用户名: 密码: 验证码:
掺杂ZnO和In_2O_3电子结构和光学性质的第一性原理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明导电氧化物薄膜(TCO)由于其优异的性能,成为科研和工业上的重点研究课题。TCO薄膜具有较低的电阻系数和高的可见光透明度,已经广泛应用于光电子器件之中(例如:太阳能电池,触摸屏,传感器等)。In2O3和ZnO是典型的n型TCO材料。但是,本征材料性能的单一性已经成为了限制材料扩展应用的主要问题,因此急需寻求新的替代材料。目前,掺杂改性是扩展本征材料性能的主要手段之一。其中,Sn掺杂In2O3(ITO)薄膜具有很高的载流子浓度同时保持高的可见光透明度,从而成为应用较为广泛的TCO薄膜材料。因此,理论上研究In2O3和ZnO基半导体氧化物的掺杂改性具有重要的意义。
     综上所述,本论文从三个基本研究内容出发:一、如何通过调整本征缺陷的含量进一步提高ZnO的光学和催化性能;二、对ZnO进行掺杂改性,研究Cd、Mg、Ca、Y等元素掺杂对体系电子结构和光学性质的影响;三、理论上研究如何进一步提高In2O3的光电特性。本文以理论研究为主,并针对掺杂和碳化ZnO进行必要的实验研究。理论部分采用基于密度泛函理论超软赝势方法的CASTEP模块研究材料的微观电子结构和光学性质,交换关联泛函选用广义梯度近似(GGA)和局域密度近似(LDA),并在计算中引入位库伦耦合参数U调节计算带隙。本文的实验部分利用X射线衍射(XRD),X射线光电子能谱(XPS),拉曼光谱(Raman)和透射电子显微镜(TEM)表征材料的结构性质;利用紫外-可见光分光光度计,光致发光对材料的光学性能进行了检测;材料的光催化活性是通过降解20mg/L的亚甲基蓝(MB)溶液检测的。
     本论文主要研究成果可分如下四部分内容:
     1.核壳嵌套结构的非晶碳包覆ZnO(碳化氧化锌)纳米晶先驱体是通过溶胶-凝胶方法合成的。高缺陷的ZnO纳米晶体是通过退火碳化氧化锌先驱体顺利制备的。HRTEM,Raman和XPS分析表明ZnO纳米晶体具有高含量的本征缺陷。大量缺陷的存在导致了以绿光散射为中心,波长范围在420nm~660nm之间强烈的深能级(DL)散射,以及一个相对较弱的紫外可见光(UV)散射。ZnO纳米晶体同样在降解MB溶液时表现出明显的光催化活性的提高。实验和基于密度泛函理论的模拟计算显示出增进的DL散射和改进的光催化活性,将归结于通过两次制备在ZnO纳米晶体中引入的高含量的氧缺乏导致的本征缺陷的存在。
     2. ZnCdO薄膜是利用脉冲激光沉积法在石英玻璃基底上制备的。通过调节Cd元素的掺杂含量,可以改变Zn1-xCdxO薄膜的禁带宽度。同时,Zn1-xCdxO薄膜的电子结构和光学性质是通过密度泛函理论广义梯度近似考虑位库伦耦合效应研究的,考虑位库伦耦合参数可以更加准确地预测ZnO和Zn1-xCdxO薄膜的带隙值及其带隙变化规律。例如,当x≤0.5时,带隙可以在3.219eV~2.197eV范围内调整,光致发光区间将从紫外光向黄绿光偏移。实验和理论研究表明随着Cd掺杂含量的增加,它的可见光吸收范围是增加的。可调节的光致发光和可见光吸收都表明了ZnCdO薄膜是潜在的光电子应用材料。
     3.纤锌矿结构ZnXO(X=Mg,Ca,Y)三元合金的电子结构和光学性质是通过第一性原理密度泛函理论考虑位库伦耦合效应计算的。三元合金纤锌矿结构的稳定性是通过晶格常数和内坐标参数的变化趋势分析的。首先,我们计算了纤锌矿ZnMgO三元合金的电子结构。我们发现ZnMgO三元合金的带隙随着掺杂Mg原子摩尔浓度的增加而增大。计算的光学吸收谱,在吸收系数和蓝移趋势的变化上很好的与实验值相匹配。其次,我们计算了纤锌矿ZnCaO三元合金的电子结构。通过比较三种不同Ca掺杂位置的形成能,确定了Ca原子最稳定的掺杂位置是取代晶格中金属Zn原子的晶格位(CaZn)。纤锌矿结构ZnCaO三元合金的带隙随着掺杂Ca原子摩尔浓度的增加而增大。最后,我们计算了纤锌矿ZnYO三元合金的电子结构。当晶格中的金属Zn原子被Y原子取代时,杂质能级为浅施主能级,Y掺杂ZnO可以在保持材料光学透明度的同时提高材料的电导。上述计算结果表明纤锌矿结构ZnXO(X=Mg,Ca,Y)三元合金可以调节本征ZnO的光学性质,使其作为光电材料应用。
     4. Sn或者Y掺杂In2O3的结构性质和电子结构是通过第一性原理计算的,掺杂改进了材料的光电性能。我们设计了Sn原子在In2O3中可能掺杂位的构型,计算结果表明Sn原子优先取代b-位的In原子。通过比较不同掺杂构型的形成能,我们发现在实验中Sn原子进入晶格间隙位是可能的,本征缺陷氧空位的存在可以导致Sn原子间隙位掺杂。但是,计算结果表明当Y原子取代In原子时,优先取代位是d-位,并且将导致光学带隙的蓝移。Y原子的间隙位掺杂是三重施主掺杂具有低的形成能和缺陷跃迁能,在实验制备中是可能存在的。对于复合缺陷构型的形成能分析表明,本征缺陷氧空位和Y原子间隙位掺杂的复合缺陷在制备过程中是难以形成的。计算结果表明InXO(X=Sn,Y)三元合金可以调节本征In2O3的光学性质,使三元合金可以作为光电材料应用。
Transparent conductive oxides thin films (TCO) due to the excellent performance, havebecome the key research projects of academe and industry. Through the low resistivities andhigh optical transparency in visible region, they have been widely used for optoelectronicdevices such as solar cells, flat panel displays, or light emitting diodes. In2O3and ZnObelong to the prototypical n-type TCO. Nevertheless, problems of limited properties havebecome an important issue to expand technological applications, hence the urgent need toseek new materials. In fabrication methodology, doping has become a new trend as itselectronic and optical properties can be greatly improved. The current industry standardn-type In2O3:Sn (ITO) can support very high carrier concentration and still maintain highoptical transparency. Thus, theoretical study of In2O3and ZnO-based semiconductor oxidesis still an essential work.
     To sum up, this thesis has three research purposes: Firstly, how to adjust the optical andcatalytic properties by adjusting concentration of the intrinsic defects of ZnO; Secondly,doping ZnO with Cd, Mg, Ca and Y elements, we try change the electronic and opticalproperties; Finally, how to further improve the electronic and optical properties of In2O3arestudied by using the first-principles. The theoretical calculations are performed on CASTEPcode which is based on density functional theory (DFT) using ultrasoft pseudopotentialsmethod. Exchange and correlation effects are described by the generalized gradientapproximation (GGA) and the local density approximation (LDA). The on-site Coulombinteraction is used, which can improve the GGA (or LDA) to predict the electronic propertiesand band gap. Experimental works are done to verify or support the theoretical results.Examinations with x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Ramanspectroscopy, transmission electron microscope (TEM) are used to investigate the structureproperties; Photoluminescence (PL) spectra and UV-Visible spectrophotometer are recordedto investigate the optical properties; Photocatalytic activities are estimated by thedegradation of20mg/L Methylene Blue (MB) solution.
     The main results obtained in the thesis are divided into four parts as following:
     1. Core-shell nested structure of amorphous carbon coated on crystalline ZnO(carbonized ZnO) is synthesized by sol-gel method as precursor. Disordered ZnOnanoparticles are successfully prepared by annealing the carbonized ZnO precursor. HRTEM,Raman and XPS analyses show that the ZnO nanoparticles contain high concentration ofoxygen-deficiency defects. The ZnO nanoparticles exhibit an abnormal intense deep levelemission centered at green luminescence and spreading over a wide wave length range of420nm~660nm, and a negligible UV emission in its photo luminescence spectrum. Theyalso show an enhanced photocatalytic activity in degradation of MB solution. Experimentsand theoretical simulation based on density functional theory show that the intense deeplevel emission and improved photocatalytic ability should attributed to their abundantoxygen-deficiency defects in the ZnO nanoparticles introduced by the two-step preparationmethod.
     2. Zn1-xCdxO thin films are deposited on quartz substrate by pulse laser deposition. Byvarying Cd concentration, the band gap of Zn1-xCdxO films can be adjusted in a wide range.Simultaneity, the electronic structure and optical properties of Zn1-xCdxO alloys areinvestigated by the density functional theory with a combined generalized gradientapproximation plus Hubbard U approach, which precisely predicts the band-gaps of ZnO andZn1-xCdxO alloys. For example, the band gap of Zn1-xCdxO alloys can be adjusted in a widerange from3.219eV for ZnO to2.197eV for Zn0.5Cd0.5O, which produces differentemissions from ultraviolet to Kelly light in their photoluminescence spectra. Both theexperimental results and theoretical simulation reveal that with increasing Cd concentrationin Zn1-xCdxO alloys, their absorption coefficients in visible light range are evidentlyenhanced. The adjustable photoluminescence emission and enhanced visible light absorptionendow Zn1-xCdxO alloys potential applications in optoelectronic and photocatalytic fields.
     3. The electronic and optical properties of wurtzite ZnXO (X=Mg,Ca,Y) ternary alloysare calculated by using first-principles based on the framework of generalized gradientapproximation with introducing the on-site Coulomb interaction. The structures of thesealloys in wurtzite phase are analyzed by examining their lattice constants and internalstructural parameter u. Firstly, the electronic structure of wurtzite ZnMgO ternary alloys iscalculated. The calculated band gap of wurtzite ZnMgO ternary alloys shows a significantexpansion with increasing Mg concentration. The calculated optical absorption spectra alsoshow good agreement with the experimental spectra in their shape and shift trend withvarying Mg concentration. Secondly, the electronic structure of wurtzite ZnCaO ternary alloys is calculated. By comparing the formation energies of three different Ca doping sites,it is found that Ca at Zn site (CaZn) is the most favored doping site. The calculated band gapof wurtzite ZnCaO ternary alloys shows a significant increase with increasing Caconcentration. Finally, the electronic structure of wurtzite ZnYO ternary alloys is calculated.It has been found that replacement of Zn by Y should generate a shallow donor. The Y-dopedZnO would be a material with enhanced mobility and hence improved electrical conductivitywithout sacrificing optical transparency. Therefore, the theoretical results show that thewurtzite ZnXO (X=Mg,Ca,Y) ternary alloys are the potential candidate alloys foroptoelectronic materials.
     4. In2O3doped with yttrium or stannum shows improved optoelectronic efficiency. Herethe structural properties and electronic structures of Sn or Y-doped In2O3are investigated byfirst-principles calculations. Various doping sites of Sn in In2O3system have been modeled.The energy favorable site of Sn atom in In2O3is found to be on the b-site of In atom. Bycomparing the formation energies of different configuration, it is found that the doping of Snatom into interstitial sites (Sni) is experimentally possible due to the fluctuation in energy,and the intrinsic oxygen vacancies (VO) in In2O3favorite the formation of Sni. However, wefound that substitutional YInof d-site is more stable site, and could lead to the blue-shift ofoptical band gap. The Yiis treble donors with low formation energy and defect transitionenergy, it is hence likely to incorporate during growth. The complex defect configurationsare calculated. By comparing the formation energies of complex defect configurations, it isdetermined that the Yi-VOconfiguration also has high formation energy, and this suggests anunfavorable role during prepared process. Therefore, the theoretical results show that theInXO (X=Sn or Y) ternary alloys are the potential candidate alloys for optoelectronicmaterials.
引文
[1] HAMBER I, GRANQVIST C G. Evaporated Sn-doped In2O3films: basic opticalproperties and applications to energy-efficient windows [J]. Journal of Applied Physics,1986,60(11):R123-159.
    [2] ZGüR ü, ALIVOV Y I, LIU C, TEKE A, RESHCHIKOV M A, DO AN S, AVRUTINV, CHO S J, MORKOC H. A comprehensive review of ZnO materials and devices [J].Journal of Applied Physics,2005,98:041301.
    [3] WENCKSTERN H, SCHMIDT H, BRANDT M, LAJN A, PICKENHAIN R, LORENZM, GRUNDMANN M, HOFMANN D M, POLITY A, MEYER B K, SAAL H,BINNEWIES M, B RGER A, BECKER K D, TIKHOMIROV V A, JUG K. Anionic andcationic substitution in ZnO [J]. Progress in Solid State Chemistry,2009,37:153-172.
    [4] WANG Y P, LU J G, BIE X, YE Z Z, LI X, SONG D, ZHAO X Y, YE W Y. Transparentconductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown bymagnetron sputtering at room temperature [J]. Applied Surface Science,2011,257:5966-5971.
    [5] RYU Y R, LUBGUBAN J A, LEE T S, WHITE H W, JEONG T S, YOUN C J, KIM B J.Excitonic ultraviolet lasing in ZnO based light emitting devices [J]. Applied Physics Letters,2007,90:131115.
    [6] OHTOMO A, KAWASAKI M, KOIDA T, MASUBUCHI K, KOINUM H. MgxZn1-xO asa Ⅱ-Ⅳ widegap semiconductor alloy [J]. Applied Physics Letters,1998,72:2466-2468.
    [7] RYU Y, LEE T S, LUBGUBAN J A, WHITE H W, KIM B J, PARK Y S, YOUN C J.Next generation of oxide photonic devices: ZnO-besed ultraviolet light emitting diodes [J].Applied Physics Letters,2006,88:241108.
    [8] ZHENG B J, LIAN J S, ZHAO L, JIANG Q. Optical and wlectrical properties ofZnO/CdO composite thin films prepared by pulse laser deposition [J]. Chinese PhysicsLetters,2011,28:016801.
    [9] HAN J B, ZHOU H J, WANG Q Q. Conductivity and optical nonlinearity of Sb dopedSnO2films [J]. Materials Letters,2006,60:252-254.
    [10] AUKKARAVITTAYAPUN S, WONGTIDA N, KASECWATIN T,CHAROJROCHKUL S, UNNANON K, CHINDAUDOM P. Large scale F-doped SnO2coating on glass by spray pyrolysis [J]. Thin Solid Films,2006,496:117-120.
    [10] ZHU X, JIANG T, QIU G, HUANG B. Semiconductivities of Sn-doped In2O3powderprepared by co-precipitation through ion exchange method [J]. Materials Chemistry andPhysics,2008,112:342-345.
    [12] MAREZIO M. Refinement of the crystal structure of In2O3at two wavelengths [J]. ActaCrystallographica,1966,20:723-725.
    [13] DINIZ A S A C. The effects of various annealing regimes on the microstructure andphysical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation forsolar energy applications [J]. Renewable Energy,2011,36:1153-1165.
    [14] KALEEMULLA S, MADHUSUDHANA RAO N, GIRISH JOSHI M, SIVASANKARREDDY A, UTHANNA S, SREEDHARA REDDY P. Electrical and optical properties ofIn2O3:Mo thin films prepared at various Mo-doping levels [J]. Journal of Alloys andCompounds,2010,504:351-356.
    [15] ROZATI S M, GANJ T. Preparation of In2O3:F thin films grown by spray pyrolysistechnique [J]. Renewable Energy,2004,29:1665-1669.
    [16] LIANG Y C. Integration of high-k perovskite capacitor on transparent conductiveZr-doped In2O3epitaxial thin films [J]. Thin Solid Films,2010,518:S22-25.
    [17] GUPTA R K, GHOSH K, MISHRA S R, KAHOL P K. Structural, optical and electricalcharacterization of highly conducting Mo-doped In2O3thin films [J]. Applied SurfaceScience,2008,254:4018-4023.
    [18] ELHICHOU A, ADDOU M, MANSORI M, EBOTH J. Structural, optical andluminescent characteristics of sprayed fluorine-doped In2O3thin films for solar cells [J].Solar Energy Materials and Solar Cells,2009,93:609-612.
    [19] SRIKANT V, CLARKE D R. On the optical band gap of zinc oxide [J]. Journal ofApplied Physics,1998,83:5447-5451.
    [20] YANG W, WU Z, LIU Z, PANG A, TU Y-L, FENG Z C. Room temperature depositionof Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering andeffects of thermal annealing [J]. Thin Solid Films,2010,519:31-36.
    [21] JIANG M, WANG Z, NING Z. Study of structural and optical properties of Ge dopedZnO films [J]. Thin Solid Films,2009,517:6717-6720.
    [22] GAO L, ZHANG Y, ZHANG J M, XU K W. Boron doped ZnO thin films fabricated byRF-magnetron sputtering [J]. Applied Surface Science,2011,257:2498-2502.
    [23] MATSUNAMI N, FUKUSHIMA J, SATAKA M, OKAYASU S, SUGAI H,KAKIUCHIDA H. Electrical property modifications of In-doped ZnO films by ionirradiation [J]. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,2010,268:3071-3075.
    [24] ZHANG H, LEI C, LIU H, YUAN C. Low-temperature deposition of transparentconducting ZnO:Zr films on PET substrates by DC magnetron sputtering [J]. AppliedSurface Science,2009,255:6054-6056.
    [25] KIM Y H, JEONG J, LEE K S, CHEONG B, SEONG T Y, KIM W M. Effect ofcomposition and deposition temperature on the characteristics of Ga doped ZnO thin films[J]. Applied Surface Science,2010,257:109-115.
    [26] KIM W S, MOON Y K, KIM K T, SHIN S Y, DU AHN B, LEE J H, PARK J W.Improvement in the negative bias temperature stability of ZnO based thin film transistors byHf and Sn doping [J]. Thin Solid Films,2011,519:6849-6852.
    [27] LUO J T, ZHU X Y, CHEN G, ZENG F, PAN F. The electrical, optical and magneticproperties of Si-doped ZnO films [J]. Applied Surface Science,2012,258:2177-2181.
    [28] LU J J, LU Y M, TASI S I, HSIUNG T L, WANG H P, JANG L Y. Conductivityenhancement and semiconductor-metal transition in Ti-doped ZnO films [J]. OpticalMaterials,2007,29:1548-1552.
    [29] TSAI Y Z, WANG N F, TSAI C L. Formation of F-doped ZnO transparent conductivefilms by sputtering of ZnF2[J]. Materials Letters,2009,63:1621-1623.
    [30] VANHEUSDEN K, SEAGER C H, WARREN W L. Correlation betweenphotoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters,1996,68:403-405.
    [31] HEO Y W, NORTON D P, PEARTON S J. Origin of green luminescence in ZnO thinfilm grown by molecular-beam epitaxy [J]. Journal of Applied Physics,2005,98:073502.
    [32] ALVI N H, HASAN K U, NUR O, WILLANDER M. The origin of the red emission inn-ZnO nanotubes p-GaN white light emitting diodes [J]. Nanoscale Research Letters,2011,6:130-7.
    [33] PAYNE M C, TETER M P, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterativeminimization techniques for ab initio total-energy calculations: molecular dynamics andconjugate gradients [J]. Reviews of Modern Physics,1992,64:1045-1097.
    [34] PERDEW J P, ZUNGER A. Self-interaction correction to density-functionalapproximations for many-electron systems [J]. Physical Review B,1981,23:5048.
    [35] WU Z, COHEN R E. More accurate generalized gradient approximation for solids [J].Physical Review B,2006,73:235116.
    [36] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R,SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation [J]. Physical Review B,1992,46:6671.
    [37] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation madesimple [J]. Physical Review Letters,1996,77:3865.
    [38] HAMMER B, HANSEN L B, OSLASH, RSKOV J K. Improved adsorption energeticswithin density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J].Physical Review B,1999,59:7413.
    [39] PERDEW J P, RUZSINSZKY A, CSONKA G, AACUTE, BOR I, VYDROV O A,SCUSERIA G E, CONSTANTIN L A, ZHOU X, BURKE K. Restoring theDensity-Gradient Expansion for Exchange in Solids and Surfaces [J]. Physical ReviewLetters,2008,100:136406.
    [40] JANOTTI A, VAN DE WALLE C G. Fundamentals of zinc oxide as a semiconductor [J].Reports on Proggress Physics,2009,72:126501.
    [41] WANG M S, ZHOU Y J, ZHANG Y P, KIN E J, HAHN S H, Seong S G. Near-infratedphotoluminescence from ZnO [J]. Applied Physics Letters,2012,100:101906.
    [42] WANG J P, WANG Z Y, HUANG B B, MA Y D, LIU Y Y, QIN X Y, ZHANG X Y, DAIY. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalyticactivity of ZnO [J]. ACS Applied Materials&Interfaces,2012,4:4024-4030.
    [43] REYNOLDS D C, LOOK D C, JOGAI B, MORKOC H. Similarities in the bandedgeand deep-centre photoluminescence mechanisms of ZnO and GaN [J]. Solid StateCommunications,1997,101:643-646.
    [44] LIN B X, FU Z X, JIA Y B. Green luminescent center in undoped zinc oxide filmsdeposited on silicon substrates [J]. Applied Physics Letters,2001,79:943-945.
    [45] ZHANG L Y, YIN L W, WANG C X, LUN N, QI Y X, XIANG D. Origin of visiblephotoluminescence of ZnO quantum dots: defect-dependent and size-dependent [J]. Journalof Physical Chemistry C,2010,114:9651-9658.
    [46] DJURI I A B, LEUNG Y H, CHOY W C H, CHEAH K W, CHAN W K. Visiblephotoluminescence in ZnO tetrapod and multipod structures [J]. Applied Physics Letters,2004,84:2635-2637.
    [47] EUSTIS S, MEIER D C, BEVERSLUIS M R, NIKOOBAKHT B. Analysis of copperincorporation into ZnO nanowires [J]. ACS Nano,2008,2:368-376.
    [48] JANOTTI A, VAN DE WALLE C G. Oxygen vacanciws in ZnO [J]. Applied PhysicsLetters,2005,87:122102.
    [49] HU J, PAN B C. The optical and vibrational properties of dominant defects in undopedZnO: a first-principles study [J]. Journal of Applied Physics,2009,105:083710.
    [50] JANOTTI A, VAN DE WALLE C G. Native point defects in ZnO [J]. Physical ReviewB,2007,76:165202.
    [51] KIM Y S, PARK C H. Rich variety of defects in ZnO via an attractive linteractionbetween O vacancies and Zn interstitials: origin of n-type doping [J]. Physical ReviewLetters,2009,102:086403.
    [52] KRIPAL R, GUPTA A K, SRIVASTAVA R K, MISHRA S K. Photoconductivity andphotoluminescence of ZnO nanoparticles synthesized via co-precipitation method [J].Spectrochimica Acta Part A,2011,79:1605-1612.
    [53] WAN Q, WANG T H, ZHAO J C. Enhanced photocatalytic activity of ZnOnanotetrapods [J]. Applied Physics Letters,2005,87:083105.
    [54] FONOBEROV V A, ALIM K A, BALANDIN A A. Photoluminescence investigation ofthe carrier recombination processes in ZnO quantum dots and nanocrystals [J]. PhysicalReview B,2006,73:165317.
    [55] HE F Q, ZHAO Y P. Growth of ZnO nanotetrapods with hexagonal crown [J]. AppliedPhysics Letters,2006,88:193113.
    [56] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides [J]. Science,2001,291:1947-1949.
    [57] CHEN X B, LIU L, YU P Y, MAO S S. Increasing solar absorption for photocatalysiswith black hydrogenated titanium dioxide nanocrystals [J]. Science,2011,331:746-750.
    [58] ASAHI R, MORIKAWA T, OHWAKI T, AOK K, TAGA Y. Visible-light photocatalysisin nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [59] HE Y B, TILOCCA A, DULUB O, SELLONI A, DIEBOLD U. Local ordering andelectronic signatures of submonolayer water on anatase TiO2(101)[J]. Nature Materials,2009,8:585-589.
    [60] ZENG J H, JIN B B, WANG Y F. Facet enhanced photocatalytic effect with uniformsingle-crystalline zinc oxide nanodisks [J]. Chemical Physics Letters,2009,472:90-95.
    [61] KAMAT P V, HUEHN R, NICOLAESCU R. A “sense and shoot” approach forphotocatalytic degradation of organic contaminanta in water [J]. Journal of PhysicalChemistry B,2002,106:788-794.
    [62] ANSARI S A, KHAN M M, KALATHIL S, NISAR A, LEE J, CHO M H. Oxygenvacancy induced band gap narrowing of ZnO nanostructures by an electrochemically activebifilm [J]. Nanoscale,2013,5:9238-9246.
    [63] CHEN X B, LIU L, LIU Z, MARCUS M A, WANG W C, OYLER N A, GRASS M E,MAO B H, GLANS P A, YU P Y, GUO J H, MAO S S. Properties of disorder-engineeredblack titanium dioxide nanopatricles through hydrogenation [J]. Scientific Reports,2013,3:1510.
    [64] CHOI W, TERMIN A, HOFFMANN M R. The role of metal lon dopants inquantum-sized TiO2: correlation between photoreactivity and charge cattier recombinationdynamics [J]. Journal of Physical Chemistry,1994,98:13669-13679.
    [65] NALDONI A, ALLIETA M, SANTANGELO S, MARELLI M, FABBRI F, CAPPELLIS, BIANCHI C L, PSARO R, SANTO V D. Effect of nature and location of defects onbandgap narrowing in black TiO2nanoparticles [J]. Journal of the American ChemicalSociety,2012,134(18):7600-7603.
    [66] ZHENG J H, SONG J L, JIANG Q, LIAN J S. Enhanced UV emission of Y-doped ZnOnanopatricles [J]. Applied Surface Science,2012,258:6735-6738.
    [67] PARK E, ZHANG J, THOMSON S, OSTROVSKI O, HOWE R. Characterization ofphases formed in the lron carbide process by X-ray diffraction, mossbauer, X-rayphotoelectron spectroscopy, and Raman Spectroscopy analyses [J]. Metallurgical andMaterials Transactions B,2001,32B:839-845.
    [68] MOMINUZZAMAN S M, KRISHNA K M, SOGA T, JIMBO T, UMENO M. Ramanspectra of ion beam sputtered amorphous carbon thin films deposited from camphoric carbon[J]. Carbon,2000,38:127-131.
    [69] TUINSTRA F, KOENING J L. Raman spectrum of graphite [J]. Journal of ChemicalPhysics,1970,53:1126-1130.
    [70] ZHAI J L, WANG L L, WANG D J, LIN Y H, HE D Q, XIE T F. UV-illuminationroom-temperature gas sensing activity of carbon-doped ZnO microspheres [J]. Sensors andActuators B,2012,161:292-297.
    [71] REDDY K M, GUO J J, SHINODA Y, FUJITA T, HIRATA A, SINGH J P,MCCAULAULEY J W, CHEN M W. Enhanced mechanical properties of nanocrystallineboron carbide by nanoporosity and interface phases [J]. Nature Communications,2012,3:1052.
    [72] RISTI M, MUSI S, IVANDA M, POPOVI S. Sol-gel synthesis and characterizationof nanocrystalline ZnO powders [J]. Journal of Alloys and Compounds,2005,397:L1-4.
    [73] RAJALAKSHMI M, ARORA A K, BENDRE B S, MAHAMUNI S. Optical phononconfinement in zinc oxide nanoparticles [J]. Journal of Applied Physics,2000,87:2445-2448.
    [74] DEROUBAIX G, MARCUS P. X-ray photoelectron spectroscopy analysis of copperand zinc oxides and sulphides [J]. Surface and Interface Analysis,1992,18:39-46.
    [75] CAO H T, PEI Z L, GONG J, SUN C, HUANG R F, Wen L S. Preparation andcharacterization of Al and Mn doped ZnO (ZnO:(Al, Mn)) transpatent conducting oxidefilms [J]. Journal of Solid State Chemistry,2004,177:1480-1487.
    [76] TAN S T, SUN X W, YU Z G, WU P, LO G Q, KWONG D L. P-type conduction inunintentional carbon-doped ZnO thin films [J]. Applied Physics Letters,2007,91:072101.
    [77] CHO S, JANG J W, LEE J S, LEE K H. Carbon-doped ZnO nanostructures synthesizedusing vitamin C for visible light photocatalysis [J]. CrysEngComm,2010,12:3929-3935.
    [78] AKBAR S, HASANAIN S K, ABBAS M, OZCAN S, ALI B, SHAH S I. Defectinduced ferromagnetism in carbon-doped ZnO thin films [J]. Solid State Communications,2011,151:17-20.
    [79] PAN H, YI J B, SHEN L, WU R Q, YANG J H, LIN J Y, FENG Y P, DING J, VAN L H,YIN J H. Room-temperature ferromagnetism in carbon-doped ZnO [J]. Physical ReviewLetters,2007,99:127201.
    [80] DONKOVA B, DIMITROV D, KOSTADINOV M, MITKOVA E, MEHANDJIEV D.Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M=Cu,Mn)[J].Materials Chemistry and Physics,2010,123:563-568.
    [81] BARICK K C, SINGH S, ASLAM M, BAHADUR D. Porosity and photocatalyticstudies of transition metal doped ZnO nanoclustets [J]. Microporous and MesoporousMaterials,2010,134:195-202.
    [82] D’AMICO N R, CANTALE G, NINNO D. First-principles calculations of clesn anddefected ZnO surfaces [J]. Journal of physical chemistry C,2012,116:21391-21400.
    [83] CALZOLARI A, RUINI A, CATELLANI A. Anchor group versus conjugation: towardthe gap-state engineering of functionalized ZnO (10-10) surface for optoelectronicapplications [J]. Journal of the American Chemical society,2011,133:5893-5899.
    [84] GAJDO M, EICHLER A, HAFNER J. CO adsorption on close-packed transition andnoble metal surfaces: trends from ab initio calculatins [J]. Journal of Physics: CondensedMatter,2004,16:1141-1164.
    [85] AO Z M, LI S, JIANG Q. Thermal stability of interaction between the CO moleculesand the Al doped grapheme [J]. Physical Chemistry Chemical Physics,2009,11:1683-1687.
    [86] LSHIHARA J, NAKAMURA A, SHIGEMORI S, AOKI T, TEMMYO J. Zn1-xCdxOsystems with visible band gaps [J]. Applied Physics Letters,2006,89:091914.
    [87] MA D W, YE Z Z, CHEN L L. Dependence of structural and optical properties ofZn1-xCdxO films on the Cd composition [J]. Physica Status Solidi A,2004,201:2929-2933.
    [88] YAMAMOTO K, TSUBOI T, OHASHI T, TAWARA T, GOTOH H, NAKAMURA A,TEMMYO J. Structural and optical properties of Zn(Mg,Cd)O ally films grown byremote-plasma-enhanced MOCVD [J]. Journal of Crystal Growth,2010,312:1703-1708.
    [89] GHOSH M, RAYCHAUDHURI A K. Structure and optical properties of Cd-substitutedZnO (Zn1-xCdxO) nanostructures synthesized by the high-pressure solution route [J].Nanotechnology,2007,18:115618.
    [90] ZHENG B J, LIAN J S, ZHAO L, JIANG Q. Structural, optical and electrical propertiesof Zn1-xCdxO thin films prepared by PLD [J]. Applied Surface Science,2011,257:5657-5662.
    [91] YADAV M K, GHOSH M, BISWAS R, RAYCHAUDHURI A K, MOOKERJEE A.Band-gap variation in Mg-and Cd-doped ZnO nanostructures and molecular clusters [J].Physical Review B,2007,76:195450.
    [92] ZAOUI A, ZAOUI M, KACIMI S, BOUKORTT A, BOUHAFS B. Stability andelectronic properties of Zn1-xCdxO alloys [J]. Materials Chemistry and Physics,2010,120:98-103.
    [93] ZHANG X D, GUO M L, LI W X, LIU C L. First-principles study of electronic andoptical properties in wurtzite Zn1-xCdxO [J]. Journal of Applied Physics,2008,103:063721.
    [94] ROZALE H, BOUHAFS B, RUTERANA P. First-principles calculations of the opticalband-gaps of Zn1-xCdxO alloys [J]. Superlattices and Microstructures,2007,42:165-171.
    [95] WANG Z J, LI S C, WANG L Y, LIU Z. First-principles study of structrural andcorreted band properties of wurtzite Zn1-xCdxO and Zn1-xMgxO systems [J]. Chinese PhysicsB,2009,18:2992-2997.
    [96] FAN X F, SUN H D, SHEN Z X, KUO J L, LU Y M. A first-principle ananlysis on thephase stabilities, chemical bonds and band gaps of wurtzite structure AxZn1-xO alloys(A=Ca,Cd,Mg)[J]. Journal of Physics: Condensed Matter,2008,20:235221.
    [97] TANG X, LU H F, ZHAO J J, ZHANG Q Y. Study on the doping stability and electronicstructure of wurtzite Zn1-xCdxO alloys by first-principle calculations [J]. Journal of Physicsand Chemistry of Solids,2010,71:336-339.
    [98] JANOTTI A, SEGEV D, VAN DE WALLE C G. Effects of cation d states on thestructural and electronic of Ⅲ-nitride and Ⅱ-oxide wide-band-gap semiconductors [J].Physical Review B,2006,74:045202.
    [99] LI G, WANG X, WANG Y, SHI X, YAO N, ZHANG B. Synthesis and field emissionproperties of ZnCdO hollow micro-nano spheres [J]. Physica E: Low-dimensional Systemsand Nanostructures,2008,40:2649-2653.
    [100] VIJAYALAKSHMI S, ET A L. Characterization of cadmium doped zinc oxide (Cd:ZnO) thin films prepared by spray pyrolysis method [J]. Journal of Physics D: AppliedPhysics,2008,41:245403.
    [101] TORTOSA M, MOLLAR M, MAR B. Synthesis of ZnCdO thin films byelectrodeposition [J]. Journal of Crystal Growth,2007,304:97-102.
    [102] WANG X J, BUYANOVA I A, CHEN W M, IZADIFARD M, RAWAL S, NORTON DP, PEARTON S J, OSINSKY A, DONG J W, DABIRAN A. Band gap properties ofZn1-xCdxO alloys grown by molecular-beam epitaxy [J]. Applied Physics Letters,2006,89:151909-151903.
    [103] LEE W J, KANG J, CHANG K J. Defect properties and p-type doping efficiency inphosphorus-doped ZnO [J]. Physical Review B,2006,73:024117.
    [104] KAUSHAL A, PATHAK D, BEDI R K, KAUR D. Structural, electrical and opticalproperties of transparent Zn1-xMgxO [J]. Thin Solid Films,2009,518:1394-1398.
    [105] FAN X M, LIAN J S, GUO Z X, LU H J. Microstructure and photoluminescenceproperties of ZnO thin films grown by PLD on Si(111) substrates [J]. Applied SurfaceScience,2005,239:176-181.
    [106] USUDA M, HAMADA N, KOTANI T, SCHILFGAATDE M V. All-electron GWcalculation based on the LAPW method: application to wurtzite ZnO [J]. Physical Review B,2002,66:125101.
    [107] CAI T, HAN H L, YU Y, GAO T, DU J G, HAO L H. Study on the ground state of NiO:the LSDA (GGA)+U method [J]. Physica B,2009,404:89-94.
    [108] LOSCHEN C, CARRASCO J, NEYMAN K M, ILLAS F. First-principles LDA+Uand GGA+U study of cerium oxides: dependence on the effective U parameter [J]. PhysicalReview B,2007,75:035115.
    [109] WANG L, MAXISCH T, CEDER G. Oxidation energies of transition metal oxideswithin the GGA+U framework [J]. Physical Review B,2006,73:195107.
    [110] ZHENG B J, LIAN J S, ZHAO L, JIANG Q. Optical and electrical properties ofIn-doped CdO thin films fabricated by pulse laser deposition [J]. Applied Surface Science,2010,256:2910-2914.
    [111] SANATI M, HART G L W, ZUNGER A. Ordering tendencies in octahedral MgO-ZnOalloys [J]. Physical Review B,2003,68:155210.
    [112] MAZNICHENKO I V, ERNST A, BOUHASSOUNE M, HENK J, D NE M,L DERS M, BRUNO P, HERGERT W, MERTING I, SZOTEK Z, TEMMERMAN W M.Structural phase transitions and fundamental band gaps of MgxZn1-xO from first principles[J]. Physical Review B,2009,80:144101.
    [113] LIN K F, PAN C J, HSIEH W F. Calculations of electronic structure and density ofstates in the wurtzite of Zn1-xMgxO alloys using sp3semi-empirical tight-binding model [J].Applied Physics A,2009,94:167-171.
    [114] SHI H L, DUAN Y. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gapsemiconductor alloys: a first-principles study [J]. The European Physical Journal B,2008,66:439-444.
    [115] MALASHEVICH A, VANDERBIL D. First-principles study of polarization inZn1-xMgxO [J]. Physical Review B,2007,75:045106.
    [116] CHEN X H, KANG J Y. The structural properties of wurtzite and rocksalt MgxZn1-xO[J] Semiconductor Science and Technology,2008,23:025008.
    [117] CHO J Y, KIM I K, JUNG I O, MOON J H, KIN J H. Effects of Mg dopingconcentration on the band gap of ZnO/MgxZn1-xO multilayer thin films prepared usingpulsed laser deposition method [J]. Journal of Electroceram,2009,23:442-446.
    [118] LI C, MENG F Y, ZHANG S, WANG J Q. Effects of Mg content and B doping onstructural, electrical and optical properties of Zn1-xMgxO thin films prepared by MOCVD [J].Journal of Crystal Growth,2010,312:1929-1934.
    [119] BHATTACHARYA P, DAS R R, KATIYAR R S. Comparative study of Mg dopedZnO and multilayer ZnO/MgO films [J]. Thin Solid Films,2004,447-448:564-567.
    [120] MA Z Q, ZHAO W G, WANG Y. Electrical properties of Na/Mg co-doped ZnO thinfilms [J]. Thin Solid Films,2007,515:8611-8614.
    [121] KIM Y I, PAGE K, LIMARGA A M, CLARKE D R, SESHADRI R Evolution of localstructures in polycrystalline Zn1-xMgxO (0≤x≤0.5) studied by Raman spectroscopy andsynchrotron x-ray pair-distribution-function analysis [J]. Physical Review B,2007,76:
    [122] CHOI C H, KIM S H. Effects of post-annealing temperature on structural, optical, andelectrical properties of ZnO and Zn1-xMgxO films by reactive RF magnetron sputtering [J].Journal of Crystal Growth,2005,283:170-179.
    [123] SANDEEP C S S, PHILIP R, SATHEESHKUMAR R, KUMAR V. Sol-gel synthesisand nonlinear optical transmission in Zn1-xMgxO (x≤0.2) thin films [J]. Applied PhysicsLetters,2006,89:063102.
    [124] LI L Y, WANG W H, LIU H, LIU X D, SONG Q G, REN S W. First principlescalculations of electronic band structure and optical properties of Cr-doped ZnO [J]. Journalof Physical Chemistry C,2009,113:8460-8464.
    [125] WAN Q W, XIONG Z H, DAI J G, RAO J P, JIANG F Y. First-principles study ofAg-based p-type doping difficulty in ZnO [J]. Optical Materials,2008,30:817-821.
    [126] GUAN L, LIU B T, LI Q, ZHOU Y, GUO J X, JIA G Q, ZHAO Q X, WANG Y L, FUG S. Electronic structure and optical properties of substitutional and interstitialphosphor-doped ZnO [J]. Physics Letters A,2011,375:939-945.
    [127] MISRA K P, SHUKLA R K, SRIVASTAVA A, SRIVASTAVA A. Blueshift in opticalband gap in nanocrystalline Zn1-xCaxO films deposited by sol-gel method [J]. AppliedPhysics Letters,2009,95:031901.
    [128] MILOUA R, KEBBAB Z, MILOUA F, BENRAMDANE N. Ab initio investigation ofphase separation in CaxZn1-xO alloys [J]. Physics Letters A,2008,372:1910-1914.
    [129] HENGEHOLD R L, ALMASSY R J. Electron energy-loss and ultraviolet-reflectivityspectra of crystalline ZnO [J]. Physical Review B,1970,1:4784-4791.
    [130] YANH J H, GAO M, YANG L L, ZHANG Y J, LANG J H, WANG D D, WANG Y X,LIU H L, FAN H G. Low-temperature growth and optical properties of Ce-doped ZnOnanorods [J]. Applied Surface Science,2008,255:2646-2650.
    [131] ANANDAN S, VINU A, SHEEJA LOVELY K L P, GOKULAKRISHNAN N,SRINIVASU P, MORI T, MURUGESAN V, SIVAMURUGAN V, ARIGA K. Photocatalyticactivity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension [J].Journal of Molecular Catalysis A,2007,266:149-157.
    [132] YU Q J, FU W Y, YU C L, YANG H B, WEI R H, SUI Y M, LIU S K, LIU Z L, LI MH, WANG G R, SHAO C L, LIU Y C, ZOU G T. Structural, electrical and optical propertiesof yttrium-doped ZnO thin films prepared by sol-gel method [J]. Journal of Physics D:Applied Physics,2007,40:5592-5597.
    [133] LIN C C, YOUNG S L, KUNG C Y, JHANG M C, KAO M C, CHEN H Z, SHIH Y T.Photoluminescence properties of the Zn1-xYxO tubes prepared by polycarbonate templates [J].J. Supercond Nov Magn,2010,23:1201-1203.
    [134] JIA T K, WANG W M, LONG F, FU Z Y, WANG H, ZHANG Q J. Synthesis,characterization and luminescence properties of Y-doped and Tb-doped ZnO nanocrystals [J].Materials Science and Engineering B,2009,162:179-184.
    [135] YANG J H, WANG R, YANG L L, LANG J H, WEI M B, GAO M, LIU X Y, GAO J,LI X, YANG N N. Tunable deep-level emission in ZnO nanopatricles via yttrium doping [J].Jourmal of Alloys and Compounds,2011,509:3606-3612.
    [136] PALACIOS P, SáNCHEZ K, WAHNóN P. Ab initio valence band spectra of Al, Indoped ZnO [J]. Thin Solid Film,2009,517:2448-2451.
    [137] JANG M S, RYU M K, YOON M H, LEE S H, KIM H K, ONODREA A, KOJIMA S.A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics [J]. Current AppliedPhysics,2009,9:651-657.
    [138] MRYASOV O N, FREEMAN A J. Electronic band structure of indium tin oxide andcriteria for transparent conducting behavior [J]. Physical Review B,2001,64:233111.
    [139] ROBERTSON J. Disorder and instability processes in amorphous conducting oxides[J]. Physics State Solid B,2008,245:1026-1032.
    [140] ROSEN J, WARSCHKOW O. Electronic structure of amorphous indium oxidetranspatent conductots [J]. Physical Review B,2009,80:115215.
    [141] TOMITA T, YAMASHITA K, HAYAFUJI Y. The origin of n-type conductivity inundoped In2O3[J]. Applied Physics Letters,2005,87:051911.
    [142] ZHANG J, QING X, JIANG F H, DAI Z H. A route to Ag-catalyzed growth of thesemiconducting In2O3nanowires [J]. Chemical Physics Letters,2003,371:311-316.
    [143] MENG Y, YANG X L, CHEN H X, SHEN J, JIANG Y M, ZHANG Z J, HUA Z Y. Anew transparent conductive thin film In2O3:Mo [J]. Thin Solid Films,2001,394:219-223.
    [144] WARMSINGH C, YOSHIDA Y, READEY D W, TEPLIN C W, PERKINS J D,PARILLA P A, GEDVILAS L M, KEYES B M, GINLEY D S. High-mobility transpatentconducting Mo-doped In2O3thin films by pulsed laser deposition [J]. Journal of AppliedPhysics,2004,95:3831-3833.
    [145] MEDVEDEVA J E. Magnetically mediated transparent conductors: In2O3doped withMo [J]. Physical Review Letters,2006,97:086401.
    [146] ARAI N, SAITO N, NISHIYAMA H, SHIMODAIRA Y, KOBAYSHI H, INOUE Y,SATO K. Photocatalytic activity for overall water splitting of RuO2-loaded YxIn2-xO3(x=0.9-1.5)[J]. Journal of Physical Chemistry C,2008,112:5000-5005.
    [147] WALSH A, DA SILVA J L F, WEI S H, K RBER C, KLEINl A, PIPER L F J,DEMASI A, SMITH K E, PANACCIONE G, TORELLI P, PAYNE D J, BOURLANGE A,EGDELL R G. Nature of the band gap of revealed by first-principles calculations andX-ray spectroscoty [J]. Physical Review Letters,2008,100:167402.
    [148] WARSCHKOW O, MILJACIC L, ELLIS D E, GONZáLEZ G B, MASON T O.Interstitial oxygen in tin-doped indium oxide transparent conductors [J]. Journal AmericanCeramic Society,2006,89:616-619.
    [149] SKOULIDIS N, POLATOGLOU H M. Modeling the structural properties and energiesof transparent conducting oxides [J]. Thin Solid Films,2007,515:8728-8732.
    [150] BREWER S H. FRANZED S. Calculation of the electronic and optical properties ofindium tin oxide by density functional theory [J]. Cheical Physics,2004,300:285-293.
    [151] KOMPANY A, ALIABAD H A R, HOSSEINI S M, BAEDI J. Effect of substitutedⅢB transition metals on electronic properties of indium oxide by first-principles calculations[J]. Phys. Stat. Sol. B,2007,244:619-628.
    [152] TANAKA I, MIZUNO M, ADACHI H. Electronic structure of indium oxide usingcluster calculations [J]. Physical Review B,1997,56:3536-3539.
    [153] FREEMAN A J, POEPPELMEIER K R, MASON T O, CHANG R P H, MARKS T J.Chemical and thin film strategies for new transparent conducting oxides [J]. MRS Bulletin,2000,25:45-51.
    [154] ERHART P, KLEIN A, EGDELL R G, ALBE K. Band structure of indium oxide:indirect versus direct band gap [J]. Physical Review B,2007,75:153205.
    [155] REN C Y, CHIOU S H, CHOISNET J. First-principles calculations of the electronicband structure of In4Sn3O12and In5SnSbO12[J]. Journal of Applied Physics,2006,99:023706.
    [156] KARAZHANOV S Z, RAVINDRAN P, VAJEESTON P, ULYASHINl A, FINSTAD TG, FJELL G H. Phase stability, electronic structure, and optical properties of indium oxidepolytypes [J]. Physical Review B,2007,76:075129.
    [157] FUCHS F, BECHSTEDT F. Indium-oxide polymorphs from first principles:quasiparticle electronic states [J]. Physical Review B,2008,77:155107.
    [158] LIU X D, JIANG E Y, ZHANG D X. Electrical transport properties in indium tin oxidefilms prepared by electron beam evaporation [J]. Journal of Applied Physics,2008,104:073711.
    [159] KIM H, GILMORE C M, PIQUé A, HORWITZ J S, MATTOUSSI H, MURATA H,KAFAFI Z H, CHRISEY D B. Electrical, optical, and structural properties ofindium-tin-oxide thin films for organic light-emitting devices [J]. Journal of Applied Physics,1999,86:6451-6461.
    [160] ALAM M J, CAMERON D C. Optical and electrical properties of transpatentconductive ITO thin films deposited by sol-gel process [J]. Thin Solid Films,2000,377-378:455-459.
    [161] YANG C H, LEE S C, LIN T C, CHEN S C. Electrical and optical properties ofindium tin oxide films prepated on plastic substrates by radio frequency magnetronsputtering [J]. Thin Solid Films,2008,516:1984-1991.
    [162] POPOVI J, GR ETA B, TKAL EC E, TONEJC A, BIJELI i M, GOEBBERT C.Effect of tin level on particle size and strain in nanocrystalline tin-doped indium oxide [J].Materials Science and Engineering B,2011,176:93-98.
    [163] ODAKA H, SHIGESATO Y, MURAKAMI T, IWATA S. Electronic structure analysesof Sn-doped In2O3[J]. Japanese Journal of Applied Physics,2001,40:3231-3235.
    [164] WALSH A, SILVA J L F D, WEI S H. Origins of band gap renormalization indegenerately doped semiconductors [J]. Physical Review B,2008,78:075211.
    [165] WALSH A, CATLOW C R A, ZHANG K H L, EGDELL R G. Control of the band-gapstates of metal oxides by the application of epitaxial strain: the case of indium oxide [J].Physical Review B,2011,83:161202(R).
    [166] TOMONAGA H, MORIMOTO T. Indium-tin oxide coatings via chemical solutiondeposition [J]. Thin Solid Films,2001,392:243-248.
    [167] ALAM M J, CAMERON D C. Investigation of annealing effects on sol-gel depositedindium tin oxide thin films in different atmospheres [J]. Thin Solid Films,2002,420-421:76-82.
    [168] NISHIO K, SEI T, TSUCHIYA T. Preparation and electrical properties of ITO thinfilms by dip-coating process [J]. Journal of Materials Science,1996,31:1761-1766.
    [169] GONZáLEZ G B, MASON T O, QUINTANA J P, WARSCHKOW O, ELLIS D E,HWANG J H, HODGES J P, JORGENSEN J D. Defect structure studies of bulk andnano-indium-tin oxide [J]. Journal of Applied Physics,2004,96:3912-3920.
    [170] PARENT P, DEXPERT H, TOURILLON G, GRIMAL J M. Structural study oftin-doped indium oxide thin films using X-ray absorption spectroscoty and X-ray diffraction[J]. Journal of Electrochemical Society,1992,139:282-285.
    [171] QUAAS M, EGGS C, WULFF H. Structural studies of ITO thin films with the rietveldmethod [J]. Thin Solid Fims,1998,332:277-281.
    [172] KING P D C, VEAL T D, FUCHS F, WANG C Y, PAYNE D J, BOURLANGE A,ZHANG H, BELL G R, CIMALLA V, AMBACHER O, EGDELL R G, BECHSTEDT F,MCCONVILLE C F. Band gap, electronic structure, and surface electron accumulation ofcubic and rhombohedral In2O3[J]. Physical Review B,2009,79:205211.
    [173] H FFLING B, SCHLEIFE A, FUCHS F, R DL C, BECHSTEDT F. Band lineupbetween silicon and transparent conducting oxides [J]. Applied Physics Letters,2010,97:032116.
    [174] SATO J, KOBAYASHI H, INOUE Y. Photocatalytic activity for water decompositionof indetes with octahedrally coordinated d10configuration Ⅱ roles of geometric andelectronic structures [J]. Journal of Physics Chemical B,2003,107:7970-7975.
    [175] INOUE Y, ASAI Y, SATO K. Photocatalysts with tunnel structures for decompositionof water [J]. Journal of the Chemical Society-Faraday Transactions,1994,90:797-802.
    [176] KOHNO M, OGURA S, SATO K, INOUE Y. Properties of photocatalysts with tunnelstructures: formation of a surface lattice O-radical by the UV irradiation of BaTi4O9with apentagonal-prism tunnel structure [J]. Chemical Physics Letters,1997,267:72-76.
    [177] INOUE Y, KUBOKAWA T, SATO K. Photocatalytic activity of alkall-metal titanatescombined with Ru in the decomposition [J]. Journal of Physics Chemical,1991,95:4059-4063.
    [178] OGURA S, KOHNO M, SATO K, INOUE Y. Photocatelytic properties of M2Ti6O13(M=Na, K, Rb, Cs) with rectangular tunnel and layer structures: behavior of a surface radicalproduced by UV irradiation and photocatalytic activity for water decomposition [J]. PhysicalChemistry Chemical Physics,1999,1:179-183.
    [179] VAN DE WALLE C G, LIMPIJUMNONG S, NEUGEBAUER J. First-principlesstudies of beryllium doping of GaN [J]. Physical Review B,2001,63:245205.
    [180] KIH, ZUNGER A. Origins of coexistence of conductivity and transparency inSnO2[J]. Physical Review Letters,2002,88:095501.
    [181] REUNCHAN P, ZHOU X, LIMPIJUMNONG S, JANOTTI A, VAN DE WALLE C G.Vacancy defects in indium oxide: an ab-initio study [J]. Curren Applied Physics,2011,11:S296-300.
    [182] ZHENG J X, CEDER G, MAXISCH T, CHIM W K, CHOI W K. Native point defectsin yttria and relevance to its use as a high-dielectric-constant gate oxide material:first-principles study [J]. Physical Review B,2006,73:104101.
    [183] BURBANO M, SCANLON D O, WATSON G W. Sources of conductivity and dopinglimits in CdO from hybrid density functional theory [J]. Journal of the american ChemicalSociety,2011,133:15065-15072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700