用户名: 密码: 验证码:
狂犬病病毒CVS-11株感染性cDNA克隆的构建及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狂犬病病毒(Rabies virus, RABV)具有严格的嗜神经性,感染温血动物和人的后引起致死性脑脊髓炎,即狂犬病(Rabies)。全世界保守估计,每年大约55000人死于狂犬病,主要发生在亚洲的发展中国家。我国人狂犬病主要来源于患病或潜在感染RABV的犬和猫。世界卫生组织(WHO)指出,犬群中75%以上的犬接种狂犬病疫苗能够有效阻断狂犬病的传播。为了根除狂犬病,一方面要加强犬的管理,进一步提高我国动物狂犬病灭活疫苗的质量,另一方面有必要及时监测我国动物群体中狂犬病中和抗体覆盖情况,消除流浪犬。目前,国产动物狂犬病灭活疫苗免疫原性低,价格昂贵。国际范围内广泛应用的狂犬病中和抗体检测方法有荧光抗体病毒中和试验(FAVN)和快速荧光灶抑制试验(RFFIT)。它们都需要高质量、价格昂贵的异硫氰酸(FITC)荧光素标记的抗RABV N蛋白单克隆抗体,不利于在发展中国家的普及应用。因此研究简便敏感的中和抗体检测方法、经济高效的狂犬病灭活疫苗对我国狂犬病的防控意义重大。
     近二十年来随着体外转录RNA技术的成熟,人们建立了RNA病毒反向遗传学技术,有利于从分子水平研究RNA病毒。负链RNA病毒反向遗传技术始于1994年Schnell等成功拯救了狂犬病病毒SAD B19株。科学家们历经十多年矢志不渝的科学追求,不断地改进反向遗传系统,提高病毒拯救效率。国内外多种RABV弱毒株和疫苗株都已经被成功拯救,但是强毒株RABV在体外适应细胞能力差,拯救难度较大,国内外对RABV强毒株感染性cDNA克隆的构建还比较少。RABV CVS-11是1882年分离于法国巴黎一头疯牛,后经兔脑、鼠脑、细胞多次传代而成为一种实验室标准攻击毒株。CVS-11是WHO规定的狂犬病病毒中和抗体检测用毒株。在我国,CVS-11已经被农业部批准为狂犬病灭活疫苗新兽药。鉴于CVS-11株广泛的实际应用特点,构建CVS-11反向遗传操作平台具有重要意义。本研究以RABV CVS-11株为研究对象,探索构建其感染性cDNA克隆,进一步开展了狂犬病中和抗体诊断和病毒灭活免疫研究,主要内容如下:
     第一、狂犬病病毒CVS-11株感染性cDNA克隆的构建。
     对本实验室保存的CVS-11株的全基因组序列进行测定及分析。经分段克隆法,将CVS-11全基因组分四段进行PCR扩增,经多步酶切连接,拼接至真核表达载体pcDNA3.1的CMV启动子下游,并在G-L区域人为添加标签酶切位点BsiwI和SacII,方便以后鉴定及应用此系统。为保证全长重组质粒在转录时能产生精确的病毒3’和5’末端,在全基因组3’和5’末端分别添加锤头状核酶和丁型肝炎核酶序列,获得CVS-11株全长cDNA重组质粒pcDNA3.1-CVS-11;构建了表达CVS-11株的N蛋白、P蛋白、L蛋白和囊膜G蛋白的辅助表达载体pcDNA3.1-N、pcDNA3.1-P、pcDNA3.1-L和pcDNA3.1-G。全长cDNA重组质粒和4个辅助表达载体共转染NA细胞,传代后,经荧光抗体染色、RT-PCR和电镜观察形态,确定拯救出rCVS-11。在NA细胞上比较rCVS-11与野生型wtCVS-11的生长特性,结果证明拯救毒株rCVS-11和野生型wtCVS-11的生长特性具有一致性。建立了狂犬病病毒CVS-11反向遗传操作平台。
     第二、重组病毒rCVS-11-eGFP的构建及其在中和抗体检测中的应用。
     基于已经建立的CVS-11反向遗传操作平台,在CVS-11G-L处的BsiwI、SacII处插入eGFP基因,获得携带eGFP基因的CVS-11全基因组重组质粒,相似的方法进行重组病毒的拯救工作。借助于荧光抗体染色、直接荧光观察、RT-PCR和电镜观察等技术,鉴定得到重组病毒rCVS-11-eGFP。体外细胞实验表明重组病毒rCVS-11-eGFP在体外能够稳定表达eGFP,eGFP基因的插入对重组病毒rCVS-11-eGFP的复制和生长没有影响。将重组病毒rCVS-11-eGFP代替CVS-11用作检测抗原,建立了新型狂犬病病毒中和抗体检测方法FAVN-eGFP。用该方法对29份犬和23份人血清样品中的狂犬病病毒中和抗体效价进行了测定,测定结果同国际OIE参考实验室用国际标准FAVN方法检测结果具有一致性,一致率达96.6%。而且,FAVN-eGFP借助于绿色荧光蛋白的表达判定结果,不需要应用价格昂贵的FITC标记的荧光抗体,FAVN-eGFP具有快速、经济、简便的特点。对部分血清样品进行了重复性试验,测定结果统计学分析没有显著差异。
     第三、重组病毒rCVS-11-G的构建及其灭活免疫原性研究。
     基于已经建立的CVS-11反向遗传操作平台,在CVS-11G-L处的BsiwI、SacII处插入另外一个CVS-11的G基因,获得表达双G基因的CVS-11全长重组质粒,相同的方法拯救重组病毒。最后,用荧光抗体染色、RT-PCR和电镜观察鉴定得到重组病毒rCVS-11-G。额外的G基因的插入对重组病毒rCVS-11-G的复制和生长没有影响。电子显微镜下观察发现:rCVS-11-G的病毒颗粒长度比rCVS-11的长,该差异具有统计学意义。qPCRs结果表明,在转录水平上,重组病毒rCVS-11-G糖蛋白mRNA表达量比rCVS-11多5.7倍。小鼠致病性试验结果表明,同亲本毒株wtCVS-11相比,不论颅内还是肌肉接种,重组病毒rCVS-11-G对成年小鼠的致病性有不同程度的显著增强。通过病毒在神经细胞和非神经细胞的内化试验,发现rCVS-11-G比wtCVS-11更容易逃逸抗体中和,进入神经细胞,这些结果都表明:与wtCVS-11相比,rCVS-11-G的致病性和神经嗜性都明显增强。将wtCVS、rCVS-11-G灭活后,分别用不同剂量免疫成年小鼠。当免疫剂量相同时,双G重组病毒比单G株能激发小鼠产生更高水平的特异性中和抗体水平;同一毒株不同剂量免疫结果表明,小鼠产生中和抗体水平具有免疫剂量依赖性。灭活的重组病毒rCVS-11-G具有更好的免疫原性,可以作为灭活疫苗候选株。
Rabies virus (RABV), strict neurotropism virus, induces fatal encephalomyelitisin all warm-blooded animals and humans. Globally, an estimated55,000humandeaths are attributed to RABV annually, including3,000cases in China. Dogs arethe principal reservoir in Africa and Asia. The majority of human rabies victims areinfected by the bites of domestic dogs. A study from the World Health Organization(WHO) showed that70%immunization of the dog population could efficiently blockrabies virus transmission. Elimination of canine rabies is necessary for the control ofhuman rabies in developing countries. Virus-neutralizing antibody (VNA) plays animportant role in protecting against RABV. In order to eradicate rabies, on the onehand, we have to strengthen the management of dogs, immune dogs routinely, andimprove the quality of our animal rabies vaccine. On the other hand, it is necessaryto monitor timely immunization coverage of rabies neutralizing antibody in dogs andeliminate stray dogs. Fluorescent antibody virus neutralization (FAVN) and the rapidfluorescent focus inhibition test (RFFIT) approved by the Office International DesEpizooties (OIE) and WHO, respectively, have been widely used to measure levelsof VNAs. Both methods require high-quality, expensive fluorescent isothiocyanate(FITC) labelled monoclonal antibody, therefore can not be spreaded in thedeveloping world. Due to poor quality but expensive animal rabies vaccine indomestic, it is important for prevention and control of rabies to develop aconservation and accurate VNA test and high efficiency and affordable animal rabiesinactived vaccine.
     With the development of transcribed RNA technology in vitro, many reversegenetics of animal RNA viruses were also frequently created, which allow to operatetheir relatively stable cDNA and do further studies from the molecular level in recenttwo decades. The first infectious clone for RABV SAD B19strain is made by Schnell in1994. Scientists have pursued constantly to improve the reverse geneticsystem, and increase the efficiency of virus rescue. Several RABV strains, includingthe attenuated and vaccine strains, have been successfully rescued during20years.The recovery of virulent RABV strainis more difficult for the viruses are poorlyadapted to the cells in vitro. Therefore, construction of infectious cDNA clone forRABV virulent strains is still relatively a few at home and abroad. RABV CVS-11was isolated from a mad cow in1882in Paris, France, and then passaged in rabbitbrain, murine brain and cells. Nowadays, CVS-11strain is a laboratory pathogenicfixed strain. The CVS-11strain is widely used for antibody detection, immunizationevaluation of RABV vaccines, and challenge strain approved by WHO and OIE.Furthermore, the CVS-11strain is approved as an inactivated vaccine strain by theMinistry of Agriculture in China. Given the CVS-11strain has been widely practicalapplication, it is important to build reverse genetics platform for CVS-11strain.Therefore, an infectious cDNA clone for CVS-11strain was explored to develop forits applicant in RABV detection and vaccines. The main contents are as follows:First, development of an infectious cDNA clone for RABV CVS-11strain.
     To obtain the complete genome of CVS-11strain and establish a reverse geneticsystem of CVS-11for in-depth studying RABV detections and vaccines,12fragments repeated each other was amplified by RT-PCR to cover the completegenome of CVS-11, and then cloned to pEASY-Blunt vector for sequencing thecomplete genome of CVS-11. Four pairs of specific primers were designed and wereused for amplification of the full-length cDNA of CVS-11by RT-PCR. Fourfragments were cloned into pcDNA3.1step by step and the full-length plasmid wasnamed pcDNA3.1-CVS-11. We also cloned help plasmids pcDNA3.1-N, P, L and Gexpressing N, P, L and G protein of CVS-11strain. Full-length and four helpplasmids were co-transfected NA cell and then rescued virus. We confirmed theresuced CVS-11by fluorescence antibody test (FAT), RT-PCR. The rCVS-11has thesame growth characteristics with parental strain wtCVS-11in NA cells. Wesuccessfully established an infectious cDNA clone for RABV CVS-11strain.
     Second, generation of recombinant RABV CVS-11expressing eGFP appliedtothe rapid virus neutralization test.
     A recombinant rabies virus rCVS-11-eGFP stably expressing eGFP is generatedbased on an infectious clone of wtCVS-11strain.Compared to the rCVS-11strain,the rCVS-11-eGFP strain showed a similar growth property with passaging stabilityin vitro and pathogenicity in vivo. The eGFP gene doesn’t affect growth property andpathogenicity of rCVS-11.The rCVS-11-eGFP strain was utilized as a detectionantigen to determine the levels of rabies VNAs in23human and29canine sera; thistechnique was termed the FAVN-eGFP method. The good reproducibility ofFAVN-eGFP was tested with partial serum samples and showed96.6%agreement.The FAVN-eGFP method did not need a FITC-conjugated monoclonal antibody toidentify positive or negative cells. However, good-quality FITC-conjugated anti-Nprotein monoclonal antibodies are scarce in developing countries. Additionally, theFITC-conjugated anti-N protein monoclonal antibody requires a good transportenvironment or is likely to be degraded during long distance transport. Therefore, theFAVN-eGFP allows rapid economical, specific, and high-throughput assessment forthe titration of rabies VNAs.
     Third, an inactivated recombinant rabies CVS-11virus expressing twocopies ofthe glycoprotein elicits a higher level of neutralizing antibodies and provides betterprotection in mice.
     We generated a recombinant rCVS-11-G strain containing two copies of the Gprotein derived from the pathogenic wild-type (wt) CVS-11strain and based on itsinfectious clone. Compared with the wtCVS-11strain, the rCVS-11-G strainpossessed a larger virion and1.4-fold more G protein, but it exhibited asimilargrowth property to the rCVS-11strain, including passaging stability in vitro. qPCRresults showed that the two G genes were over-expressed in BHK-21cells infectedwith the rCVS-11-G strain. However, the rCVS-11-G strain presented an80%lowerLD50than the wtCVS-11strain when intracranially (i.c.) inoculated in adult mice.Adult mice that were either intracranially (i.c.) or intramuscularly(i.m.) inoculated with rCVS-11-G strain developed moreacute neurological symptoms and greatermortality thanthose inoculated with the wtCVS-11strain. Furthermore, therCVS-11-G strain was more easily and rapidly taken up by NA cells. These dataindicated that the rCVS-11-G strain might have increased neurotropism because ofthe over-expression of the pathogenic G protein.The inactivated rCVS-11-G straininduced significantly higher levels of virus neutralization antibodies and providedbetter protection from street rabies virus challenge in mice. Therefore, therCVS-11-G strain may be a promising inactivated candidate vaccine strain due to itsbetter immunogenicity.
引文
[1] MATSUMOTO S. Electron microscope studies of rabies virus in mouse brain[J]. The Journal of cell biology,1963,19(3):565-91.
    [2] MASTERS P S, AMIYA K. BANERJEE. Resolution of multiple complexes ofphosphoprotein NS with nucleocapsid protein N of vesicular stomatitis virus[J]. Journal of virology,1988,62(8):2651-7.
    [3] ISENI F, A. BARGE, F. BAUDIN, D. BLONDEL, AND R. W. RUIGROK.Characterization of rabies virus nucleocapsids and recombinantnucleocapsid-like structures [J]. Journal of general virology,1998,79(12):2909-19.
    [4] THOMAS D, W. W. NEWCOMB, J. C. BROWN, J. S. WALL, J. F.HAINFELD, B. L. TRUS, AND A. C. STEVEN. Mass and molecularcomposition of vesicular stomatitis virus: a scanning transmission electronmicroscopy analysis [J]. Journal of virology,1985,54(2):598-607.
    [5] LE MERCIER P, Y. JACOB, AND N. TORDO. The complete Mokola virusgenome sequence: structure of the RNA-dependent RNA polymerase [J].Journal of general virology,1997,78(7):1571-6.
    [6] MARSTON D A, L. M. MCELHINNEY, N. JOHNSON, T. M LLER, K. K.CONZELMANN, N. TORDO, AND A. R. FOOKS. Comparative analysis ofthe full genome sequence of European bat lyssavirus type1and type2withother lyssaviruses and evidence for a conserved transcription termination andpolyadenylation motif in the G–L3' non-translated region [J]. Journal ofGeneral Virology2007,88(4):1302-14.
    [7] TORDO N, OLIVIER POCH, ALAIN ERMINE, G RARD KEITH, ANDFRAN OIS ROUGEON. Walking along the rabies genome: is the large G-Lintergenic region a remnant gene?[J]. Proceedings of the National Academy ofSciences,1986,83(11):3914-8.
    [8] TORDO N, POCH O. Strong and weak transcription signals within the rabiesgenome [J]. Virus research,1988,11(30-2.
    [9] ROSE J K. Complete intergenic and flanking gene sequences from the genomeof vesicular stomatitis virus [J]. Cell,1980,19(2):415-21.
    [10] BOURHY H, N. TORDO, M. LAFON, AND P. SUREAU. Complete cloningand molecular organization of a rabies-related virus, Mokola virus [J]. Journalof general virology1989,70(8):2063-74.
    [11] CHENIK M, CHEBLI K, GAUDIN Y, et al. In vivo interaction of rabies virusphosphoprotein (P) and nucleoprotein (N): existence of two N-binding sites onP protein [J]. Journal of General Virology,1994,75(11):2889-96.
    [12] ANNE KOUZNETZOFF, MALCOLM BUCKLE, TORDO N. Identificationof a region of the rabies N protein involved indirect binding to the viral RNA[J]. Journal of General Virology,1998,79(1005–13.
    [13] KAWAI A A J, HONDA Y, MORIMOTO K, TAKEUCHI K, KOHNO T,WAKISAKA K, GOTO H, MINAMOTO N. Monoclonal antibody#5-2-26recognizes the phosphatase-sensitive epitope of rabies virus nucleoprotein [J].Microbiology and immunology,1997,41(1):33-42.
    [14] WU X, GONG X, FOLEY H D, et al. Both viral transcription and replicationare reduced when the rabies virus nucleoprotein is not phosphorylated [J].Journal of virology,2002,76(9):4153-61.
    [15] JACOB Y, REAL E, TORDO N. Functional interaction map of lyssavirusphosphoprotein: identification of the minimal transcription domains [J].Journal of virology,2001,75(20):9613-22.
    [16] FU Z F, ZHENG Y, WUNNER W H, et al. Both the N-and the C-terminaldomains of the nominal phosphoprotein of rabies virus are involved in bindingto the nucleoprotein [J]. Virology,1994,200(2):590-7.
    [17] FINKE S, CONZELMANN K-K. Dissociation of rabies virus matrix proteinfunctions in regulation of viral RNA synthesis and virus assembly [J]. Journalof virology,2003,77(22):12074-82.
    [18] MEBATSION T, WEILAND F, CONZELMANN K-K. Matrix protein ofrabies virus is responsible for the assembly and budding of bullet-shapedparticles and interacts with the transmembrane spike glycoprotein G [J].Journal of virology,1999,73(1):242-50.
    [19] LAY S, PREHAUD C, DIETZSCHOLD B, et al. Glycoprotein ofnonpathogenic rabies viruses is a major inducer of apoptosis in human jurkat Tcells [J]. Annals of the New York Academy of Sciences,2003,1010(1):577-81.
    [20] PREHAUD C, LAY S, DIETZSCHOLD B, et al. Glycoprotein ofNonpathogenic Rabies Viruses Is a Key Determinant of Human Cell Apoptosis[J]. Journal of virology,2003,77(19):10537-47.
    [21] POCH O, BLUMBERG B M, BOUGUELERET L, et al. Sequencecomparison of five polymerases (L proteins) of unsegmented negative-strandRNA viruses: theoretical assignment of functional domains [J]. Journal ofGeneral Virology,1990,71(5):1153-62.
    [22] BANERJEE A K. Transcription and replication of rhabdoviruses [J].Microbiological reviews,1987,51(1):66.
    [23] EMERSON S U. Transcription of vesicular stomatitis virus [M]. Therhabdoviruses. Springer.1987:245-69.
    [24] ARNHEITER H, DAVIS N L, WERTZ G, et al. Role of the nucleocapsidprotein in regulating vesicular stomatitis virus RNA synthesis [J]. Cell,1985,41(1):259-67.
    [25] BARR J N, WHELAN S, WERTZ G W. Role of the intergenic dinucleotide invesicular stomatitis virus RNA transcription [J]. Journal of virology,1997,71(3):1794-801.
    [26] WHELAN S P, WERTZ G W. Transcription and replication initiate at separatesites on the vesicular stomatitis virus genome [J]. Proceedings of the NationalAcademy of Sciences,2002,99(14):9178-83.
    [27] QANUNGO K R, SHAJI D, MATHUR M, et al. Two RNA polymerasecomplexes from vesicular stomatitis virus-infected cells that carry outtranscription and replication of genome RNA [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2004,101(16):5952-7.
    [28] WHELAN S P. Response to “Non-segmented negative-strand RNA virus RNAsynthesis in vivo”[J]. Virology,2008,371(2):234-7.
    [29] FINKE S, CONZELMANN K-K. Ambisense gene expression fromrecombinant rabies virus: random packaging of positive-and negative-strandribonucleoprotein complexes into rabies virions [J]. Journal of virology,1997,71(10):7281-8.
    [30] PELUSO R W, MOYER S A. Viral proteins required for the in Vitroreplication of vesicular stomatitis virus defective interfering particle genomeRNA [J]. Virology,1988,162(2):369-76.
    [31] CONZELMANN K-K, COX J H, SCHNEIDER L G, et al. Molecular cloningand complete nucleotide sequence of the attenuated rabies virus SAD B19[J].Virology,1990,175(2):485-99.
    [32] SMITH J S, FISHBEIN D B, RUPPRECHT C E, et al. Unexplained Rabies inThree Immigrants in the United States a Virologic Investigation [J]. NewEngland journal of medicine,1991,324(4):205-11.
    [33] CHARLTON K, NADIN-DAVIS S, CASEY G, et al. The long incubationperiod in rabies: delayed progression of infection in muscle at the site ofexposure [J]. Acta neuropathologica,1997,94(1):73-7.
    [34] LENTZ T L, BURRAGE T G, SMITH A L, et al. Is the acetylcholine receptora rabies virus receptor?[J]. Science,1982,215(4529):182-4.
    [35] THOULOUZE M-I, LAFAGE M, SCHACHNER M, et al. The neural celladhesion molecule is a receptor for rabies virus [J]. Journal of virology,1998,72(9):7181-90.
    [36] TUFFEREAU C, BENEJEAN J, BLONDEL D, et al. Low‐affinity nerve‐growth factor receptor (P75NTR) can serve as a receptor for rabies virus [J].The EMBO journal,1998,17(24):7250-9.
    [37] JACKSON A C. Rabies virus infection: an update [J]. Journal of neurovirology,2003,9(2):253-8.
    [38] LAFON M. Rabies virus receptors [J]. Journal of neurovirology,2005,11(1):82-7.
    [39] MURPHY F, BAUER S. Early street rabies virus infection in striated muscleand later progression to the central nervous system [J]. Intervirology,1974,3(4):256-68.
    [40] WATSON H D, TIGNOR G H, SMITH A L. Entry of rabies virus into theperipheral nerves of mice [J]. The Journal of general virology,1981,56(Pt2):372-82.
    [41] TUFFEREAU C, SCHMIDT K, LANGEVIN C, et al. The rabies virusglycoprotein receptor p75NTR is not essential for rabies virus infection [J].Journal of virology,2007,81(24):13622-30.
    [42] SUPERTI F, DERER M, TSIANG H. Mechanism of rabies virus entry intoCER cells [J]. Journal of general virology,1984,65(4):781-9.
    [43] CONTI C, SUPERTI F, TSIANG H. Membrane carbohydrate requirement forrabies virus binding to chicken embryo related cells [J]. Intervirology,1986,26(3):164-8.
    [44] WUNNER W H, REAGAN K J, KOPROWSKI H. Characterization ofsaturable binding sites for rabies virus [J]. Journal of virology,1984,50(3):691-7.
    [45] PULMANAUSAHAKUL R, LI J, SCHNELL M J, et al. The glycoprotein andthe matrix protein of rabies virus affect pathogenicity by regulating viralreplication and facilitating cell-to-cell spread [J]. Journal of virology,2008,82(5):2330-8.
    [46] SHANKAR V, DIETZSCHOLD B, KOPROWSKI H. Direct entry of rabiesvirus into the central nervous system without prior local replication [J]. Journalof virology,1991,65(5):2736-8.
    [47] TSIANG H. Evidence for an intraaxonal transport of fixed and street rabiesvirus [J]. Journal of Neuropathology&Experimental Neurology,1979,38(3):286-96.
    [48] JACKSON A C. Rabies virus infection: an update [J]. J Neurovirol,2003,9(2):253-8.
    [49] RAUX H, FLAMAND A, BLONDEL D. Interaction of the rabies virus Pprotein with the LC8dynein light chain [J]. Journal of virology,2000,74(21):10212-6.
    [50] R ZA ETESSAMI K-K C, BABAK FADAI-GHOTBI, BENJAMINNATELSON, HENRI TSIANG, PIERRE-EMMANUEL CECCALDI. Spreadand pathogenic characteristics of a G-deficient rabies virus recombinant: an invitro and in vivo study [J]. Journal of General Virology,2000,81(9):2147-53.
    [51] YAN X, MOHANKUMAR P S, DIETZSCHOLD B, et al. The rabies virusglycoprotein determines the distribution of different rabies virus strains in thebrain [J]. Journal of neurovirology,2002,8(4):345-52.
    [52] MAZARAKIS N D, AZZOUZ M, ROHLL J B, et al. Rabies virusglycoprotein pseudotyping of lentiviral vectors enables retrograde axonaltransport and access to the nervous system after peripheral delivery [J]. Humanmolecular genetics,2001,10(19):2109-21.
    [53] BOUZAMONDO E, LADOGANA A, TSIANG H. Alteration ofpotassium-evoked5-HT release from virus-infected rat cortical synaptosomes[J]. Neuroreport,1993,4(5):555-8.
    [54] CECCALDI P-E, FILLION M-P, ERMINE A, et al. Rabies virus selectivelyalters5-HT1receptors subtypes in rat brain [J]. European Journal ofPharmacology: Molecular Pharmacology,1993,245(2):129-38.
    [55] LADOGANA A, BOUZAMONDO E, POCCHIARI M, et al. Modification oftritiated g-amino-n-butyric acid transport in rabies virus-infected primarycortical cultures [J]. Journal of general virology,1994,75(3):623-8.
    [56] PROSNIAK M, HOOPER D C, DIETZSCHOLD B, et al. Effect of rabiesvirus infection on gene expression in mouse brain [J]. Proceedings of theNational Academy of Sciences,2001,98(5):2758-63.
    [57] JACKSON A, ROSSITER J. Apoptosis plays an important role inexperimental rabies virus infection [J]. Journal of virology,1997,71(7):5603-7.
    [58] THEERASURAKARN S, UBOL S. Apoptosis induction in brain during thefixed strain of rabies virus infection correlates with onset and severity ofillness [J]. Journal of neurovirology,1998,4(4):407-14.
    [59] MORIMOTO K, D. C. HOOPER, S. SPITSIN, H. KOPROWSKI, B.DIETZSCHOLD. Pathogenicity of different rabies virus variants inverselycorrelates with apoptosis and rabies virus glycoprotein expression in infectedprimary neu-ron cultures [J]. Journal of Virology,1999,73(510-8.
    [60] JACKSON A C, PARK H. Apoptotic cell death in experimental rabies insuckling mice [J]. Acta neuropathologica,1998,95(2):159-64.
    [61] GUIGONI C, COULON P. Rabies virus is not cytolytic for rat spinalmotoneurons in vitro [J]. Journal of neurovirology,2002,8(4):306-17.
    [62] E REID A C J, JESSICA. Experimental rabies virus infection in Artibeusjamaicensis bats with CVS-24variants [J]. Journal of neurovirology,2001,7(6):511-7.
    [63] UBOL S, KASISITH J. Reactivation of Nedd-2, a developmentallydown-regulated apoptotic gene, in apoptosis induced by a street strain of rabiesvirus [J]. Journal of medical microbiology,2000,49(11):1043-6.
    [64] YAN X, M. PROSNIAK, M. T. CURTIS, M. L. WEISS, M. FABER, B.DIETZSCHOLD,, FU. Z F. Silver-haired bat rabies virus variant does notinduce apoptosis in the brain of experimentally infected mice.[J]. J Neurovirol,2001,7(518-27.
    [65] FENSTERL V, SEN G C. Interferons and viral infections [J]. Biofactors,2009,35(1):14-20.
    [66] BALOUL L, CAMELO S, LAFON M. Up-regulation of Fas ligand (FasL) inthe central nervous system: a mechanism of immune evasion by rabies virus[J]. Journal of neurovirology,2004,10(6):372-82.
    [67] JOHNSON N, MCKIMMIE C S, MANSFIELD K L, et al. Lyssavirusinfection activates interferon gene expression in the brain [J]. Journal ofgeneral virology,2006,87(9):2663-7.
    [68] JOHNSON N, MANSFIELD K, HICKS D, et al. Inflammatory responses inthe nervous system of mice infected with a street isolate of rabies virus [J].Developments in biologicals,2007,131(65-72.
    [69] WANG Z W, SARMENTO L, WANG Y, et al. Attenuated rabies virus activates,while pathogenic rabies virus evades, the host innate immune responses in thecentral nervous system [J]. Journal of virology,2005,79(19):12554-65.
    [70] HORNUNG V, ELLEGAST J, KIM S, et al.5'-Triphosphate RNA is the ligandfor RIG-I [J]. Science,2006,314(5801):994-7.
    [71] MENAGER P, ROUX P, MEGRET F, et al. Toll-like receptor3(TLR3) plays amajor role in the formation of rabies virus Negri Bodies [J]. PLoS pathogens,2009,5(2): e1000315.
    [72] YANG J, KOPROWSKI H, DIETZSCHOLD B, et al. Phosphorylation ofrabies virus nucleoprotein regulates viral RNA transcription and replication bymodulating leader RNA encapsidation [J]. Journal of virology,1999,73(2):1661-4.
    [73] VIDY A, CHELBI-ALIX M, BLONDEL D. Rabies virus P protein interactswith STAT1and inhibits interferon signal transduction pathways [J]. Journal ofvirology,2005,79(22):14411-20.
    [74] BRZ ZKA K, FINKE S, CONZELMANN K-K. Inhibition of interferonsignaling by rabies virus phosphoprotein P: activation-dependent binding ofSTAT1and STAT2[J]. Journal of virology,2006,80(6):2675-83.
    [75] PASDELOUP D, POISSON N, RAUX H, et al. Nucleocytoplasmic shuttlingof the rabies virus P protein requires a nuclear localization signal and aCRM1-dependent nuclear export signal [J]. Virology,2005,334(2):284-93.
    [76] VIDY A, EL BOUGRINI J, CHELBI-ALIX M K, et al. The nucleocytoplasmicrabies virus P protein counteracts interferon signaling by inhibiting bothnuclear accumulation and DNA binding of STAT1[J]. Journal of virology,2007,81(8):4255-63.
    [77] MOSELEY G W, LAHAYE X, ROTH D M, et al. Dual modes of rabiesP-protein association with microtubules: a novel strategy to suppress theantiviral response [J]. Journal of cell science,2009,122(20):3652-62.
    [78] BLONDEL D, REGAD T, POISSON N, et al. Rabies virus P and small Pproducts interact directly with PML and reorganize PML nuclear bodies [J].Oncogene,2002,21(52):7957-70.
    [79] MORI I, NISHIYAMA Y, YOKOCHI T, et al. Virus‐induced neuronalapoptosis as pathological and protective responses of the host [J]. Reviews inmedical virology,2004,14(4):209-16.
    [80] FU Z F, JACKSON, C A. Neuronal dysfunction and death in rabies virusinfection [J]. Journal of neurovirology,2005,11(1):101-6.
    [81] BIJLENGA C, HERNANDEZ-BAUMGARTEN E. Adaptation, attenuationand plaque purification of a rabiesvirus isolate (V319) from a vampire bat(Desmodus rotundus)[J]. The Cornell veterinarian,1980,70(3):290-9.
    [82] HEMACHUDHA1T, WACHARAPLUESADEE1S, MITRABHAKDI1E,et al. Pathophysiology of human paralytic rabies [J]. Journal of neurovirology,2005,11(1):93-100.
    [83] DHINGRA V, LI X, LIU Y, et al. Proteomic profiling reveals that rabies virusinfection results in differential expression of host proteins involved in ionhomeostasis and synaptic physiology in the central nervous system [J]. Journalof neurovirology,2007,13(2):107-17.
    [84] FABER M, PULMANAUSAHAKUL R, HODAWADEKAR S S, et al.Overexpression of the Rabies Virus Glycoprotein Results in Enhancement ofApoptosis and Antiviral Immune Response [J]. Journal of virology,2002,76(7):3374-81.
    [85] THOULOUZE M-I, LAFAGE M, YUSTE V J, et al. Apoptosis inverselycorrelates with rabies virus neurotropism [J]. Annals of the New YorkAcademy of Sciences,2003,1010(1):598-603.
    [86] KOPROWSKI H, ZHENG Y M, HEBER-KATZ E, et al. In vivo expression ofinducible nitric oxide synthase in experimentally induced neurologic diseases[J]. Proceedings of the National Academy of Sciences,1993,90(7):3024-7.
    [87] ROY A, PHARES T W, KOPROWSKI H, et al. Failure to open theblood-brain barrier and deliver immune effectors to central nervous systemtissues leads to the lethal outcome of silver-haired bat rabies virus infection [J].Journal of virology,2007,81(3):1110-8.
    [88] PHARES T W, FABIS M J, BRIMER C M, et al. A peroxynitrite-dependentpathway is responsible for blood-brain barrier permeability changes during acentral nervous system inflammatory response: TNF-α is neither necessary norsufficient [J]. The Journal of Immunology,2007,178(11):7334-43.
    [89] ROY A, HOOPER D C. Lethal silver-haired bat rabies virus infection can beprevented by opening the blood-brain barrier [J]. Journal of virology,2007,81(15):7993-8.
    [90] UBOL S, SUKWATTANAPAN C, MANEERAT Y. Inducible nitric oxidesynthase inhibition delays death of rabies virus-infected mice [J]. Journal ofmedical microbiology,2001,50(3):238-42.
    [91] TANG X, LUO M, ZHANG S, et al. Pivotal role of dogs in rabies transmission,China [J]. Emerg Infect Dis,2005,11(12):1970-2.
    [92] ZHANG Y-Z, XIONG C-L, XIAO D-L, et al. Human rabies in China [J].Emerging infectious diseases,2005,11(12):1983.
    [93] TANG Q, ZHAO X, TAO X. Analysis on the present situation of human rabiesepidemic in China [J]. Zhonghua liu xing bing xue za zhi=Zhonghualiuxingbingxue zazhi,2001,22(1):8-10.
    [94] WONG T, CHAN P, FUNG K. Human rabies in Hong Kong: a case review [J].Annals of the Academy of Medicine, Singapore,1987,16(4):663-5.
    [95] HSU Y-H, CHO L-C, WANG L-S, et al. Acute respiratory distress syndromeassociated with rabies: a case report [J]. The Kaohsiung journal of medicalsciences,2006,22(2):94-8.
    [96] DREESEN D W. A global review of rabies vaccines for human use [J]. Vaccine,1997,15(S2-S6.
    [97]马君,王栋.狂犬病疫苗研究进展[J].中国兽药杂志,2006,40(8):31-4.
    [98] DU J, ZHANG Q, TANG Q, et al. Characterization of human rabies virusvaccine strain in China [J]. Virus research,2008,135(2):260-6.
    [99] BAXTER A G. The origin and application of experimental autoimmuneencephalomyelitis [J]. Nature Reviews Immunology,2007,7(11):904-12.
    [100] GRISPEN R, SEHMITTMANN G, SAATHOF B. Rabies vaccine derivedfrom suckling rabbit brain [J]. Archiv für die gesamte Virusforschung,1965,15(3):366-76.
    [101]俞永新.国内外狂犬病疫苗的发展和现状[J].上海预防医学,2006,18(5):216-8.
    [102]蔡勇,李声友,冯晓, et al.人用狂犬病疫苗的发展及狂犬病防治[J].职业卫生与病伤,2012,27(4):242-4.
    [103] JIAO W, YIN X, LI X, et al. Research Advancement in RV Novel Vaccine [J].Asian Journal of Animal&Veterinary Advances,2012,7(12):
    [104] KLEPFER S R, DEBOUCK C, UFFELMAN J, et al. Characterization ofrabies glycoprotein expressed in yeast [J]. Archives of virology,1993,128(3-4):269-86.
    [105] DA CRUZ FW M A, CONCEI O FR, DALE JW, MCFADDEN J,DELLAGOSTIN OA. Expression of the B-cell and T-cell epitopes of therabies virus nucleoprotein in Mycobacterium bovis BCG and induction of anhumoral response in mice [J]. Vaccine,2001,20(731-6.
    [106] ERTL H C. Rabies DNA vaccines for protection and therapeutic treatment [J].Expert opinion on biological therapy,2003,3(4):639-44.
    [107] XIANG Z Q, SPITALNIK S, TRAN M, et al. Vaccination with a plasmidvector carrying the rabies virus glycoprotein gene induces protective immunityagainst rabies virus [J]. Virology,1994,199(1):132-40.
    [108] LODMELL D L, RAY N B, EWALT L C. Gene gun particle-mediatedvaccination with plasmid DNA confers protective immunity against rabiesvirus infection [J]. Vaccine,1998,16(2):115-8.
    [109] LODMELL D L, RAY N B, ULRICH J T, et al. DNA vaccination of miceagainst rabies virus: effects of the route of vaccination and the adjuvantmonophosphoryl lipid A (MPL)[J]. Vaccine,2000,18(11):1059-66.
    [110] NADIN‐DAVIS S A, FEHLNER‐GARDINER C. Lyssaviruses—CurrentTrends [J]. Advances in virus research,2008,71(207-50.
    [111] OSINUBI M, WU X, FRANKA R, et al. Enhancing comparative rabies DNAvaccine effectiveness through glycoprotein gene modifications [J]. Vaccine,2009,27(51):7214-8.
    [112]吕元聪,谭春梅.狂犬病疫苗的发展现状[J].右江医学,2009,37(6):734-6.
    [113] VOS A, NEUBERT A, POMMERENING E, et al. Immunogenicity of anE1-deleted recombinant human adenovirus against rabies by different routes ofadministration [J]. Journal of General Virology,2001,82(9):2191-7.
    [114] XIANG Z, GAO G, REYES-SANDOVAL A, et al. Novel, chimpanzeeserotype68-based adenoviral vaccine carrier for induction of antibodies to atransgene product [J]. Journal of virology,2002,76(6):2667-75.
    [115] YAROSH O K, WANDELER A I, GRAHAM F L, et al. Human adenovirustype5vectors expressing rabies glycoprotein [J]. Vaccine,1996,14(13):1257-64.
    [116] ASHRAF S, SINGH P, YADAV D K, et al. High level expression of surfaceglycoprotein of rabies virus in tobacco leaves and its immunoprotectiveactivity in mice [J]. Journal of biotechnology,2005,119(1):1-14.
    [117] LOZA-RUBIO E, ROJAS E, G MEZ L, et al. Development of an edible rabiesvaccine in maize using the Vnukovo strain [J]. Developments in biologicals,2007,131(477-82.
    [118] MCGARVEY P B, HAMMOND J, DIENELT M M, et al. Expression of therabies virus glycoprotein in transgenic tomatoes [J]. Nature Biotechnology,1995,13(12):1484-7.
    [119] ROJAS-ANAYA E, LOZA-RUBIO E, OLIVERA-FLORES M T, et al.Expression of rabies virus G protein in carrots (Daucus carota)[J]. Transgenicresearch,2009,18(6):911-9.
    [120] YUSIBOV V, HOOPER D, SPITSIN S, et al. Expression in plants andimmunogenicity of plant virus-based experimental rabies vaccine [J]. Vaccine,2002,20(25):3155-64.
    [121]鲁晓知,徐葛林.应用间接混合夹心酶免疫试验法检测人血清中狂犬病毒抗体[J].中国人兽共患病杂志,1996,12(4):42-4.
    [122] MADHUSUDANA S, SARASWATI S. Development and evaluation of a latexagglutination test for rabies antibodies [J]. Journal of Clinical Virology,2003,27(2):129-35.
    [123] KHAWPLOD P, INOUE K, SHOJI Y, et al. A novel rapid fluorescent focusinhibition test for rabies virus using a recombinant rabies virus visualizing agreen fluorescent protein [J]. Journal of virological methods,2005,125(1):35-40.
    [124]王铁成,张涛,杨松涛, et al.狂犬病病毒抗体胶体金检测试纸的制备[J].生物工程学报,2011,27(5):799-804.
    [125] COLEMAN P G, DYE C. Immunization coverage required to preventoutbreaks of dog rabies [J]. Vaccine,1996,14(3):185-6.
    [126] KURZ J, VOGEL I, GERSTL F, et al. Comparative studies of two potencytests for antirabies serum: neutralization test in mice (MNT) and rapidfluorescent focus inhibition test (RFFIT)[J]. Developments in biologicalstandardization,1985,64(99-107.
    [127] BRIGGS D J, SMITH J S, MUELLER F L, et al. A comparison of twoserological methods for detecting the immune response after rabies vaccinationin dogs and cats being exported to rabies-free areas [J]. Biologicals,1998,26(4):347-55.
    [128]黄莹.狂犬病病毒CTN株反向遗传系统的建立[D];吉林大学,2009.
    [129]郑学星,夏咸柱,杨松涛, et al.反向遗传学技术及其在狂犬病病毒研究中的应用[J].中国病原生物学杂志,2008,3(8):625-8.
    [130] XH XUE X Z, WW GAI, HR LIANG, JZH MA, L LI, TCH WANG, N FENG,G HUANG, YK ZHAO, ST YANG, XZH XIA Sequencing the completegenome of rabies virus CVS-11strain and constructing its full-lengthinfectious cDNA clone [J]. Wei Sheng Wu Xue Bao,2013,4(53):409-15.
    [131] SCHNELL M J, MEBATSION T, CONZELMANN K K. Infectious rabiesviruses from cloned cDNA [J]. The EMBO Journal,1994,13(18):4195-203.
    [132] ITO N, MISAKO KAKEMIZU, KUMI A. ITO, ATSUKO YAMAMOTO,YOSHIO YOSHIDA, MAKOTO SUGIYAMA, AND NOBUYUKIMINAMOTO. A comparison of completegenome sequences of the attenuatedrc-hl strain of rabies virus used for production of animal vaccine in japan andthe parental nishigahara strain [J]. Microbiology and immunology,2001,45(1):51-8.
    [133] R P, M F, K M, et al. Overexpression of cytochrome C by a recombinant rabiesvirus attenuates pathogenicity and enhances antiviral immunity [J]. Journal ofvirology,2001,75(22):10800-7.
    [134] ITO N, TAKAYAMA-ITO M, YAMADA K, et al. Improved recovery of rabiesvirus from cloned cDNA using a vaccinia virus-free reverse genetics system.[J]. Microbiology and Immunology,2003,47(8):613-7.
    [135] INOUE K, SHOJI Y, KURANE I, et al. An improved method for recoveringrabies virus from cloned cDNA.[J]. Journal of virological methods,2003,107(2):229-36.
    [136] ITO N, TAKAYAMA M, YAMADA K, et al. Rescue of rabies virus fromcloned cDNA and identification of the pathogenicity-related gene: glycoproteingene is associated with virulence for adult mice [J]. Journal of virology,2001,75(19):9121-8.
    [137] TAKAYAMA-ITO M, ITO N, YAMADA K, et al. Multiple amino acids in theglycoprotein of rabies virus are responsible for pathogenicity in adult mice [J].Virus research,2006,115(2):169-75.
    [138] FABER M, PULMANAUSAHAKUL R, NAGAO K, et al. Identification ofviral genomic elements responsible for rabies virus neuroinvasiveness [J].Proceedings of the National Academy of Sciences,2004,101(46):16328-32.
    [139] FABER M, FABER M L, PAPANERI A, et al. A single amino acid change inrabies virus glycoprotein increases virus spread and enhances viruspathogenicity [J]. Journal of virology,2005,79(22):14141-8.
    [140] N I, M S, K Y, et al. Characterization of M gene-deficient rabies virus withadvantages of effective immunization and safety as a vaccine strain [J].MicrobiolImmunology,2005,49(11):971-9.
    [141] FABER M, BETTE M, PREUSS M A, et al. Overexpression of tumor necrosisfactor alpha by a recombinant rabies virus attenuates replication in neurons andprevents lethal infection in mice [J]. Journal of virology,2005,79(24):15405-16.
    [142] WIRBLICH C, SCHNELL M J. Rabies Virus (RV) Glycoprotein ExpressionLevels Are Not Critical for Pathogenicity of RV [J]. Journal of virology,2010,85(2):697-704.
    [143] ZHAO L, TORIUMI H, KUANG Y, et al. The roles of chemokines in rabiesvirus infection: overexpression may not always be beneficial [J]. Journal ofvirology,2009,83(22):11808-18.
    [144] ZHAO L, TORIUMI H, WANG H, et al. Expression of MIP-1α (CCL3) by arecombinant rabies virus enhances its immunogenicity by inducing innateimmunity and recruiting dendritic cells and B cells [J]. Journal of virology,2010,84(18):9642-8.
    [145] MEBATSION T, MATTHIAS J. SCHNELL, JAMES H. COX, STEFANFINKE, AND KARL-KLAUS CONZELMANN. Highly stable expression of aforeign gene from rabies virus vectors [J]. Proceedings of the NationalAcademy of Sciences,1996,93(14):7310-4.
    [146] MCGETTIGAN J P, FOLEY H D, BELYAKOV I M, et al. Rabies virus-basedvectors expressing human immunodeficiency virus type1(HIV-1) envelopeprotein induce a strong, cross-reactive cytotoxic T-lymphocyte responseagainst envelope proteins from different HIV-1isolates [J]. Journal of virology,2001,75(9):4430-4.
    [147] MCKENNA P M, AYE P P, DIETZSCHOLD B, et al. Immunogenicity studyof glycoprotein-deficient rabies virus expressing simian/humanimmunodeficiency virus SHIV89.6P envelope in a rhesus macaque [J]. Journalof virology,2004,78(24):13455-9.
    [148]刘晓慧,艾军,郭霄峰, et al.表达绿色荧光蛋白嵌合狂犬病病毒HEP-GFP株的拯救[J].病毒学报,2008,24(5):401-3.
    [149] FAUL E J, WANJALLA C N, MCGETTIGAN J P, et al. Interferon-βexpressed by a rabies virus-based HIV-1vaccine vector serves as a molecularadjuvant and decreases pathogenicity [J]. Virology,2008,382(2):226-38.
    [150] DIETZSCHOLD M L, FABER M, MATTIS J A, et al. In vitro growth andstability of recombinant rabies viruses designed for vaccination of wildlife [J].Vaccine,2004,23(4):518-24.
    [151] MCGETTIGAN J P, POMERANTZ R J, SILER C A, et al. Second-GenerationRabies Virus-Based Vaccine Vectors Expressing Human ImmunodeficiencyVirus Type1Gag Have Greatly Reduced Pathogenicity but Are HighlyImmunogenic [J]. Journal of virology,2003,77(1):237-44.
    [152] MEBATSION T. Extensive attenuation of rabies virus by simultaneouslymodifying the dynein light chain binding site in the P protein and replacingArg333in the G protein [J]. Journal of virology,2001,75(23):11496-502.
    [153] TAN G S, PREUSS M A, WILLIAMS J C, et al. The dynein light chain8binding motif of rabies virus phosphoprotein promotes efficient viraltranscription [J]. Proceedings of the National Academy of Sciences,2007,104(17):7229-34.
    [154] FABER M, PULMANAUSAHAKUL R, HODAWADEKAR S S, et al.Overexpression of the Rabies Virus Glycoprotein Results in Enhancement ofApoptosis and Antiviral Immune Response [J]. Journal of virology,2002,76(7):3374-81.
    [155] HOSOKAWA-MUTO J I N, YAMADA K, SHIMIZU K, SUGIYAMA M,MINAMOTO N Characterization of recombinant rabies virus carrying doubleglycoprotein genes [J]. Microbiology and Immunology2005,50(187-96.
    [156] FABER M J L, RHONDA B. KEAN, D. CRAIG HOOPER, KISHORE R.ALUGUPALLI, AND BERNHARD DIETZSCHOLD. Effective preexposureand postexposure prophylaxis of rabies with a highly attenuated recombinantrabies virus [J]. Proceedings of the National Academy of Sciences2009,106(11300-5.
    [157] TAO L, GE J, WANG X, et al. Generation of a recombinant rabies Flury LEPvirus carrying an additional G gene creates an improved seed virus forinactivated vaccine production [J]. Virology Journal,2011,8(1):454-61.
    [158] LIU X, YANG Y, SUN Z, et al. A Recombinant Rabies Virus Encoding TwoCopies of the Glycoprotein Gene Confers Protection in Dogs against a VirulentChallenge [J]. PLoS One,2014,9(2): e87105.
    [159] F. C, M. A, L. S. Development of a fluorescent antibody virus nertralisationtest(FAVN test)for the quantitation of rabies-neutralising antibody.[J].Immunol Methods,1998,212(1):79-87.
    [160] MORIMOTO K, SHOJI Y, INOUE S. Characterization of P gene-deficientrabies virus: propagation, pathogenicity and antigenicity [J]. Virus research,2005,111(1):61-7.
    [161] MAJOR M E, LUDMILA VITVITSKI, MICHAEL A. MINK, MARTINSCHLEEF, ROBERT G. WHALEN, CHRISTIAN TR PO, ANDGENEVIEVE INCHAUSP DNA-based immunization with chimeric vectorsfor the induction of immune responses against the hepatitis C virusnucleocapsid [J]. Journal of virology,1995,69(9):5798-805.
    [162] FABER M, LI J, KEAN R B, et al. Effective preexposure and postexposureprophylaxis of rabies with a highly attenuated recombinant rabies virus [J].Proceedings of the National Academy of Sciences,2009,106(27):11300-5.
    [163] HOSOKAWA-MUTO J, ITO N, YAMADA K, et al. Characterization ofrecombinant rabies virus carrying double glycoprotein genes [J]. Microbiologyand Immunology,2005,50(3):187-96.
    [164] HUANG Y, TANG Q, NADIN-DAVIS S A, et al. Development of a reversegenetics system for a human rabies virus vaccine strain employed in China [J].Virus research,2010,149(1):28-35.
    [165] DIETZSCHOLD B, SCHNELL M J, KOPROWSKI H. Pathogenesis of rabies[J]. Microbiol Immunol,2005,292(45-56.
    [166] ZHAO P, ZHAO L, ZHANG K, et al. Infection with street strain rabies virusinduces modulation of the microRNA profile of the mouse brain [J]. Virol J,2012,9(159-72.
    [167] HU R, TANG Q, TANG J, et al. Rabies in China: an update [J]. Vector BorneZoonotic Dis,2009,9(1):1-12.
    [168] WHO. The World Survey for Rabies No.35Geneva DocumentWHO/CDS/CSR/EPH/2002.10[M]//ORGANIZATION W H.1999.
    [169] KITALA P M, MCDERMOTT J J, COLEMAN P G, et al. Comparison ofvaccination strategies for the control of dog rabies in Machakos District,Kenya [J]. Epidemiology and Infection,2002,129(215-22.
    [170] HAMPSON K, DUSHOFF J, CLEAVELAND S, et al. TransmissionDynamics and Prospects for the Elimination of Canine Rabies [J]. PLoSBiology2009,7(3):0462-71.
    [171] LI J, ERTEL A, PORTOCARRERO C, et al. Postexposure treatment with thelive-attenuated rabies virus (RV) vaccine TriGAS triggers the clearance ofwild-type RV from the Central Nervous System (CNS) through the rapidinduction of genes relevant to adaptive immunity in CNS tissues [J]. Journal ofvirology,2012,86(6):3200-10.
    [172] LIAO P H, YANG H H, CHOU P T, et al. Sufficient virus-neutralizingantibody in the central nerve system improves the survival of rabid rats [J]. JBiomed Sci,2012,19(1):61-71.
    [173] ONDREJKOVA A, SULI J, ONDREJKA R, et al. Comparison of the detectionand quantification of rabies antibodies in canine sera [J]. veterinarni medicina,2002,47(8):218-21.
    [174] PENGCHENG YU Q T, ET AL. Establishment and preliminary application ofa rapid fluorescent focus inhibition test (RFFIT) for rabies virus [J]. VirologicaSinica,2013,28(4):223-7.
    [175] WU X, RUPPRECHT C E. Glycoprotein gene relocation in rabies virus [J].Virus research,2008,131(1):95-9.
    [176] HU Q, CHEN W, HUANG K, et al. Rescue of recombinant peste des petitsruminants virus: creation of a GFP-expressing virus and application in rapidvirus neutralization test [J]. Vet Res,2012,43(1):43-8.
    [177] FABER M, FABER M L, LI J, et al. Dominance of a nonpathogenicglycoprotein gene over a pathogenic glycoprotein gene in rabies virus [J].Journal of virology,2007,81(13):7041-7.
    [178] CLEAVELAND S, KAARE M, KNOBEL D, et al. Caninevaccination--providing broader benefits for disease control [J]. Vet Microbiol,2006,117(1):43-50.
    [179] STEFFEN R B A, DEBERNARDIS C Vaccination priorities [J]. Int Jantimicrob Agents,2003,21(175-80.
    [180] ZHANG G, WANG H, MAHMOOD F, et al. Rabies virus glycoprotein is animportant determinant for the induction of innate immune responses and thepathogenic mechanisms [J]. Vet Microbiol,2013,162(2-4):601-13.
    [181] MORIMOTO K, MCGETTIGAN J P, FOLEY H D, et al. Genetic engineeringof live rabies vaccines.[J]. Vaccine,2001,19(3543–51.
    [182] MORIMOTO K, FOLEY H D, MCGETTIGAN J P. Reinvestigation of the roleof the rabies virus glycoprotein inviral pathogenesis using a reverse geneticsapproach [J]. Journal of Neurovirology2000,6(5):373–81.
    [183] LENTZ T, HAWROT E, WILSON P. Synthetic peptides corresponding tosequences of snake venom neurotoxins and rabies virus glycoprotein bind tothe nicotinic acetylcholine receptor [J]. Proteins,1987,2(4):298-307.
    [184] MEBATSION T, FINKE S, WEILAND F, et al. A CXCR4/CD4pseudotyperhabdovirus that selectively infects HIV-1envelope protein-expressing cells [J].Cell,1997,90(5):841-7.
    [185] LUCIANA SARMENTO X-Q L, ELIZABETH HOWERTH, ALAN C.JACKSON, FU ZF Glycoprotein-mediated induction of apoptosis limits thespread of attenuated rabies viruses in the central nervous system of mice [J].Journal of neurovirology,2005,11(6):571-81.
    [186] COX JH D B, SCHNEIDER LG. Rabies virus glycoprotein.II. Biological andserological characterization [J]. Infect Immun,1977,16(754-9.
    [187] PHARES TW K R, MIKHEEVA T, HOOPER DC. Regional differences inblood-brain barrier permeability changes and inflammation in the apathogenicclearance of virus from the central nervous system.[J]. JImmunol2006,176(7666-75.
    [188] TAKAYAMA-ITO M, INOUE K-I, SHOJI Y, et al. A highly attenuated rabiesvirus HEP-Flury strain reverts to virulent by single amino acid substitution toarginine at position333in glycoprotein [J]. Virus research,2006,119(2):208-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700