用户名: 密码: 验证码:
转脂蛋白基因AsE246在紫云英共生体形成和根瘤器官发生中的功能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌在豆科植物根瘤内分化形成由宿主植物来源的膜系统包裹,能够固氮的细胞器,被称为共生体(symbiosome)。但是,对于这些植物来源的脂类是如何转运至共生体的,所知不多。本研究中,我们对紫云英根瘤中特异表达的转脂蛋白AsE246的功能及机制进行了研究。
     体外实验结果表明,重组AsE246蛋白具有脂质结合能力,能够和植物细胞膜上的脂质相结合。更重要的是,我们发现AsE246在体内可以与植物合成的脂质双半乳糖残基甘油二酯(DGDG)相结合。在洋葱下表皮中与红色荧光蛋白DsRed的融合蛋白表现出膜定位的特点。免疫荧光实验表明,AsE246基因编码产物从共生早期阶段,侵入线阶段就开始与共生体共定位。进一步的免疫电镜检测表明,AsE246基因编码产物定位于共生体膜。结果表明AsE246基因参与了共生体膜相关脂质的转运以及共生体形成过程。AsE246的超表达导致结瘤数增加,而RNAi则导致了结瘤数量减少,固氮酶活降低,DGDG含量降低,共生体发育异常,共生体膜皱缩,共生体周质空间增大,以及共生体内部积累聚p羟基丁酸(PHB)颗粒。对转基因植株的根瘤菌早期侵染时间的观察表明:AsE246通过影响侵入线的形成而进一步影响了根瘤的器官形成。
     综合以上结果可知,AsE246是共生体膜上所需脂质转运机制的重要组分,是豆科植物-根瘤菌共生关系建立中的必须基因。
Rhizobia can form nitrogen-fixing organelles, called symbiosomes, inside the cells of legume root nodules, surrounded by a membrane of host plant origin. However, it is unknown how such plant-originating lipids are transported to the symbiosomes. In this study, we identified AsE246, a lipid transport protein that is specifically expressed in Astragalus sinicus root nodules.
     It was found that AsE246can bind lipids in vitro. More importantly, AsE246can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol (DGDG) in vivo. In vitro fluorescent assays on the fatty acid1-pyrenedodecanoic acid demonstrated that the recombinant protein AsE246had the capacity to bind lipid. DsRed-AsE246fusion protein was found localized to the plasma membrane in onion epidermal cells. An immuno-fluorescence experiment showed that AsE246was colocalized with symbiosomes from an early stage of symbiosis between A. sinicus and Mesorhizobium huakuii7653R, even in the infection threads. Further immuno-electron microscopy (EM) result confirmed that AsE246was localized on the symbiosome membranes, indicating that AsE246participated in the transportation of related lipids and was involved in the biogenesis of the symbiosome membrane. Overexpression of AsE246resulted in increased numbers of root nodules. Knockdown expression of AsE246via RNAi resulted in the reduction of root nodule numbers, DGDG content and nitrogen fixation activity, and the abnormal development of symbiosomes, including the accumulation of poly-p-hydroxybutyrate, shrinkage in the symbiosome membrane and enlargement of the peribacteroid space. Observation of the symbiotic infection events suggested that AsE246affected nodule organogenesis associated with infection thread formation.
     Taken together, these results indicate that AsE246contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis.
引文
1. Andersson AS, Glasmastar K, Sutherland D, Lidberg U, Kasemo B. Cell adhesion on supported lipid bilayers. JBiomed Mater Res A, 2003,64:622-629
    2. Arondel V, Tchang F, Baillet B, Vignols F, Grellet F, Delseny M, Kader JC, Puigdomenech P. Multiple mRNA coding for phospholipid-transfer protein from Zea mays arise from alternative splicing. Gene, 1991,99:133-136
    3. Arondel W, Vergnolle C, Cantrel C, Kader J. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci, 2000, 157: 1-12
    4. Awai K, Marechal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2001,98: 10960-10965
    5. Benning C, Ohta H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. JBiol Chem, 2005, 280: 2397-2400
    6. Benning C. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol, 2009, 25:71-91
    7. Blein JP, Coutos-Thevenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci, 2002, 7: 293-296
    8. Botte C, Saidani N, Mondragon R, Mondragon M, Isaac G, Mui E, Mcleod R, Dubremetz JF, Vial H, Welti R, Cesbron-Delauw MF, Mercier C, Marechal E. Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. J Lipid Res, 2008, 49:746-762
    9. Botton A, Begheldo M, Rasori A, Bonghi C, Tonutti P. Differential expression of two lipid transfer protein genes in reproductive organs of peach (Prunus persica L. Batsch). Plant Science, 2002, 163:993-1000
    10. Boutrot F, Chantret N, Gautier MF. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics, 2008, 9: 86
    11. Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume BF, Milat ML, Ponchet M, Mikes V, Kader JC, Blein JP. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett, 2001,509:27-30
    12. Buhot N, Gomes E, Milat ML, Ponchet M, Marion D, Lequeu J, Delrot S, Coutos-Thevenot P, Blein JP. Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell, 2004,15:5047-5052
    13. Caaveiro JM, Molina A, Gonzalez-Manas JM, Rodriguez-Palenzuela P, Garcia-Olmedo F, Goni FM. Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett, 1997,410:338-342
    14. Cammue BP, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, Et A. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol, 1995,109:445-455
    15. Carvalho Ade O, Gomes VM. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides, 2007, 28:1144-1153
    16. Castro MS, Gerhardt IR, Orru S, Pucci P, Bloch C, Jr. Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J Chromatogr B Analyt Technol Biomed Life Sci, 2003,794:109-114
    17. Catalano CM, Czymmek KJ, Gann JG, Sherrier DJ. Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules. Planta, 2007, 225: 541-550
    18. Chou MX, Wei XY, Chen DS, Zhou JC. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J Exp Bot, 2006, 57: 2673-2685
    19. D'angelo G, Vicinanza M, De Matteis MA. Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol, 2008,20:360-370
    20. Debono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell, 2009, 21:1230-1238
    21. Derre I, Swiss R, Agaisse H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog, 2011, 7:e1002092
    22. Diz MSS, Carvalho AO, Rodrigues R, Neves-Ferreira AGC, Da Cunha M, Alves EW, Okorokova-Facanha AL, Oliveira MA, Perales J, Machado OLT, Gomes VM. Antimicrobial peptides from chilli pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 2006, 1760:1323-1332
    23. Douliez JP, Pato C, Rabesona H, Molle D, Marion D. Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur J Biochem, 2001,268:1400-1403
    24. Dubreil L, Gaborit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non specific lipid transfer protein (ns-LTP1el) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Science, 1998, 138:121-135
    25. Eddy SR. Profile hidden Markov models. Bioinformatics, 1998,14:755-763
    26. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A. The Pfam protein families database. Nucleic Acids Res,2009,38:D211-222
    27. Gage DJ. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev, 2004, 68:280-300
    28. Gamas P, Niebel Fde C, Lescure N, Cullimore J. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact, 1996,9: 233-242
    29. Garcia-Garrido JM, Menossi M, Puigdomenech P, Martinez-Izquierdo JA, Delseny M. Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. FEBS Lett, 1998, 428:193-199
    30. Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dormann P. The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus. JBiol Chem, 2004, 279: 34624-34630
    31. Ge X, Chen J, Li N, Lin Y, Sun C, Cao K. Resistance function of rice lipid transfer protein LTP110. JBiochem Mol Biol, 2003, 36:603-607
    32. Gillon AD, Latham CF, Miller EA. Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta, 2012, 1821:1040-1049
    33. Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol, 2003, 131:872-877
    34. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003,52: 696-704
    35. Han GW, Lee JY, Song HK, Chang C, Min K, Moon J, Shin DH, Kopka ML, Sawaya MR, Yuan HS, Kim TD, Choe J, Lim D, Moon HJ, Suh SW. Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol, 2001, 308:263-278
    36. Held M, Hossain MS, Yokota K, Bonfante P, Stougaard J, Szczyglowski K. Common and not so common symbiotic entry. Trends Plant Sci, 2010, 15:540-545
    37. Heredia A. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim BiophysActa, 2003, 1620: 1-7
    38. Hirsch AM, Bang M, Ausubel FM. Ultrastructural analysis of ineffective alfalfa nodules formed by nif::Tn5 mutants of Rhizobium meliloti. J Bacterial, 1983, 155:367-380
    39. Holthuis JC, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol, 2005,6:209-220
    40. Israel DW. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol, 1987,84:835-840
    41. Jang CS, Lee HJ, Chang SJ, Seo YW. Expression and promoter analysis of the TaLTPl gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Science, 2004, 167: 995-1001
    42. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model. Nat Rev Microbiol, 2007, 5:619-633
    43. Jose-Estanyol M, Gomis-Ruth FX, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem, 2004, 42:355-365
    44. Jouhet J, Marechal E, Baldan B, Bligny R, Joyard J, Block MA. Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol, 2004, 167:863-874
    45. Jouhet J, Marechal E, Block MA. Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res, 2007, 46:37-55
    46. Jung HW, Kim W, Hwang BK. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ,2003,26:915-928
    47. Jung HW, Kim KD, Hwang BK. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta, 2005,221:361-373
    48. Kader JC. Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim Biophys Acta, 1975,380:31-44
    49. Kader JC, Julienne M, Vergnolle C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem,1984,139:411-416
    50. Kader JC. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:627-654
    51. Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J, 1994, 6:849-860
    52. Kaplan MR, Simoni RD. Intracellular transport of phosphatidylcholine to the plasma membrane. J Cell Biol, 1985,101:441-445
    53. Kim D, Jeannotte R, Welti R, Bockus WW. Lipid profiles in wheat cultivars resistant and susceptible to tan spot and the effect of disease on the profiles. Phytopathology, 2013,103:74-80
    54. Kim SA, Copeland L. Enzymes of poly-(beta)-hydroxybutyrate metabolism in soybean and chickpea bacteroids. Appl Environ Microbiol, 1996, 62:4186-4190
    55. Lascombe MB, Bakan B, Buhot N, Marion D, Blein JP, Larue V, Lamb C, Prange T. The structure of defective in induced resistance protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Protein Sci, 2008, 17:1522-1530
    56. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol, 2008, 25: 1307-1320
    57. Lee JY, Min K, Cha H, Shin DH, Hwang KY, Suh SW. Rice non-specific lipid transfer protein:the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol, 1998, 276:437-448
    58. Leidi EO, Rodriguez-Navarro DN. Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytologist, 2000, 147: 337-346
    59. Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol, 2010,11:739-750
    60. Levine T. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol, 2004, 14: 483-490
    61. Limpens E, Ivanov S, Van Esse W, Voets G, Fedorova E, Bisseling T. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell, 2009, 21:2811-2828
    62. Liu YJ, Samuel D, Lin CH, Lyu PC. Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa). Biochem Biophys Res Commun, 2002, 294: 535-540
    63. Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 2003, 422: 722-726
    64. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399-403
    65. Marechal E, Block MA, Dome AJ, Douce R, Joyard J. Lipid synthesis and metabolism in the plastid envelope. Physiologia Plantarum, 1997, 1:65-77
    66. Marechal E, Awai K, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J. The multigenic family of monogalactosyl diacylglycerol synthases. Biochem Soc Trans, 2000, 28: 732-738
    67. Molina A, Segura A, Garcia-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett, 1993, 316: 119-122
    68. Molina A, Garcia-Olmedo F. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J, 1997, 12: 669-675
    69. Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C. Lipid trafficking in plant cells. Prog Lipid Res, 1998, 37: 371-391
    70. Park CJ, Shin R, Park JM, Lee GJ, You JS, Paek KH. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol Biol, 2002, 48: 243-254
    71. Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell, 2000, 12:151-164
    72. Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic, 2003,4: 724-738
    73. Patriarca EJ, Tate R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. Int Rev Cytol, 2004,234:201-262
    74. Pelese-Siebenbourg F, Caelles C, Kader JC, Delseny M, Puigdomenech P. A pair of genes coding for lipid-transfer proteins in Sorghum vulgare. Gene, 1994, 148:305-308
    75. Pii Y, Astegno A, Peroni E, Zaccardelli M, Pandolfini T, Crimi M. The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol Plant Microbe Interact, 2009,22:1577-1587
    76. Pii Y, Molesini B, Masiero S, Pandolfini T. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. BMC Plant Biol, 2012, 12:233
    77. Postgate JR. The fundamentals of nitrogen fixation. Cambridge:Cambridge University Press, 1982.
    78. Pyee J, Yu H, Kolattukudy PE. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys, 1994, 311:460-468
    79. Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic, 2004, 5: 255-264
    80. Samuel D, Liu YJ, Cheng CS, Lyu PC. Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem, 2002, 277:35267-35273
    81. Schumpp O, Deakin WJ. How inefficient rhizobia prolong their existence within nodules. Trends Plant Sci, 2010,15:189-195
    82. Segura A, Moreno M, Garcia-Olmedo F. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett, 1993,332:243-246
    83. Shin DH, Lee JY, Hwang KY, Kim KK, Sun SW. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure, 1995,3:189-199
    84. Simons K, Toomre D. Lipid rafts and signal transduction. Nature reviews Molecular cell biology, 2000,1:31-39
    85. Sodano P, Caille A, Sy D, De Person G, Marion D, Ptak M. 1H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein. Global fold of the complex. FEBS Lett, 1997,416:130-134
    86. Soufleri IA, Vergnolle C, Miginiac E, Kader JC. Germination-specific lipid transfer protein cDNAs in Brassica napus L. Planta, 1996, 199:229-237
    87. Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991,3:907-921
    88. Subirade M, Salesse C, Marion D, Pezolet M. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophys J, 1995,69:974-988
    89. Subtil A. Rerouting of host lipids by bacteria: are you CERTain you need a vesicle? PLoS pathogens, 2011,7:e1002208
    90. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739
    91. Tassin-Moindrot S, Caille A, Douliez JP, Marion D, Vovelle F. The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. Eur J Biochem,2000,267:1117-1124
    92. Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P. Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry, 1998, 37: 3623-3637
    93. Thoma S, Kaneko Y, Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J, 1993,3:427-436
    94. Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol, 1994, 105:35-45
    95. Tjellstrom H, Andersson MX, Larsson KE, Sandelius AS. Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ, 2008,31:1388-1398
    96. Tjellstrom H, Hellgren LI, Wieslander A, Sandelius AS. Lipid asymmetry in plant plasma membranes:phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J, 2010, 24:1128-1138
    97. Trainer MA, Charles TC. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol, 2006, 71:377-386
    98. Tsuboi S, Osafune T, Tsugeki R, Nishimura M, Yamada M. Nonspecific Lipid Transfer Protein in Castor Bean Cotyledon Cells:Subcellular Localization and a Possible Role in Lipid Metabolism. J. Biochem.,1992,111:500-508
    99. Vadakattu G, Paterson J. Free-living bacteria lift soil nitrogen supply. Farming Ahead, 2006, 169: 40
    100. Vance JE, Aasman EJ, Szarka R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. JBiol Chem, 1991,266: 8241-8247
    101. Vergnolle C, Arondel V, Jolliot A, Kader JC. Phospholipid transfer proteins from higher plants. Methods Enzymol, 1992,209:522-530
    102. Verma DP, Hong Z. Biogenesis of the peribacteroid membrane in root nodules. Trends Microbiol, 1996,4:364-368
    103. Vieira FS, Correa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts:a safe door for micro-organisms? Biol Cell, 2010, 102:391-407
    104. Vignols F, Lund G, Pammi S, Tremousaygue D, Grellet F, Kader JC, Puigdomenech P, Delseny M. Characterization of a rice gene coding for a lipid transfer protein. Gene, 1994, 142:265-270
    105. Vignols F, Wigger M, Garcia-Garrido JM, Grellet F, Kader JC, Delseny M. Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene, 1997,195:177-186
    106. Voelker DR. Lipid transport pathways in mammalian cells. Experientia, 1990, 46: 569-579
    107. Whitehead LF, Day DA. The peribacteroid membrane. Physiologia Plantarum, 1997, 100: 30-44
    108. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van De Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011,480: 520-524
    109. Yubero-Serrano EM, Moyano E, Medina-Escobar N, Munoz-Blanco J, Caballero JL. Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. JExp Bot, 2003,54:1865-1877
    110. Zachowski A, Guerbette F, Grosbois M, Jolliot-Croquin A, Kader JC. Characterisation of acyl binding by a plant lipid-transfer protein. Eur JBiochem, 1998, 257:443-448
    111.李一星.半胱氨酸蛋白酶基因Asnodf32在紫云英根瘤衰老过程中的功能研究.[学位论文].华中农业大学,2009
    112.石晓峰.紫云英共生固氮基因AsIA257和AsIB259的功能研究.[学位论文].华中农业大学,2011,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700