:324-330.
    [61] CHATURVEDI S, RODRIGUEZ J A, HRBEK J. Cs promoted oxidation of Znand Cu-Zn suface:a combined experimental and theoretical study[J].Surf.Sci.,1997,384:260-275.
    [62] ZHANG K, ZHOU G, LI J, CHENG T. The electronic effects of Pr onLa1xPrxNiAl11O19for CO2reforming of methane[J].Catal.Commun.,2009,10,1816-1820.
    [63] ALONSO F, MELKONIAN T, MOGLIE Y, YUS M. Homocoupling of TerminalAlkynes Catalysed by Ultrafine Copper Nanoparticles on Titania[J].Eur.J.Org.Chem.,2011,2011:2524-2530.
    [64] GAMBA O, MORENO S, MOLINA R. Catalytic performance of Ni–Prsupported on delaminated clay in the dry reforming of methane[J].Int.J.Hydrogen Energy.,2011,36:1540-1550.
    [65] BARROSO M N, GALETTI A E, ABELLO M C. Ni catalysts supported overMgAl2O4modified with Pr for hydrogen production from ethanol steamreforming[J].Appl.Catal.A:Gen.,2011,394:124-131.
    [1] FLID M R,KURLYANDSKAYA I I,TREGER YU A,GUZHNOVSKAYA TD.The ethane oxidative chlorination process and efficient catalyst for it.In TheProceeding of3rd World Congress on Oxidation Catalysis[C]. San Diego:Elsevier Science B V,1997,305-313.
    [2] FINOCCHIO E, ROSSI N, BUSCA G, PADOVAN M, LEOFANTI G,CREMASCHI B, MARSELLA A, CARMELLOY D. Characterization andcatalytic activity of CuCl2-Al2O3ethylene oxychlorination catalysts[J].J.Catal.,1998,179:606-618.
    [3] YARKERSON V I, GOLOSMAN E Z. Design of heterogeneous catalytic systems:new cement-containing catalysts[J].React.Kinet.Catal. Lett.,1995,55(2):455-462.
    [4] LIU J,Lǚ X J,ZHOU G D,ZHEN K J,ZHANG W X,CHENG T X. Effect ofKCl on CuCl2/γ-Al2O3catalyst for oxychlorination of ethane [J].React.Kinet.Catal.Lett.,2006,88:315-323.
    [5] Lǚ X J,LIU J,ZHOU G D,ZHEN K J,LI W X,CHENG T X. Ethaneoxychlorination over γ-Al2O3supported CuCl2-KCl-LaCl3[J].Catal. Lett.,2005,100:153-159.
    [6] JIA T X, ZHANG J C, LIU Z L. Preparation and Property of Y-Mg-Al-LayeredDouble Oxides[J].Adv.Mater.Res.,2011,396-398:764-767.
    [7] BARZILAI S, AIZENSHTEIN M, FROUMIN N, FRAGE N. Interfacephenomena in the Y2O3/(Al–Cu) system[J].Mat.Sci.Eng.:A,2006,420:291-295.
    [8] INDARTO A, CHO J W, LEE H, SONG H K, PALGUNADI J. Partial Oxidationof Methane with Sol-Gel Fe/Hf/YSZ Catalyst in Dielectric BarrierDischarge:Catalyst Activation by Plasma[J].J. Rare Earth.,2006,24:513-518.
    [9] B RJEGA R, PAVEL O D, COSTENTIN G, CHE M, ANGELESCU E. Rare-earthelements modified hydrotalcites and corresponding mesoporous mixed oxides asbasic solid catalysts[J].Appl.Catal.A:Gen.,2005,288:185-193.
    [10] DANIELE S, HUBERT-PFALZGRAF L G. Synthesis of nanocrystallineY2O3/Pr3+from heterometallic alkoxide via sol–gel process[J].Mater. Lett.,2004,58:1989-1992.
    [11] VENUGOPAL A, PALGUNADI J, DEOG J K, JOO O S, SHIN C H. Dimethylether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) andγ-Al2O3: The role of modifier[J].J. of Mol.Catal. A:Chem.,2009,302:20-27.
    [12] LI Y, ZHANG X, LONG E, LI H, WU D, CAI L, GONG M, CHEN Y. Influenceof CeO2and La2O3on properties of palladium catalysts used for emission controlof natural gas vehicles[J].J.Nat.GasChem.,2009,18:415-420.
    [13] AL-YASSIR N, LE VAN MAO R. Thermal stability of alumina aerogel dopedwith yttrium oxide, used as a catalyst support for the thermocatalytic cracking(TCC) process: An investigation of its textural and structuralproperties[J].Appl.Catal.A:Gen.,2007,317:275-283.
    [14] SUN J, LUO D, XIAO P, JIGANG L, YU S. High yield hydrogen productionfrom low CO selectivity ethanol steam reforming over modified Ni/Y2O3catalysts at low temperature for fuel cell application[J].J. PowerSources,2008,184:385-391.
    [15] VU B K, SONG M B, AHN I Y, SUH Y W, SUH D J, KIM W IL, KOH H L,CHOI Y G, SHIN E W. Propane dehydrogenation over Pt–Sn/Rare-earth-dopedAl2O3: Influence of La, Ce, or Y on the formation and stability of Pt–Sn alloys[J].Catal. Today,2011,164:214-220.
    [16] INDARTO A, YANG D R, PALGUNADI J, CHOI J W, LEE H, SONG H K.Partial oxidation of methane with Cu–Zn–Al catalyst in a dielectric barrierdischarge[J].Chem.Eng.Process.,2008,47:780-786.
    [17] LIU J,SUI Y R,ZHOU G D,ZHEN K J,ZHANG W X,CHENG T X.Modification of the Acid-base and Catalytic Properties ofCuCl2-KCl-LaCl3/γ-Al2O3by MgAl2O4in Ethane Oxychlorination[J].Pol JChem,2007,81:95-101.
    [18] LI C, ZHOU G, WANG L, LI Z, XUE Y, CHENG T. Effect of impregnationprocedure of La2O3precursor on copper-based catalysts for ethaneoxychlorination[J].Catal.Commun.,2011,13:22-25.
    [19] LI C, ZHOU G, WANG L, DONG S, LI J, CHENG T. Effect of ceria on theMgO-γ-Al2O3supported CeO2/CuCl2/KCl catalysts for ethane oxychlorination[J].Appl.Catal.A:Gen.,2011,400:104-110.
    [20] PAVEL O D, COJOCARU B, ANGELESCU E, P RVULESCU V I. The activityof yttrium-modified Mg,Al hydrotalcites in the epoxidation of styrene withhydrogen peroxide[J].Appl.Catal.A:Gen.,2011,403:83-90.
    [21] ANGELESCU E, PAVEL O D, CHE M, BI RJEGA R, CONSTENTIN G.Cyanoethylation of ethanol on Mg–Al hydrotalcites promoted by Y3+and La3+[J].Catal.Commun.,2004,5:647-651.
    [22] AL-YASSIR N, MAO RLV. Evaluating and understanding the hydrothermalstability of alumina aerogel doped with yttrium oxide and used as a catalystsupport for the thermo-catalytic cracking (TCC) process[J].Can.J.Chem.,2008,86:146-160.
    [23] LE VALANT A, CAN F, BION N, DUPREZ D, EPRON F. Hydrogen productionfrom raw bioethanol steam reforming: Optimization of catalyst composition withimproved stability against various impurities[J].Int.J. HydrogenEnergy,2010,35:5015-5020.
    [24] YANG H M, CHAN M K. Steam reforming of methanol over copper–yttriacatalyst supported on praseodymium–aluminum mixed oxides[J].Catal.Commun.,2011,12:1389-1395.
    [25] GAMBA O, MORENO S, MOLINA R. Catalytic performance of Ni–Prsupported on delaminated clay in the dry reforming of methane[J].Int.J. HydrogenEnergy,2011,36:1540-1550.
    [26] TANKOV I, PAWELEC B, ARISHTIROVA K, DAMYANOVA S. Structure andsurface properties of praseodymium modified alumina[J].Appl.Surf. Sci.,2011,258:278-284.
    [27] HE H, DAI H X, AU C T. Defective structure, oxygen mobility, oxygen storagecapacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions[J].Catal.Today,2004,90:245-254.
    [28] ZHANG S, LIU X, ZHONG Q, YAO Y. Effect of Y doping on oxygen vacanciesof TiO2supported MnOXfor selective catalytic reduction of NO with NH3at lowtemperature[J].Catal.Commun.,2012,25:7-11.
    [29] HE H. RE0.6Zr0.4xYxO2(RE=Ce, Pr; x=0,0.05) solid solutions: aninvestigation on defective structure, oxygen mobility, oxygen storage capacity,and redox properties[J].Appl.Catal.A:Gen.,2003,251:61-74.
    [30] MA H, ZHANG R, HUANG S, CHEN W, SHI Q. Ni/Y2O3-Al2O3catalysts forhydrogen production from steam reforming of ethanol at low temperature[J]. J.Rare Earth.,2012,30:683-690.
    [31] BREEN J P., ROSS R H. Methanol reforming for fuel-cell applicationsdevelopment of zirconia-containing Cu–Zn–Al catalysts[J].Catal.Today,1999,51:521-533.
    [32] ASENCIOS Y J O, RODELLA C B, ASSAF E M. Oxidative reforming of modelbiogas over NiO–Y2O3–ZrO2catalysts[J].Appl.Catal.B: Environ.,2013,132-133:1-12.
    [33] LE VALANT A, BION N, CAN F, DUPREZ D, EPRON F. Preparation andcharacterization of bimetallic Rh-Ni/Y2O3-Al2O3for hydrogen production by rawbioethanol steam reforming: influence of the addition of nickel on the catalystperformances and stability[J]. Appl.Catal.B:Environ.,2010,97:72-81.
    [34] AL-YASSIR N, MAO R L V. Catalysts for the thermo-catalytic cracking (TCC)process: Interactions between the yttria in yttria-doped alumina aerogel and themono-oxide MoO3, CeO2, and bi-oxide MoO3–CeO2species[J].Appl.Catal.A:Gen.,2007,332:273-288.
    [35] GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J].Appl.Catal.A.,2001,212:83-96.
    [36] SUN G B, HIDAJAT K, WU X S, KAWI S. A crucial role of surface oxygenmobility on nanocrystalline Y2O3support for oxidative steam reforming ofethanol to hydrogen over Ni/Y2O3catalysts[J].Appl.Catal.B:Environ.,2008,81:303-312.
    [1] VILLADSEN J, LIVBERG H. Supported liquid-phase catalysts [J].Catal.Rev.Sci.Eng.,1978,17:203-214.
    [2] ALLEN J A, CLARK A J. Oxychlorination catalysts[J].Rev.Pure Appl. Chem.,1971,21:145-165.
    [3] Lǚ X J,LIU J,ZHOU G D,ZHEN K J,LI W X,CHENG T X. Ethaneoxychlorination over γ-Al2O3supported CuCl2-KCl-LaCl3[J].Catal. Lett.,2005,100:153-159.
    [4] LI C, ZHOU G, WANG L, LI Z, XUE Y, CHENG T. Effect of impregnationprocedure of La2O3precursor on copper-based catalysts for ethaneoxychlorination[J].Catal.Commun.,2011,13:22-25.
    [5] LIU J,SUI Y R,ZHOU G D,ZHEN K J,ZHANG W X,CHENG T X. Modificationof the Acid-base and Catalytic Properties of CuCl2-KCl-LaCl3/γ-Al2O3by MgAl2O4in Ethane Oxychlorination[J].Pol.J. Chem.,2007,81:95-101.
    [6] PANAGIOTOPOULOU P, CHRISTODOULAKIS A, KONDARIDES D I,BOGHOSIAN S. Particle size effects on the reducibility of titanium dioxide andits relation to the water–gas shift activity of Pt/TiO2catalysts[J]. J.Catal.,2006,240:114-125.
    [7] MA Z, YIN H, DAI S. Performance of Au/MxOy/TiO2Catalysts in Water-Gas ShiftReaction[J].Catal.Lett.,2009,136:83-91.
    [8] ZHANG Y, LIEW K, LI J, ZHAN X. Fischer–Tropsch Synthesis on LanthanumPromoted Co/TiO2Catalysts[J].Catal.Lett.,2010,139:1-6.
    [9] PANAGIOTOPOULOU P, KONDARIDES D I. Effect of the nature of the supporton the catalytic performance of noble metal catalysts for the water–gas shiftreaction[J].Catal.Today.,2006,112:49-52.
    [10] SANGEETHA P, CHEN Y W. Preferential oxidation of CO in H2stream onAu/CeO2–TiO2catalysts[J].Int.J. Hydrogen Energy,2009,34:7342-7347.
    [11] JEON M K, PARK J W, KANG M. Hydrogen Production from Methanol/WaterDecomposition in aLiquid Photosystem Using the Anatase and Rutile Forms ofCu-TiO2[J].J.Ind.Eng.Chem.,2007,13:84-91.
    [12] HE Z, CAI Q, HONG F, JIANG Z, CHEN J, SONG S. Effective Enhancement ofthe Degradation of Oxalic Acid by Catalytic Ozonation with TiO2by Exposureof {001} Facets and Surface Fluorination[J]. Ind.Eng.Chem. Res.,2012,51:5662-5668.
    [13] AHN Y. Variation of structural and optical properties of sol-gel TiO2thin filmswith catalyst concentration and calcination temperature[J].Mater.Lett.,2003,57:4660-4666.
    [14] SHOJAIE A F, LOGHMANI M H. La3+and Zr4+co-doped anatase nano TiO2bysol-microwave method[J].Chem.Eng.J.,2010,157(1):263-269.
    [15] LEOFANTI G, PADOVAN M, GARILLI M, CARMELLO D, MARRA G L,ZECCHINA A, SPOTO G, BORDIGA S, PALOMINO T G, LAMBERTI C.Alumina supported copper chloride:1characterization of freshly preparedcatalyst[J].J.Catal.,2000,189:91-104.
    [16] LIANG C, LIU C, LI F, WU F. The effect of Praseodymium on the adsorptionand photocatalytic degradation of azo dye in aqueous Pr3+-TiO2suspension[J].Chem.Eng.J.,2009,147(2-3):219-225.
    [17] CRUZ R D, TORRES G T, ARéVALO J C, GOMEZ R, AGUILAR E A.Synthesis and characterization of TiO2doping with rare earths by sol–gelmethod: photocatalytic activity for phenol degradation[J].J.Sol-Gel Sci.Technol.,2010,56:219-226.
    [18] PANAGIOTOPOULOU P, KONDARIDES D I. A comparative study of thewater-gas shift activity of Pt catalysts supported on single (MOx) and composite(MOx/Al2O3, MOx/TiO2) metal oxide carriers[J].Catal.Today,2007,127:319-329.
    [19] ZHANG S, LIU X, ZHONG Q, YAO Y. Effect of Y doping on oxygen vacanciesof TiO2supported MnOXfor selective catalytic reduction of NO with NH3at lowtemperature[J].Catal. Commun.,2012,25:7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700