用户名: 密码: 验证码:
选择性分离材料及其在修饰蛋白质组学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于对糖分离及修饰蛋白质组学中糖肽/磷酸化肽富集的选择性分离材料的应用与研究,结合日益发展的色谱、质谱等手段,针对目前糖类化合物分离及翻译后修饰蛋白质组学研究中面临的热点难点问题展开了一系列研究工作。通过制备与考察几种新型的选择性分离材料,对其制备、表征、分离评价、及在糖分离、糖肽/磷酸化肽选择性富集中的应用以及相关富集分离机理做了系统地阐述与研究。
     利用静电作用制备了一种新型的涂覆纤维素糖固载亲水色谱材料,通过元素分析、氮气吸附脱附实验及ζ-电势测试对材料的固载量、孔结构及表面带电情况的进行了系统的表征。以核苷碱基和糖类化合物等极性物质为模型化合物进行了色谱评价,结果表明该新型固定相具有典型的亲水作用保留特性,适合用于分离小分子糖、寡糖样品及天然产物中的糖苷等各类强极性化合物,将该固定相材料应用于翻译后修饰肽的富集也表现出很好糖肽/磷酸化肽选择性富集效果。
     利用羰基二咪唑为反应连接臂将葡聚糖键合到硅胶上,制备了键合多糖型亲水色谱材料。该方法创新地将葡聚糖与硅胶进行结合,可用于糖类化合物特异性的分离与糖肽选择性富集。键合葡聚糖亲水色谱固定相材料在糖、糖醇样品,高聚合度的寡糖样品与天然产物中的糖苷样品的分离及糖蛋白酶解液样品糖肽的富集都表现出很好的应用能力。将该制备方法进行推广,制备了其他几种多糖或多羟基固载硅胶固定相,为新型亲水色谱固定相材料的发展提供了更为广阔的发展空间。
     考察了两性离子材料Click TE-Cys对磷酸化肽的富集作用机理,通过对上样和淋洗条件的优化,实现该材料对磷酸化肽的高选择性富集,同时很好地将单磷酸化肽和多磷酸化肽进行分段富集。特别值得一提的Click TE-Cys对多磷酸化肽表现出优异的富集选择性。所建立的方法对于复杂样品体系及实际样品体系都表现出较好的磷酸化肽富集效果。该方法的建立对磷酸化修饰蛋白质组学的研究有着积极的意义。
     考察了氧化钛对糖肽的富集作用机理,进而发展了一种简单统一的糖肽富集方法。在此基础上,发展了复合金属氧化物材料,利用HRSEX、EDAX、氮气吸附脱附等对其球形形貌及比表面等参数进行了系统表征,表明通过溶胶-凝胶法制备的复合金属氧化物材料是一类理想的富集翻译后修饰肽的分离材料。通过考察和比较各种复合金属氧化物材料在磷酸化肽及糖肽的选择性富集中的差异和特性,以提供更为合适的磷酸化肽/糖肽富集手段,为发展高效的翻译后修饰肽富集材料及富集方法提供了基础。
Development of selectivity separation marerials is one of the most important approaches to resolve the problems in the separation science. Aiming to the application research of saccharides separation and glycopeptides/phosphopeptides enrichment in modification-specific proteomics, a series of research work was carried out for solving the hot and difficult issues in these fields, combined with the increasing development of HPLC and MS. Based on the preparation and investigation of several novel selectivity separation materials, the specific preparation, characterization, evaluation, application in the saccharides separation and glycopeptides/phosphopeptides enrichment, and related enrichment mechanism in modification-specific proteomics were formulated systematically.
     Hydrophilic interaction of liquid chromatography (HILIC) is a promising alternative HPLC mode for separation of very polar compounds. A novel cellulose-coated silica HILIC stationary phase was synthesized with a method based on ionic interaction. The reulsting material was characterized by elemental analysis, N2adsorption-desorption isotherms and ξ--potential. The stationary phase was successful uesd to separate the samples of polar compounds and the complex samples of oligosaccharides, and demonstrated good reproducibility and stability. The material exhibited good separation selectivity for carbohydrates and ability to enrich glycosylated and phosphorylated peptides. Moreover, the method described here is easy to achieve, environmentally safe and innovative than other methods. It also has extensive appliction possibilites to separate other categories polar compounds.
     Another saccharide-based stationary phase for HILIC was presented. This method used carbonyl di-imidazole (CDI) as a cross-linker for dextran in aqueous solution. This dextran-based stationary phase was preparated with a simple method, and proved to possess good hydrophilicity and chemical stability. Sugars and sugars alcohols were well separated, with high efficiency. The separation of anomers of reducing sugars was suppressed, which is encouraging for possible applications in the quantification of carbohydrates. The separation of neutral, basic and acidic oligosaccharides was also achieved in the HILIC mode. The material has potential for usd in a HILIC-RPLC2D-LC system for the separation of complex glucoside samples in natural products. Finally, the separation material shows potential for the enrichment of glycosylated peptides, presumably better result with higher enrichment selectivity and recovery will be achieved by further optimization.
     System methodology was established for incestigation of the retention mechanism of phosphopepthdes enrichment in the zwitterionic material Click TE-Cys. Through the optimization of elution conditions, realizing the filally selectivity enrichment of phosphopeptides, and separated multi-phosphorylated peptides from single-phosphorlated peptides in the results as well. The optimization scheme was applied to the complex sampke system and actual sample system, this method also exhibited high selectivity for phosphopeptides enrichment in our assessment. This efficient and optimized method will be a valuable tool for specific enrichment of phosphopeptides in phosphoproteome analysis.
     Retention mechanisms between glycopeptides and TiO2were explored by checking the influence of acetonitrile content, NH3H2O concentration and formic acid concentration on the retention of glycopeptides. Both hydrophilic interaction and ligand-exchange retention mechanisms between glycopeptides and TiO2were found to be involved. Based on this, a uniform method was established for selective enrichment of glycopeptides with TiO2. The developed method exhibited high selectivity for N-linked glycopeptides with short to long peptide sequences. This efficient and uniform method will be a valuable tool for post-translational modification in proteomics. On the basis of above investigation, eight of metal doping tirania mircospheres including Ti-Al, Ti-Ce, Ti-Co, Ti-Cu, Ti-Fe, Ti-La, Ti-Mn, and Ti-Sm were prepared by sol-gel method. The obtained mixed metal oxides were characterized by HRSEX, ED AX and N2adsorption-desorption isotherms, as well, they were applied in the enrichment of phosphopeptides and glycopeptides. By examining and comparing the differences and characteristics of these mixed metal oxides in the post-translation modified-peptides enrichment, it provide a more appropriated technical for the basis of with develpment of efficient enrichment materials and enrichment methods. The data collectively indicate that the material developed in this study is of considerable value and has potential application in the fields of proteomics, which will be investigated in depth in the future.
引文
[1]Siebert H-C, Von Der Lieth C-W, Gilleron M, Reuter G, Wittmann J, Vliegenthart J F G, Gabius H-J, Carbohydrate-Protein Interaction. In Glycosciences, Wiley-VCH Verlag GmbH: 2008; pp 291-310.
    [2]McClary C A, Taylor M S. Applications of organoboron compounds in carbohydrate chemistry and glycobiology: analysis, separation, protection, and activation. Carbohydrate Research.2013,381:112-122.
    [3]Lee Y C, Lee R T. Carbohydrate-Protein Interactions:Basis of Glycobiology. Accounts of Chemical Research.1995,28 (8):321-327.
    [4]Zhang Y, Luo S, Tang Y, Yu L, Hou K-Y, Cheng J-P, Zeng X, Wang P G. Carbohydrate-Protein Interactions by "Clicked" Carbohydrate Self-Assembled Monolayers. Analytical Chemistry.2006,78 (6):2001-2008.
    [5]Seeberger P H, Werz D B. Synthesis and medical applications of oligosaccharides. Nature. 2007,446(7139):1046-1051.
    [6]Wang C-C, Huang Y-L, Ren C-T, Lin C-W, Hung J-T, Yu J-C, Yu A L, Wu C-Y, Wong C-H. Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proceedings of the National Academy of Sciences.2008,105 (33):11661-11666.
    [7]张树政主编,糖生物学与糖生物工程.北京市:清华大学出版社:2002;p 179.
    [8]陈国荣主编,糖化学基础.上海市:华东理工大学出版社:2009;p 188.
    [9]蔡孟深,李中军,糖化学:基础、反应、合成、分离及结构.化学工业出版社:2007;p 440.
    [10]Dvorackova E, Snoblova M, Hrdlicka P. Carbohydrate analysis: From sample preparation to HPLC on different stationary phases coupled with evaporative light-scattering detection. Journal of Separation Science.2014,37 (4):323-337.
    [11]Doyle H A, Mamula M J. Post-translational protein modifications in antigen recognition and autoimmunity. Trends in Immunology.2001,22 (8):443-449.
    [12]Dwek R A. Glycobiology:toward understanding the function of sugars. Chemical Reviews.1996,96 (2):683-720.
    [13]胡笳,郭燕婷,李艳梅.蛋白质翻译后修饰研究进展.科学通报.2005,50(11):1061-1072.
    [14]宋春侠,孙珍,秦洪强,叶明亮,张丽华,张玉奎,邹汉法.修饰蛋白质组学分离鉴定新技术新方法proteins (in Chinese)2013,58:1-1.
    [15]Niwa T. Mass spectrometry for the study of protein glycation in disease. Mass Spectrometry Reviews.2006,25 (5):713-723.
    [16]Mann M, Jensen O N. Proteomic analysis of post-translational modifications. Nature Biotechnology.2003,21 (3):255-261.
    [17]Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta (BBA)-General Subjects.1999, 1473 (1):4-8.
    [18]Lowe J B. Glycosylation, immunity, and autoimmunity. Cell.2001,104 (6):809-812.
    [19]Dennis J W, Granovsky M, Warren C E. Glycoprotein glycosylation and cancer progression. Biochimica et Biophysica Acta (BBA)-General Subjects.1999,1473 (1):21-34.
    [20]Rudd P M, Elliott T, Cresswell P, Wilson I A, Dwek R A. Glycosylation and the immune system. Science.2001,291 (5512):2370-2376.
    [21]Ohtsubo K, Marth J D. Glycosylation in cellular mechanisms of health and disease. Cell. 2006,126 (5):855-867.
    [22]Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nature Biotechnology. 2006,24 (10):1241-1252.
    [23]Temporini C, Calleri E, Massolini G, Caccialanza G. Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrometry Reviews.2008, 27 (3):207-236.
    [24]Hunter T. Signaling—2000 and beyond. Cell. 2000,100 (1):113-127.
    [25]Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R. Global analysis of protein phosphorylation in yeast. Nature.2005,438 (7068): 679-684.
    [26]Han G, Ye M, Zou H. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst. 2008, 133 (9):1128-1138.
    [27]Zhao Y, Jensen O N. Modification-specific proteomics:strategies for characterization of post-translational modifications using enrichment techniques. Proteomics.2009,9 (20): 4632-4641.
    [28]Norregaard Jensen O. Modification-specific proteomics:characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology. 2004,8(1):33-41.
    [29]Witze E S, Old W M, Resing K A, Ahn N G. Mapping protein post-translational modifications with mass spectrometry. Nature Methods.2007,4 (10):798-806.
    [30]Geyer H, Geyer R. Strategies for analysis of glycoprotein glycosylation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics.2006,1764 (12):1853-1869.
    [31]夏其昌,曾嵘,蛋白质化学与蛋白质组学.科学出版社:2004.
    [32]Fila J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2011,43(3):1025-1047.
    [33]Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. Journal of Separation Science.2012, 35 (18): 2341-2372.
    [34]Ito S, Hayama K, Hirabayashi J. Enrichment Strategies for Glycopeptides.2009: 194-203.
    [35]Han G, Ye M, Zou H. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. The Analyst. 2008,133 (9):1128.
    [36]Peter-Katalinic J, Mass Spectrometry and Glycomics. In Supramolecular Structure and Function 9, Pifat-Mrzljak, G., Ed. Springer Netherlands:2007; pp 89-102.
    [37]Yuan Q P, Zhang H, Qian Z M, Yang X J. Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. Journal of Chemical Technology & Biotechnology. 2004,79 (10):1073-1079.
    [38]Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology. 2009,82 (5):815-827.
    [39]Reis A, Domingues M R M, Ferrer-Correia A J, Coimbra M A. Structural characterisation by MALDI-MS of olive xylo-oligosaccharides obtained by partial acid hydrolysis. Carbohydrate Polymers.2003,53 (1):101-107.
    [40]Appeldoorn M M, Kabel M A, Van Eylen D, Gruppen H, Schols H A. Characterization of Oligomeric Xylan Structures from Corn Fiber Resistant to Pretreatment and Simultaneous Saccharification and Fermentation. Journal of Agricultural and Food Chemistry. 2010,58 (21): 11294-11301.
    [41]Li J, Chase H. Applications of membrane techniques for purification of natural products. Biotechnology Letters.2010,32 (5):601-608.
    [42]Sarney D B, Hale C, Frankel G, Vulfson E N. A novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanofiltration. Biotechnology and Bioengineering. 2000,69 (4):461-467.
    [43]Sanz M L, Martinez-Castro I. Recent developments in sample preparation for chromatographic analysis of carbohydrates. Journal of Chromatography A.2007,1153 (1-2): 74-89.
    [44]Stulik K, Pacakova V, Ticha M. Some potentialities and drawbacks of contemporary size-exclusion chromatography. Journal of Biochemical and Biophysical Methods.2003,56 (1-3):1-13.
    [45]Ruhaak L R, Deelder A, Wuhrer M. Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry. 2009,394 (1):163-174.
    [46]Wuhrer M, Deelder A, Hokke C. Protein glycosylation analysis by liquid chromatography-mass spectrometry. Journal of Chromatography B.2005,825 (2):124-133.
    [47]Zaia J. Mass spectrometry and glycomics. OMICS:A Journal of Integrative Biology. 2010,14 (4):401-418.
    [48]Lee Y C. High-performance anion-exchange chromatography for carbohydrate analysis. Analytical Biochemistry. 1990,189(2):151-162.
    [49]Rice K G, Takahashi N, Namiki Y, Tran A D, Lisi P J, Lee Y C. Quantitative mapping of the N-linked sialyloligosaccharides of recombinant erythropoietin:Combination of direct high-performance anion-exchange chromatography and 2-aminopyridine derivatization. Analytical Biochemistry. 1992,206 (2):278-287.
    [50]Lee Y C. Carbohydrate analyses with high-performance anion-exchange chromatography. Journal of Chromatography A. 1996,720 (1-2):137-149.
    [51]牟世芬,于泓,蔡亚岐.糖的高效阴离子交换色谱-脉冲安培检测法分析.色谱.2009,27(5):667-674.
    [52]Johnson D C, Dobberpuhl D, Roberts R, Vandeberg P. Pulsed amperometric detection of carbohydrates, amines and sulfur species in ion chromatography —the current state of research. Journal of Chromatography A.1993,640 (1-2):79-96.
    [53]Borromei C, Cavazza A, Merusi C, Corradini C. Characterization and quantitation of short-chain fructooligosaccharides and inulooligosaccharides in fermented milks by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Separation Science.2009,32 (21):3635-3642.
    [54]Grey C, Edebrink P, Krook M, Jacobsson S P. Development of a high performance anion exchange chromatography analysis for mapping of oligosaccharides. Journal of Chromatography B.2009,877 (20-21):1827-1832.
    [55]Morales V, Corzo N, Sanz M L. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups. Food Chemistry. 2008,107 (2):922-928.
    [56]Borromei C, Cavazza A, Corradini C, Vatteroni C, Bazzini A, Ferrari R, Merusi P. Validated HPAEC-PAD method for prebiotics determination in synbiotic fermented milks during shelf life. Analytical and Bioanalytical Chemistry. 2010,397 (1):127-135.
    [57]李国强,尹平河,赵玲,欧云付,黄雪松.离子色谱-积分脉冲安培检测法测定大蒜多糖的单糖组成.分析测试学报.2007,26(3):401-403.
    [58]唐坤甜,林立,梁立娜,蔡亚岐,牟世芬.无糖和低糖食品中的糖和糖醇同时分析的阴离子交换色谱-脉冲安培检测法研究.食品科学.2008,29(6):327-331.
    [59]Koizumi K, Okada Y, Fukuda M. High-performance liquid chromatography of mono-and oligo-saccharides on a graphitized carbon column. Carbohydrate Research. 1991,215 (1): 67-80.
    [60]Davies M, Smith K D, Harbin A-M, Hounsell E F. High-performance liquid chromatography of oligosaccharide alditols and glycopeptides on a graphitized carbon column. Journal of Chromatography A.1992,609 (1-2):125-131.
    [61]刘晗,白雪芳,杜昱光.寡糖类物质分离及结构研究现状.精细与专用化学品.2005,13(9):1-5.
    [62]Harrison S, Xue H, Lane G, Villas-Boas S, Rasmussen S. Linear Ion Trap MSn of Enzymatically Synthesized 13C-Labeled Fructans Revealing Differentiating Fragmentation Patterns of β (1-2) and β (1-6) Fructans and Providing a Tool for Oligosaccharide Identification in Complex Mixtures. Analytical Chemistry. 2011,84 (3):1540-1548.
    [63]Casal E, Lebron-Aguilar R, Chuan-Lee Y, Noboru T, Quintanilla-Lopez J E. Identification of Sialylated Oligosaccharides Derived from Ovine and Caprine Caseinomacropeptide by Graphitized Carbon Liquid Chromatography-Electrospray Ionization Ion Trap Tandem Mass Spectrometry. Food Analytical Methods.2013,6 (3): 814-825.
    [64]Jandera P. Stationary and mobile phases in hydrophilic interaction chromatography:a review. Analytica Chimica Acta. 2011,692 (1-2):1-25.
    [65]Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Analytical and Bioanalytical Chemistry. 2011,402 (1): 231-247.
    [66]Alpert A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography A. 1990,499 (0): 177-196.
    [67]Alpert A J, Shukla M, Shukla A K, Zieske L R, Yuen S W, Ferguson M A J, Mehlert A, Pauly M, Orlando R. Hydrophilic-interaction chromatography of complex carbohydrates. Journal of Chromatography A. 1994,676 (1):191-202.
    [68]梁鑫淼.基于亲水作用色谱的寡糖色谱分离新进展.色谱.2011,29(3):191-192.
    [69]Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N. Separation efficiencies in hydrophilic interaction chromatography. Journal of Chromatography A.2008,1184 (1-2): 474-503.
    [70]Jandera P. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. Journal of Separation Science.2008,31 (9):1421-1437.
    [71]沈爱金,郭志谋,梁鑫淼.亲水作用色谱固定相的发展及应用.化学进展.2014,26(1):10-18.
    [72]Guo Z, Lei A, Zhang Y, Xu Q, Xue X, Zhang F, Liang X. "Click saccharides":novel separation materials for hydrophilic interaction liquid chromatography. Chemical Communications.2007, (24):2491.
    [73]Fu Q, Liang T, Zhang X, Du Y, Guo Z, Liang X. Carbohydrate separation by hydrophilic interaction liquid chromatography on a'click' maltose column. Carbohydrate Research.2010, 345 (18):2690-2697.
    [74]Herbreteau B. Les sucres et leurs polymeres analyses par chromatographie en phase liquide: Les macromolecules. Analusis.1992,20 (10):M31-M34.
    [75]Herbreteau B, Villette V, Lafosse M, Dreux M. Analysis of oligosaccharides using aminobonded silica gel and a ternary eluent with evaporative light scattering detection. Fresenius'Journal of Analytical Chemistry.1995,351 (2-3):246-250.
    [76]Wuhrer M, de Boer A R, Deelder A M. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrometry Reviews.2009,28 (2): 192-206.
    [77]Sheng Q, Ke Y, Li K, Yu D, Liang X. A novel ionic-bonded cellulose stationary phase for saccharide separation. Journal of Chromatography A.2013,1291:56-63.
    [78]Leijdekkers A G M, Sanders M G, Schols H A, Gruppen H. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. Journal of Chromatography A.2011,1218 (51):9227-9235.
    [79]Gilar M, Olivova P, Daly A E, Gebler J C. Orthogonality of separation in two-dimensional liquid chromatography. Analytical Chemistry.2005,77 (19):6426-6434.
    [80]Dugo P, Kumm T, Crupi M, Cotroneo A, Mondello L. Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes. Journal of Chromatography A.2006,1112 (1): 269-275.
    [81]Gray M J, Dennis G R, Slonecker P J, Shalliker R A. Comprehensive two-dimensional separations of complex mixtures using reversed-phase reversed-phase liquid chromatography. Journal of Chromatography A.2004,1041 (1):101-110.
    [82]Millea K M, Krull I S, Cohen S A, Gebler J C, Berger S J. Integration of multidimensional chromatographic protein separations with a combined "top-down" and "bottom-up" proteomic strategy. Journal of Proteome Research.2006,5 (1):135-146.
    [83]Liu Y, Xue X, Guo Z, Xu Q, Zhang F, Liang X. Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis. Journal of Chromatography A.2008,1208 (1):133-140.
    [84]Hata K, Morisaka H, Hara K, Mima J, Yumoto N, Tatsu Y, Furuno M, Ishizuka N, Ueda M. Two-dimensional HPLC on-line analysis of phosphopeptides using titania and monolithic columns. Analytical Biochemistry.2006,350 (2):292-297.
    [85]Mihailova A, Maler(?)d H, Wilson S R, Karaszewski B, Hauser R, Lundanes E, Greibrokk T. Improving the resolution of neuropeptides in rat brain with on-line HILIC-RP compared to on-line SCX-RP. Journal of Separation Science.2008,31 (3):459-467.
    [86]Zhao Y, Guo Z, Zhang X, Liang X, Zhang Y. Off-line 2-D RPLC/RPLC method for separation of components in Dalbergia odorifera T. Chen. Journal of Separation Science.2010, 33(9):1224-1230.
    [87]Zhang H, Guo Z, Li W, Feng J, Xiao Y, Zhang F, Xue X, Liang X. Purification of flavonoids and triterpene saponins from the licorice extract using preparative HPLC under RP and HILIC mode. Journal of Separation Science.2009,32 (4):526-535.
    [88]Xing Q, Liang T, Shen G, Wang X, Jin Y, Liang X. Comprehensive HILIC × RPLC with mass spectrometry detection for the analysis of saponins in Panax notoginseng. The Analyst. 2012,137 (9):2239.
    [89]Liang Z, Li K, Wang X, Ke Y, Jin Y, Liang X. Combination of off-line two-dimensional hydrophilic interaction liquid chromatography for polar fraction and two-dimensional hydrophilic interaction liquid chromatography × reversed-phase liquid chromatography for medium-polar fraction in a traditional Chinese medicine. Journal of Chromatography A.2012, 1224:61-69.
    [90]Ikegami T, Fujita H, Horie K, Hosoya K, Tanaka N. HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide. Analytical and Bioanalytical Chemistry.2006,386 (3):578-585.
    [91]Churms S C. Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction. Journal of Chromatography A.1996,720 (1):75-91.
    [92]Linden J C, Lawhead C L. Liquid chromatography of saccharides. Journal of Chromatography A.1975,105 (1):125-133.
    [93]Beilmann B, Langguth P, Hausler H, Grass P. High-performance liquid chromatography of lactose with evaporative light scattering detection, applied to determine fine particle dose of carrier in dry powder inhalation products. Journal of Chromatography A.2006,1107 (1): 204-207.
    [94]Cardelle-Cobas A, Martinez-Villaluenga C, Villamiel M, Olano A, Corzo N. Synthesis of oligosaccharides derived from lactulose and Pectinex Ultra SP-L. Journal of Agricultural and Food Chemistry.2008,56 (9):3328-3333.
    [95]Verhaar L, Kuster B. Contribution to the elucidation of the mechanism of sugar retention on amine-modified silica in liquid chromatography. Journal of Chromatography A.1982,234 (1):57-64.
    [96]Alpert A J, Shukla M, Shukla A K, Zieske L R, Yuen S W, Ferguson M A, Mehlert A, Pauly M, Orlando R. Hydrophilic-interaction chromatography of complex carbohydrates. Journal of Chromatography A.1994,676 (1):191-202.
    [97]Strege M A. Hydrophilic interaction chromatography-electrospray mass spectrometry analysis of polar compounds for natural product drug discovery. Analytical Chemistry.1998, 70 (13):2439-2445.
    [98]Brons C, Olieman C. Study of the high-performance liquid chromatographic separation of reducing sugars, applied to the determination of lactose in milk. Journal of Chromatography A.1983,259 (0):79-86.
    [99]Herbreteau B, Lafosse M, Morin-Allory L, Dreux M. High performance liquid chromatography of raw sugars and polyols using bonded silica gels. Chromatographia.1992, 33 (7-8):325-330.
    [100]Yoshida T. Peptide separation by hydrophilic-interaction chromatography: a review. Journal of Biochemical and Biophysical Methods.2004,60 (3):265-280.
    [101]Karlsson G, Winge S, Sandberg H. Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection. Journal of Chromatography A.2005,1092 (2):246-249.
    [102]Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N. Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Analytical Biochemistry.1988, 171 (1):73-90.
    [103]Uemura Y, Asakuma S, Yon L, Saito T, Fukuda K, Arai I, Urashima T. Structural determination of the oligosaccharides in the milk of an Asian elephant (Elephas maximus). Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology.2006, 145 (4):468-478.
    [104]Bicker W, Wu J, Yeman H, Albert K, Lindner W. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: A study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode. Journal of Chromatography A.2011,1218 (7):882-895.
    [105]Kotoni D, D'Acquarica I, Ciogli A, Villani C, Capitani D, Gasparrini F. Design and evaluation of hydrolytically stable bidentate urea-type stationary phases for hydrophilic interaction chromatography. Journal of Chromatography A.2012,1232 (0):196-211.
    [106]Berthod A, Chang S S C, Kullman J P S, Armstrong D W. Practice and mechanism of HPLC oligosaccharide separation with a cyclodextrin bonded phase. Talanta.1998,47 (4): 1001-1012.
    [107]Liu Y, Urgaonkar S, Verkade J G, Armstrong D W. Separation and characterization of underivatized oligosaccharides using liquid chromatography and liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A.2005,1079 (1-2): 146-152.
    [108]Guo Z, Lei A, Liang X, Xu Q. Click chemistry:a new facile and efficient strategy for preparation of functionalized HPLC packings. Chemical Communications.2006, (43): 4512.
    [109]Yu L, Li X, Dong J, Zhang X, Guo Z, Liang X. Selective enrichment of N-linked glycopeptides by using a highly hydrophilic matrix synthesized via click chemistry. Analytical Methods.2010,2(11):1667.
    [110]Huang H, Jin Y, Xue M, Yu L, Fu Q, Ke Y, Chu C, Liang X. A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography. Chemical Communications.2009, (45):6973.
    [111]Moni L, Ciogli A, D'Acquarica I, Dondoni A, Gasparrini F, Marra A. Synthesis of Sugar-Based Silica Gels by Copper-Catalysed Azide-Alkyne Cycloaddition via a Single-Step Azido-Activated Silica Intermediate and the Use of the Gels in Hydrophilic Interaction Chromatography. Chemistry-A European Journal.2010:NA-NA.
    [112]Jiang W, Irgum K. Covalently bonded polymeric zwitterionic stationary phase for simultaneous separation of inorganic cations and anions. Analytical Chemistry.1999,71 (2): 333-344.
    [113]Jiang W, Irgum K. Tentacle-type zwitterionic stationary phase prepared by surface-initiated graft polymerization of 3-[N, N-dimethyl-N-(methacryloyloxyethyl)-ammonium] propanesulfonate through peroxide groups tethered on porous silica. Analytical Chemistry.2002,74 (18):4682-4687.
    [114]Jiang W, Fischer G, Girmay Y, Irgum K. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. Journal of Chromatography A. 2006,1127(1):82-91.
    [115]Boersema P J, Divecha N, Heck A J, Mohammed S. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. Journal of Proteome Research.2007,6 (3): 937-946.
    [116]Di Palma S, Boersema P J, Heck A J, Mohammed S. Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Analytical Chemistry.2011,83 (9): 3440-3447.
    [117]Zhang T, Creek D J, Barrett M P, Blackburn G, Watson D G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Analytical Chemistry.2012,84 (4):1994-2001.
    [118]Takegawa Y, Deguchi K, Ito H, Keira T, Nakagawa H, Nishimura S-I. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. Journal of Separation Science.2006,29 (16):2533-2540.
    [119]Antonio C, Larson T, Gilday A, Graham I, Bergstrom E, Thomas-Oates J. Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. Rapid Communications in Mass Spectrometry.2008,22 (9):1399-1407.
    [120]Shen A, Guo Z, Yu L, Cao L, Liang X. A novel zwitterionic HILIC stationary phase based on "thiol-ene" click chemistry between cysteine and vinyl silica. Chemical Communications.2011,47 (15):4550.
    [121]Shen A, Guo Z, Cai X, Xue X, Liang X. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase. Journal of Chromatography A.2012,1228:175-182.
    [122]Shen A, Li X, Dong X, Wei J, Guo Z, Liang X. Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography. Journal of Chromatography A.2013,1314:63-69.
    [123]Orth P, Engelhardt H. Separation of sugares on chemically modified silica-gel. Chromatographia.1982,15 (2):91-96.
    [124]Takegawa Y, Deguchi K, Ito H, Keira T, Nakagawa H, Nishimura S I. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. Journal of Separation Science.2006,29 (16):2533-2540.
    [125]Fu Q, Guo Z, Liang T, Zhang X, Xu Q, Liang X. Chemically bonded maltose via click chemistry as stationary phase for HILIC. Analytical Methods.2010,2 (3):217.
    [126]Lu P, Lu X, Li X, Zhang Y. The influence of retention caused by the mobile phase composition in liquid-solid chromatography. Chinese Science Bulletin.1982,19:1175.
    [127]Lu P, Lu X, Li X, Zhang Y. The influence of retention caused by the mobile phase composition in liquid-solid chromatography. Chinese Science Bulletin.1982,21:1307.
    [128]Morelle W, Canis K, Chirat F, Faid V, Michalski J C. The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics.2006,6 (14):3993-4015.
    [129]Wuhrer M, Catalina M I, Deelder A M, Hokke C H. Glycoproteomics based on tandem mass spectrometry of glycopeptides. Journal of Chromatography B.2007,849 (1):115-128.
    [130]Dell A, Morris H R. Glycoprotein structure determination by mass spectrometry. Science.2001,291 (5512):2351-2356.
    [131]Fenn J, Mann M, Meng C, Wong S, Whitehouse C. Electrospray ionization for mass spectrometry of large biomolecules. Science.1989,246 (4926):64-71.
    [132]Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry.1988,60 (20):2299-2301.
    [133]Wuhrer M, Deelder A M, Hokke C H. Protein glycosylation analysis by liquid chromatography-mass spectrometry. Journal of Chromatography B.2005,825 (2):124-133.
    [134]Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Analytical Biochemistry.2009,395 (2):178-188.
    [135]Zhang H, Li X-j, Martin D B, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature Biotechnology.2003,21 (6):660-666.
    [136]Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nature Protocols.2007,2 (2):334-339.
    [137]Zhang H, Liu A Y, Loriaux P, Wollscheid B, Zhou Y, Watts J D, Aebersold R. Mass spectrometric detection of tissue proteins in plasma. Molecular & Cellular Proteomics.2007, 6(1):64-71.
    [138]Zhou Y, Aebersold R, Zhang H. Isolation of N-linked glycopeptides from plasma. Analytical Chemistry.2007,79 (15):5826-5837.
    [139]Zhang Q, Tang N, Brock J W, Mottaz H M, Ames J M, Baynes J W, Smith R D, Metz T O. Enrichment and analysis of nonenzymatically glycated peptides:boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. Journal of Proteome Research.2007,6 (6):2323-2330.
    [140]Xu Y, Wu Z, Zhang L, Lu H, Yang P, Webley P A, Zhao D. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Analytical Chemistry. 2008,81(1):503-508.
    [141]Zhang L, Xu Y, Yao H, Xie L, Yao J, Lu H, Yang P. Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chemistry-A European Journal.2009,15 (39):10158-10166.
    [142]Donnelly E, Goldstein I. Glutaraldehyde-insolubilized concanavalin A:an adsorbent for the specific isolation of polysaccharides and glycoproteins. Biochemical Journal.1970,118 (4):679.
    [143]Hirabayashi J. Lectin-based structural glycomics:glycoproteomics and glycan profiling. Glycoconjugate Journal.2004,21 (1-2):35-40.
    [144]Abbott K L, Aoki K, Lim J-M, Porterfield M, Johnson R, O'Regan R M, Wells L, Tiemeyer M, Pierce M. Targeted glycoproteomic identification of biomarkers for human breast carcinoma. Journal of Proteome Research.2008,7 (4):1470-1480.
    [145]Qiu R, Regnier F E. Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Analytical Chemistry.2005,77 (9):2802-2809.
    [146]Kubota K, Sato Y, Suzuki Y, Goto-Inoue N, Toda T, Suzuki M, Hisanaga S-i, Suzuki A, Endo T. Analysis of glycopeptides using lectin affinity chromatography with MALDI-TOF mass spectrometry. Analytical Chemistry.2008,80 (10):3693-3698.
    [147]Zielinska D F, Gnad F, Wisniewski J R, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell.2010,141 (5): 897-907.
    [148]Alpert A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography A.1990,499:177-196.
    [149]Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Analytical Chemistry.2004, 76 (22):6560-6565.
    [150]Hagglund P, Bunkenborg J, Elortza F, Jensen O N, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. Journal of Proteome Research. 2004,3 (3):556-566.
    [151]Boersema P J, Mohammed S, Heck A J. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and Bioanalytical Chemistry.2008,391 (1):151-159.
    [152]Larsen M R, Jensen S S, Jakobsen L A, Heegaard N H H. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Molecular & Cellular Proteomics. 2007,6 (10):1778-1787.
    [153]Yan J, Li X, Yu L, Jin Y, Zhang X, Xue X, Ke Y, Liang X. Selective enrichment of glycopeptides/phosphopeptides using porous titania microspheres. Chemical Communications. 2010,46 (30):5488.
    [154]Palmisano G, Lendal S E, Engholm-Keller K, Leth-Larsen R, Parker B L, Larsen M R. Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nature Protocols.2010,5 (12):1974-1982.
    [155]Zhu J, Wang F, Cheng K, Dong J, Sun D, Chen R, Wang L, Ye M, Zou H. A simple integrated system for rapid analysis of sialic-acid-containing N-glycopeptides from human serum. Proteomics.2013,13 (8):1306-1313.
    [156]Cao J, Shen C, Wang H, Shen H, Chen Y, Nie A, Yan G, Lu H, Liu Y, Yang P. Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. Journal of Proteome Research. 2009,8 (2):662-672.
    [157]Calvano C D, Zambonin C G, Jensen O N. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. Journal of Proteomics.2008,71 (3):304-317.
    [158]Zhang Y, Go E P, Desaire H. Maximizing coverage of glycosylation heterogeneity in MALDI-MS analysis of glycoproteins with up to 27 glycosylation sites. Analytical Chemistry. 2008,80 (9):3144-3158.
    [159]Spickett C M, Pitt A R, Morrice N, Kolch W. Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics.2006,1764 (12):1823-1841.
    [160]McLachlin D T, Chait B T. Analysis of phosphorylated proteins and peptides by mass spectrometry. Current Opinion in Chemical Biology.2001,5 (5):591-602.
    [161]Qin J, Chait B T. Identification and characterization of posttranslational modifications of proteins by MALDI ion trap mass spectrometry. Analytical Chemistry.1997,69 (19): 4002-4009.
    [162]Zappacosta F, Huddleston M J, Karcher R L, Gelfand V I, Carr S A, Annan R S. Improved sensitivity for phosphopeptide mapping using capillary column HPLC and microionspray mass spectrometry: comparative phosphorylation site mapping from gel-derived proteins. Analytical Chemistry.2002,74 (13):3221-3231.
    [163]Steen H, Mann M. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. Journal of the American Society for Mass Spectrometry.2002,13 (8):996-1003.
    [164]Bateman R, Carruthers R, Hoyes J, Jones C, Langridge J, Millar A, Vissers J. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. Journal of the American Society for Mass Spectrometry.2002,13 (7):792-803.
    [165]Schlosser A, Pipkorn R, Bossemeyer D, Lehmann W D. Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Analytical Chemistry.2001,73 (2):170-176.
    [166]Neville D C, Townsend R R, Rozanas C R, Verkman A, Price E M, Gruis D B. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Science.1997,6 (11): 2436-2445.
    [167]Posewitz M C, Tempst P. Immobilized gallium (III) affinity chromatography of phosphopeptides. Analytical Chemistry.1999,71 (14):2883-2892.
    [168]Nuhse T S, Stensballe A, Jensen O N, Peck S C. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Molecular & Cellular Proteomics.2003,2 (11):1234-1243.
    [169]Ficarro S B, McCleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt D F, White F M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology.2002,20 (3):301-305.
    [170]Brill L M, Salomon A R, Ficarro S B, Mukherji M, Stettler-Gill M, Peters E C. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Analytical Chemistry.2004,76 (10):2763-2772.
    [171]Imanishi S Y, Kochin V, Eriksson J E. Optimization of phosphopeptide elution conditions in immobilized Fe (Ⅲ) affinity chromatography. Proteomics.2007,7 (2):174-176.
    [172]Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, Gong B. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Molecular & Cellular Proteomics.2007,6 (9):1656-1665.
    [173]Wolschin F, Wienkoop S, Weckwerth W. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics.2005,5 (17):4389-4397.
    [174]Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Analytical Chemistry.2004,76 (14):3935-3943.
    [175]Nawrocki J, Dunlap C, McCormick A, Carr P. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. Journal of Chromatography A.2004,1028 (1): 1-30.
    [176]Sano A, Nakamura H. Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Analytical sciences:the international journal of the Japan Society for Analytical Chemistry.2004,20 (3):565-566.
    [177]Sano A, Nakamura H. Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides:application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Analytical Sciences.2004,20 (5):861-864.
    [178]Leitner A. Phosphopeptide enrichment using metal oxide affinity chromatography. TRAC Trends in Analytical Chemistry.2010,29 (2):177-185.
    [179]Liang S-S, Makamba H, Huang S-Y, Chen S-H. Nano-titanium dioxide composites for the enrichment of phosphopeptides. Journal of Chromatography A.2006,1116 (1):38-45.
    [180]Zhou H, Tian R, Ye M, Xu S, Feng S, Pan C, Jiang X, Li X, Zou H. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis.2007,28 (13):2201-2215.
    [181]Chen g-Tai Chen, Chen W-Y, Tsai P-J, Chien K-Y, Yu J-S, Chen Y-C. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. Journal of Proteome Research.2006,6 (1):316-325.
    [182]Lin H-Y, Chen W-Y, Chen Y-C. Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. Journal of biomedical nanotechnology.2009,5 (2):215-223.
    [183]Li Y, Wu J, Qi D, Xu X, Deng C, Yang P, Zhang X. Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chemical Communications.2008, (5): 564-566.
    [184]Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X. Preparation of Fe3O4@ ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Journal of Proteome Research.2007,6 (11):4498-4510.
    [185]Larsen M R, Thingholm T E, Jensen O N, Roepstorff P, Jorgensen T J D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics.2005,4 (7):873-886.
    [186]Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Molecular & Cellular Proteomics.2007,6 (6):1103-1109.
    [187]Endler A, Reiland S, Gerrits B, Schmidt U G, Baginsky S, Martinoia E. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics.2009,9 (2):310-321.
    [188]Hojlund K, Bowen B P, Hwang H, Flynn C R, Madireddy L, Geetha T, Langlais P, Meyer C, Mandarino L J, Yi Z. In vivo Phosphoproteome of Human Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS. Journal of Proteome Research.2009,8 (11):4954-4965.
    [189]Nuhse T S, Bottrill A R, Jones A M, Peck S C. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. The Plant Journal.2007,51 (5):931-940.
    [190]Dai J, Jin W-H, Sheng Q-H, Shieh C-H, Wu J-R, Zeng R. Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry. Journal of Proteome Research.2007,6 (1):250-262.
    [191]Sevecka M, MacBeath G. State-based discovery:a multidimensional screen for small-molecule modulators of EGF signaling. Nature Methods.2006,3 (10):825-831.
    [192]Gr(?)nborg M, Kristiansen T Z, Stensballe A, Andersen J S, Ohara O, Mann M, Jensen O N, Pandey A. A Mass Spectrometry-based Proteomic Approach for Identification of Serine/Threonine-phosphorylated Proteins by Enrichment with Phospho-specific Antibodies Identification of a Novel Protein, Frigg, as a Protein Kinase A Substrate. Molecular & Cellular Proteomics.2002,1 (7):517-527.
    [193]Rush J, Moritz A, Lee K A, Guo A, Goss V L, Spek E J, Zhang H, Zha X-M, Polakiewicz R D, Comb M J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnology.2005,23 (1):94-101.
    [194]McLachlin D T, Chait B T. Improved β-eliminati on-based affinity purification strategy for enrichment of phosphopeptides. Analytical Chemistry.2003,75 (24):6826-6836.
    [195]Knight Z A, Schilling B, Row R H, Kenski D M, Gibson B W, Shokat K M. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nature Biotechnology.2003,21 (9):1047-1054.
    [196]McNulty D E, Annan R S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Molecular & Cellular Proteomics.2008,7 (5):971-980.
    [197]Alpert A J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Analytical Chemistry. 2008,80 (1):62-76.
    [198]Chang C-K, Wu C-C, Wang Y-S, Chang H-C. Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles. Analytical Chemistry.2008,80 (10):3791-3797.
    [199]Chen C-T, Chen Y-C. Trapping Performance of Fe3O4@Al2O3 and Fe3O4@TiO2 Magnetic Nanoparticles in the Selective Enrichment of Phosphopeptides from Human Serum. Journal of biomedical nanotechnology.2008,4 (1):73-79.
    [200]Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, Deng C, Yang P, Zhang X. Fe3O4@ A12O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Journal of chromatography. A.2007,1172 (1):57.
    [201]Chen H, Deng C, Li Y, Dai Y, Yang P, Zhang X. A Facile Synthesis Approach to C8-Functionalized Magnetic Carbonaceous Polysaccharide Microspheres for the Highly Efficient and Rapid Enrichment of Peptides and Direct MALDI-TOF-MS Analysis. Advanced Materials.2009,21 (21):2200-2205.
    [202]Blacken G R, Volny M, Vaisar T, Sadilek M, Turecek F. In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium (Ⅳ)-n-propoxide ions. Analytical Chemistry.2007,79 (14):5449-5456.
    [203]Dunn J D, Watson J T, Bruening M L. Detection of phosphopeptides using Fe (Ⅲ)-nitrilotriacetate complexes immobilized on a MALDI plate. Analytical Chemistry.2006, 78 (5):1574-1580.
    [204]Pan C, Ye M, Liu Y, Feng S, Jiang X, Han G, Zhu J, Zou H. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. Journal of Proteome Research.2006,5 (11):3114-3124.
    [205]Li Y, Xu X, Deng C, Yang P, Zhang X. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. Journal of Proteome Research.2007,6 (9): 3849-3855.
    [206]Benschop J J, Mohammed S, O'Flaherty M, Heck A J, Slijper M, Menke F L. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Molecular & Cellular Proteomics.2007,6 (7):1198-1214.
    [207]Molina H, Horn D M, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proceedings of the National Academy of Sciences.2007,104 (7):2199-2204.
    [208]Pinkse M W, Mohammed S, Gouw J W, van Breukelen B, Vos H R, Heck A J. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Journal of Proteome Research. 2007,7 (2):687-697.
    [209]Kweon H K, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Analytical Chemistry.2006,78 (6): 1743-1749.
    [210]Leitner A, Sturm M, Smatt J-H, Jam M, Linden M, Mechtler K, Lindner W. Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment. Analytica Chimica Acta.2009,638 (1):51-57.
    [211]Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D. Mesoporous Fe2O3 microspheres: Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. Journal of Colloid and Interface Science.2008,318 (2):315-321.
    [212]Sturm M, Leitner A, Smatt J H, Linden M, Lindner W. Tin Dioxide Microspheres as a Promising Material for Phosphopeptide Enrichment Prior to Liquid Chromatography (Tandem) Mass Spectrometry Analysis. Advanced Functional Materials.2008,18 (16): 2381-2389.
    [213]Larsen M R, H(?)jrup P, Roepstorff P. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Molecular & Cellular Proteomics.2005,4 (2):107-119.
    [214]Cantin G T, Shock T R, Park S K, Madhani H D, Yates J R. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Analytical Chemistry.2007,79 (12):4666-4673.
    [215]Larsen M R, Thingholm T E, Jensen O N, Roepstorff P, Jorgensen T J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics.2005,4 (7):873-886.
    [216]Nelson C A, Szczech J R, Dooley C J, Xu Q, Lawrence M J, Zhu H, Jin S, Ge Y. Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials. Analytical Chemistry.2010,82 (17):7193-7201.
    [217]Zhang Y, Wang X, Mukherjee P, Petersson P. Critical comparison of performances of superficially porous particles and sub-2μm particles under optimized ultra-high pressure conditions. Journal of Chromatography A.2009,1216 (21):4597-4605.
    [218]Yan J, Li X, Cheng S, Ke Y, Liang X. Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Chemical Communications. 2009, (20):2929-2931.
    [219]Strege M A. Hydrophilic Interaction Chromatography-Electrospray Mass Spectrometry Analysis of Polar Compounds for Natural Product Drug Discovery. Analytical Chemistry. 1998,70 (13):2439-2445.
    [220]Guo Y, Gaiki S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. Journal of Chromatography A.2005,1074 (1-2):71-80.
    [221]Hemstrom P, Irgum K. Hydrophilic interaction chromatography. Journal of Separation Science.2006,29 (12):1784-1821.
    [222]Boersema P J, Divecha N, Heck A J R, Mohammed S. Evaluation and Optimization of ZIC-HILIC-RP as an Alternative MudPIT Strategy. Journal of Proteome Research.2007,6 (3): 937-946.
    [223]Houseman B T, Mrksich M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chemistry & Biology.2002,9 (4):443-454.
    [224]Houseman B T, Gawalt E S, Mrksich M. Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir.2003,19 (5): 1522-1531.
    [225]Houseman B T, Huh J H, Kron S J, Mrksich M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnology.2002,20 (3):270-274.
    [226]Zhao Y, Yu L, Guo Z, Li X, Liang X. Reversed-phase depletion coupled with hydrophilic affinity enrichment for the selective isolation of N-linked glycopeptides by using Click OEG-CD matrix. Analytical and Bioanalytical Chemistry.2011,399 (10):3359-3365.
    [227]Kesler R B. Rapid quantitative anion-exchange chromatography of carbohydrates. Analytical Chemistry.1967,39(12):1416-1422.
    [228]Small H, Stevens T S, Bauman W C. Novel ion exchange chromatographic method using conductimetric detection. Analytical Chemistry.1975,47 (11):1801-1809.
    [229]Cataldi T R I, Campa C, Margiotta G, Bufo S A. Role of Barium Ions in the Anion-Exchange Chromatographic Separation of Carbohydrates with Pulsed Amperometric Detection. Analytical Chemistry.1998,70 (18):3940-3945.
    [230]Kibbey C E, Meyerhoff M E. Preparation and characterization of covalently bound tetraphenylporphyrin-silica gel stationary phases for reversed-phase and anion-exchange chromatography. Analytical Chemistry.1993,65 (17):2189-2196.
    [231]Guo Y, Gaiki S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. Journal of Chromatography A.2005,1074 (1-2):71-80.
    [232]Hao Z, Xiao B, Weng N. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). Journal of Separation Science.2008,31 (9):1449-1464.
    [233]Fu Q, Liang T, Li Z, Xu X, Ke Y, Jin Y, Liang X. Separation of carbohydrates using hydrophilic interaction liquid chromatography. Carbohydrate Research.2013,379:13-17.
    [234]Guo X, Zhang X, Feng J, Guo Z, Xiao Y, Liang X. Purification of saponins from leaves of Panax notoginseng using preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography. Analytical and Bioanalytical Chemistry.2013.
    [235]Sosa J M. Chromatography with Sephadex gels. Analytical Chemistry.1980,52 (6): 910-912.
    [236]Seger C, Eberhart K, Sturm S, Strasser H, Stuppner H. Apolar chromatography on Sephadex LH-20 combined with high-speed counter-current chromatography. Journal of Chromatography A.2006,1117 (1):67-73.
    [237]Chen L-G, Wang C-C. Preparative separation of oligostilbenes from Vitis thunbergii var. taiwaniana by centrifugal partition chromatography followed by Sephadex LH-20 column chromatography. Separation and Purification Technology.2009,66 (1):65-70.
    [238]Lakhiari H, Muller D. Insulin adsorption on coated silica based supports grafted with N-acetylglucosamine by liquid affinity chromatography. Journal of Chromatography B.2004, 808(1):35-41.
    [239]Shibusawa Y, Fujiwara T, Shindo H, Ito Y. Purification of alcohol dehydrogenase from bovine liver crude extract by dye-ligand affinity counter-current chromatography. Journal of Chromatography B.2004,799 (2):239-244.
    [240]Massia S P, Stark J, Letbetter D S. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials.2000,21 (22):2253-2261.
    [241]Massia S P, Stark J. Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment. Journal of Biomedical Materials Research.2001,56 (3):390-399.
    [242]Chiang W-H, Lan Y-J, Huang Y-C, Chen Y-W, Huang Y-F, Lin S-C, Chern C-S, Chiu H-C. Multi-scaled polymersomes from self-assembly of octadecanol-modified dextrans. Polymer.2012,53 (11):2233-2244.
    [243]江咏,李晓玺,李琳,陈玲.多糖类亲和分离材料的研究进展.现代化工.2006,26(8):19-22,24.
    [244]Anderson G W, Paul R. N,N'-Carbonyldiimidazole, A new reagent for peptides synthesis. Journal of the American Chemical Society.1958,80 (16):4423-4423.
    [245]Paul R, Anderson G W. N,N'-Carbonyldiimidazole in Peptide Synthesis. Ⅲ.1 A Synthesis of Isoleucine-5 Angiotensin II Amide-I. The Journal of Organic Chemistry.1962, 27 (6):2094-2099.
    [246]Pathak S, Singh A K, McElhanon J R, Dentinger P M. Dendrimer-Activated Surfaces for High Density and High Activity Protein Chip Applications. Langmuir.2004,20 (15): 6075-6079.
    [247]Crammer B, Ikan R. Sweet glycosides from the steviaplant. Chemistry in Britain.1986, 22 (10):915-&.
    [248]Gardana C, Scaglianti M, Simonetti P. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry. Journal of Chromatography A.2010,1217 (9): 1463-1470.
    [249]Pol J, Hohnova B, Hyotylainen T. Characterisation of Stevia Rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry. Journal of Chromatography A.2007,1150 (1-2):85-92.
    [250]Guo X, Zhang X, Feng J, Guo Z, Xiao Y, Liang X. Purification of saponins from leaves of Panax notoginseng using preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography. Analytical and Bioanalytical Chemistry.2013,405 (10):3413-3421.
    [251]Beausoleil S A, Jedrychowski M, Schwartz D, Elias J E, Villen J, Li J, Cohn M A, Cantley L C, Gygi S P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America.2004,101 (33):12130-12135.
    [252]Nawrocki J, Dunlap C, McCormick A, Carr P W. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. Journal of Chromatography A. 2004,1028 (1):1-30.
    [253]Tanl K, Sumizawa T, Watanabe M, Tachibana M, Koizumi H, Kiba T. Evaluation of titania as an ion-exchanger and as a ligand-exchanger in HPLC. Chromatographia.2002,55 (1-2):33-37.
    [254]Tan J, Li R, Jiang Z-T. Determination of melamine in liquid milk and milk powder by titania-based ligand-exchange hydrophilic interaction liquid chromatography. Food Analytical Methods.2012,5 (5):1062-1069.
    [255]Zhou T, Lucy C A. Hydrophilic interaction chromatography of nucleotides and their pathway intermediates on titania. Journal of Chromatography A.2008,1187 (1):87-93.
    [256]Zhou T, Lucy C A. Separation of carboxylates by hydrophilic interaction liquid chromatography on titania. Journal of Chromatography A.2010,1217 (1):82-88.
    [257]Wuhrer M, Balog C I, Koeleman C A, Deelder A M, Hokke C H. New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochimica et Biophysica Acta (BBA)-General Subjects.2005,1723 (1):229-239.
    [258]Hagglund P, Bunkenborg J, Elortza F, Jensen O N, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. Journal of Proteome Research. 2004,3 (3):556-566.
    [259]Eric D. Green G A, Jacques U. Baenziger. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1HNMR spectroscopy. Journal of Biological Chemistry.1988,263:18253-18268.
    [260]Ficarro S B, Parikh J R, Blank N C, Marto J A. Niobium (V) oxide (Nb2O5):application to phosphoproteomics. Analytical Chemistry.2008,80 (12):4606-4613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700