用户名: 密码: 验证码:
MgZnO薄膜掺杂及Ga_2O_3/ZnO异质结构紫外探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
200-300nm的深紫外区的半导体光电探测器因其广泛应用而备受关注,而以宽禁带半导体材料ZnO(MgZnO)为基础的紫外探测器是其中一个研究热点。本文通过对MgZnO薄膜的掺杂的研究,实现了新型垂直结构器件的制备和对MgZnO薄膜电学性能的优化;还对Ga2O3/ZnO异质结构紫外探测器进行了制备与研究,内容如下:
     1、利用磁控溅射的方法生长出了Al掺杂的MgZnO薄膜,并通过不同温度退火处理将薄膜电阻率降至最低至4.7E-3ohmcm,高导电率的MgZnO:Al薄膜为制备垂直结构探测器提供了必须的透明电极,通过扫描电镜图像、紫外吸收透射谱等测试证明该MgZnO:Al薄膜适用于本文设计的垂直结构紫外探测器;在MgZnO:Al透明电极上生长MgZnO反应层并在其上接触Au电极形成肖特基接触,完成垂直结构肖特基势垒光电二极管的制备;对制备的新型器件进行了光电参数测量和紫外光响应特性的研究,器件具有良好的肖特基整流特性和0V偏压下的响应。
     2、利用金属化学气相沉积方法(MOCVD)进行了不同组分Ga掺入立方相MgZnO薄膜的制备。通过X射线衍射谱、X射线光电子能谱、扫描电镜图像、吸收光谱等测试的结果讨论了不同组分Ga的掺入对MgZnO薄膜晶体结构和性质的影响,发现随着Ga掺入浓度的提高,立方相MgZnO薄膜出现了分相。对未分相MgZnO:Ga薄膜的电学性能进行测试,研究Ga掺入对MgZnO薄膜电学性能的影响,制备MSM结构紫外探测器并对器件性能进行测试与研究。
     3、利用MOCVD在蓝宝石衬底上在获得了高质量Ga2O3薄膜,并在Ga2O3薄膜上生长薄层ZnO实现Ga2O3/ZnO异质结的制备。Zn的热扩散,实现了Ga2O3的弱p型掺杂,为Ga2O3/ZnO异质p-n结探测器件的制备奠定了基础。
Ultraviolet is weak in the atmosphere and for its short propagation length,multiplication effect is necessary in ultraviolet photodetector. Schottky junction is agood choice for high performance ultraviolet photodetectors. It works based on thebarrier between the metal and semiconductor as they are connected. So it’s easilyinfluenced by the surface state of the active layer of the device. As an important wideband gap semiconductor, zinc oxide has been investigated in many forms, amongwhich MgZnO alloy is believed to be the most efficient candidate for deepultraviolet photoelectronic device due to its large tunable band gap. MgZnO has beenextensively studied for its optics and electricity properties based on its wideapplications as photodetector. A part of the studies were focused on the nanosizedMgZnO with the purpose of improving the light absorption, therefore another partfocused on the quantum well structures to reduce the internal field in order to increasethe internal efficiency:
     1. We report on a Schottky ultraviolet photodetector with a MgZnO: Altransparent electrode. By using doping and post annealing, transparent conductiveMgZnO:Al thin films was developed to fit the request for our detection. The deviceis structured vertically in an order of sapphire/MgZnO: Al/as-grown MgZnO/Au.The device shows a good Schottky contacting character. The peak response is located at340nm and cut-off at355nm. The turn-on voltage is2.0V and thebreakdown voltage is40V. The leakage current is less than70pA at a reverse biasof15V.
     2. The metal-organic chemical vapor deposition method was successfully usedto synthesize pure MgZnO and Ga doping MgZnO. The flow rate of TEGa waschanged to study how the dopant-Ga affect the structure of MgZnO. The MgZnOstructure was verified with x-ray diffraction, which showed typical characteristicsphalerite reflections without any separate dopant-related peaks.. X-ray diffractionalso demonstrate that along with the growth of Ga dopant in number. ZnGa2O4isturned up in the film which made the MgZnO phase split. Scanning electronmicroscopy observations confirmed the existence of homogeneously distributedhexagonal crystal and cubic crystal and a little rhombus crystal.
引文
[1] S.M.SZE, K. K.NG, Physics of Semiconductor Devices[M], New Jersey:John Wiley&Sons, Inc.,2007.663-736
    [2] J.A. Rogers,Semiconductor Devices Inspired by and Integrated withBiology[J]. Proc Ieee Micr Elect,2012,(ssue).
    [3] N. Sleptsuk, O. Korolkov, J. Toompuu, T. Rang, V. Mikli,The Specificity ofSolid-phase Interaction of Aluminium with Silicon Carbide in the Manufacture ofDiffusion-welded Contacts to Semiconductor Devices[J]. Elektron Elektrotech,2012,(ssue):45-48.
    [4] L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z.Zhang, B.H. Li, J.Y. Zhang,MgZnO metal–semiconductor–metal structuredsolar-blind photodetector with fast response[J]. Solid State Communications,2009,149(ssue):2021-2023.
    [5] J.A. Rothschild, A. Cohen, A. Brusilovsky, L. Kornblum, Y. Kauffmann, Y.Amouyal, M. Eizenberg,Fermi level tuning using the Hf-Ni alloy system as a gateelectrode in metal-oxide-semiconductor devices[J]. Journal of Applied Physics,2012,112(ssue).
    [6] S. Sonmezoglu, S. Akin, High performance GaAsmetal-insulator-semiconductor devices using TiO2as insulator layer[J]. CurrentApplied Physics,2012,12(ssue):1-6.
    [7] K. He, J.H. Cho, Y. Jung, S.T. Picraux, J. Cumings,Silicon nanowires:electron holography studies of doped p-n junctions and biased Schottky barriers[J].Nanotechnology,2013,24(ssue).
    [8] S. Paul,New methods for determining speciality of linear systems based at fatpoints in P-n[J]. J Pure Appl Algebra,2013,217(ssue):927-945.
    [9] E. Olbrant, E.W. Larsen, M. Frank, B. Seibold,Asymptotic derivation andnumerical investigation of time-dependent simplified P-N equations[J]. J ComputPhys,2013,238(ssue):315-336.
    [10] D. Cooper, C. Le Royer, A. Beche, J.L. Rouviere,Strain mapping for thesilicon-on-insulator generation of semiconductor devices by high-angle annular darkfield scanning electron transmission microscopy[J]. Applied Physics Letters,2012,100(ssue).
    [11] A.K. Abdelsalam, M.I. Masoud, M.S. Hamad, B.W. Williams,ImprovedSensorless Operation of a CSI-Based Induction Motor Drive: Long Feeder Case[J].Ieee T Power Electr,2013,28(ssue):4001-4012.
    [12] C.H. Lu, Y.C. Li, Y.H. Chen, S.C. Tsai, Y.L. Lai, Y.L. Li, C.P. Liu,Output power enhancement of InGaN/GaN based green light-emitting diodes withhigh-density ultra-small In-rich quantum dots[J]. J Alloy Compd,2013,555(ssue):250-254.
    [13] S.Y. Lee, W. Lee, C. Nahm, J. Kim, S. Byun, T. Hwang, B.K. Lee, Y.I.Jang, S. Lee, H.M. Lee, B. Park,Nanostructural analysis of ZnO:Al thin films forcarrier-transport mechanisms[J]. Current Applied Physics,2013,13(ssue):775-778.
    [14] Y.G. Zhang, H.Y. He, B.C. Pan,Tailoring the band gap of ZnO/MgZnOcoaxial nanowires by the size and the component of Mg[J]. Phys Chem Chem Phys,2013,15(ssue):2932-2936.
    [15] D.P. Xiong, X.G. Tang, W.R. Zhao, Q.X. Liu, Y.H. Wang, S.L. Zhou,Deposition of ZnO and MgZnO films by magnetron sputtering[J]. Vacuum,2013,89(ssue):254-256.
    [16] L. Wang, J.G. Ma, H.Y. Xu, C. Zhang, X.H. Li, Y.C. Liu,Anisotropicstrained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and opticalproperties[J]. Applied Physics Letters,2013,102(ssue).
    [17] W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T.Venkatesan, R.D. Vispute, H. Shen,Compositionally-tuned epitaxial cubicMgxZn1-xO on Si(100) for deep ultraviolet photodetectors[J]. Applied PhysicsLetters,2003,82(ssue):3424-3426.
    [18] L.K. Wang, Z.G. Ju, J.Y. Zhang, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao,Z.Z. Zhang, B.H. Li, C.X. Shan, Single-crystalline cubic MgZnO films and theirapplication in deep-ultraviolet optoelectronic devices[J]. Applied Physics Letters,2009,95(ssue):131113.
    [19] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y.Segawa,Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices[J].Applied Physics Letters,1999,75(ssue):980-982.
    [20] V.K. Kaushik, T. Ganguli, R. Kumar, C. Mukherjee, P.K. Sen,Growthand characterization of ZnO and MgxZn1-xO thin films by aerosol assisted chemicalvapor deposition technique[J]. Thin Solid Films,2012,520(ssue):3505-3509.
    [21] A. Nakamura, J. Ishihara, S. Shigemori, T. Aoki, J. Temmyo,Growth ofMgxZn1-xO films using remote plasma MOCVD (vol244, pg385,2005)[J]. ApplSurf Sci,2011,257(ssue):10314-10316.
    [22] A.A. Lotin, O.A. Novodvorsky, E.V. Khaydukov, V.N. Glebov, V.V.Rocheva, O.D. Khramova, V.Y. Panchenko, C. Wenzel, N. Trumpaicka, K.D.Chtcherbachev,Epitaxial Growth and Properties of MgxZn1-xO Films Produced byPulsed Laser Deposition[J]. Semiconductors+,2010,44(ssue):246-250.
    [23] A. Pengpad, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, S.Choopun,Effect of MgxZn1-xO Thin Film as Barrier Layer for EfficiencyImprovement of ZnO Dye-Sensitized Solar Cells[J]. Chiang Mai J Sci,2012,39(ssue):224-232.
    [24] Y. Kozuka, J. Falson, Y. Segawa, T. Makino, A. Tsukazaki, M.Kawasaki,Precise calibration of Mg concentration in MgxZn1-xO thin films grown onZnO substrates[J]. Journal of Applied Physics,2012,112(ssue).
    [25] M.S. Kim, D.Y. Kim, S. Kim, G. Nam, S.O. Kim, D.Y. Lee, J.S. Kim, J.S.Kim, J.Y. Leem,Magnesium Content Ratio Effects of MgxZn1-xO Seed Layers onStructural and Optical Properties of ZnO Nanorods[J]. J Nanosci Nanotechno,2012,12(ssue):5386-5391.
    [26] H.C. Chiu, H.C. Wang, C.K. Lin, H.L. Kao, J.S. Fu, K.P. Hsueh,HighBreakdown Voltage Enhancement-Mode MgxZn1-xO Thin-Film Transistor UsingCF4Plasma Treatment[J]. Electrochem Solid St,2012,15(ssue): H20-H22.
    [27] X.H. Zhang, Z.M. Lu, F.B. Meng, Y.Z. Wang, Y. Li, X.A. Yu, C.C.Tang,Effects of oxygen partial pressure and substrate temperature on the structure andoptical properties of MgxZn1-xO thin films prepared by magnetron sputtering[J].Appl Surf Sci,2011,257(ssue):6554-6559.
    [28] Y. Kozuka, A. Tsukazaki, D. Maryenko, J. Falson, S. Akasaka, K.Nakahara, S. Nakamura, S. Awaji, K. Ueno, M. Kawasaki,Insulating phase of atwo-dimensional electron gas in MgxZn1-xO/ZnO heterostructures below v=1/3[J].Physical Review B,2011,84(ssue).
    [29] A. Muller, M. Stolzel, C. Dietrich, G. Benndorf, M. Lorenz, M.Grundmann,Origin of the near-band-edge luminescence in MgxZn1-xO alloys[J].Journal of Applied Physics,2010,107(ssue).
    [30] S. Akasaka, K. Nakahara, A. Tsukazaki, A. Ohtomo, M. Kawasaki,MgxZn1-xO Films with a Low Residual Donor Concentration (<10(15) cm(-3))Grown by Molecular Beam Epitaxy[J]. Appl Phys Express,2010,3(ssue).
    [31] D.Y. Jiang, C.X. Shan, J.Y. Zhang, Y.M. Lu, B. Yao, D.X. Zhao, Z.Z.Zhang, D.Z. Shen, C.L. Yang,MgxZn1-xO solar-blind photodetector grown by radiofrequency magnetron sputtering[J]. J Phys D Appl Phys,2009,42(ssue).
    [32] W.E. Bowen, W. Wang, E. Cagin, J.D. Phillips,Quantum confinementand carrier localization effects in ZnO/MgxZn1-xO wells synthesized by pulsed laserdeposition[J]. J Electron Mater,2008,37(ssue):749-754.
    [33] K.V. Saravanan, K. Sudheendran, M.G. Krishna, K.C.J. Raju, A.K.Bhatnagar,Effect of process parameters and post deposition annealing on the optical,structural and microwave dielectric properties of RF magnetron sputtered(Ba-0.5,Sr-0.5)TiO3thin films[J]. Vacuum,2006,81(ssue):307-316.
    [34] K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M.Inoue, M. Yano,Molecular beam epitaxial growth of wide bandgap ZnMgO alloyfilms on (111)-oriented Si substrate toward UV-detector applications[J]. J CrystGrowth,2005,278(ssue):288-292.
    [35] Z.G. Ju, C.X. Shan, D.Y. Jiang, J.Y. Zhang, B. Yao, D.X. Zhao, D.Z.Shen, X.W. Fan,Mg(x)Zn(1-x)O-based photodetectors covering the whole solar-blindspectrum range[J]. Applied Physics Letters,2008,93(ssue).
    [36] X.Y. Gao, J.M. Ma, C. Chen, M.K. Zhao, J.H. Gu, J.X. Lu,Structural andOptical Properties of RF Magnetron Reactively Sputtered Ag2O Film[J]. J KoreanPhys Soc,2012,60(ssue):807-811.
    [37] P. Laha, A.B. Panda, S.K. Mahapatra, P.K. Barhai, A.K. Das, I.Banerjee,Development of rf plasma sputtered Al2O3-TiO2multilayer broad bandantireflecting coatings and its correlation with plasma parameters[J]. Appl Surf Sci,2012,258(ssue):2275-2282.
    [38] J.Z. Chen, C.H. Li, I.C. Cheng,Phase transitions of room temperatureRF-sputtered ZnO/Mg0.4Zn0.6O multilayer thin films after thermal annealing[J].Thin Solid Films,2012,520(ssue):1918-1923.
    [39] Y.S. Tsai, J.Z. Chen,Positive Gate-Bias Temperature Stability ofRF-Sputtered Mg0.05Zn0.95O Active-Layer Thin-Film Transistors[J]. Ieee T ElectronDev,2012,59(ssue):151-158.
    [40] C.H. Lee, K.H. Kim, H.W. Choi,Enhancing Efficiency of Dye-SensitizedSolar Cells Using TiO2Composite Films and RF-Sputtered Passivating Layer[J]. MolCryst Liq Cryst,2012,567(ssue):9-18.
    [41] Z. Vashaei, T. Minegishi, H. Suzuki, M.W. Cho, T. Yao,Structureproperties and phase evolution of MgxZn1-xO layers grown on c-sapphire byP-MBE[J]. Inst Phys Conf Ser,2005,184(ssue):415-418.
    [42] Y. Matsumoto, M. Murakami, Z.W. Jin, A. Ohtomo, M. Lippmaa, M.Kawasaki, H. Koinuma,Combinatorial laser molecular beam epitaxy (MBE) growthof Mg-Zn-O alloy for band gap engineering[J]. Jpn J Appl Phys2,1999,38(ssue):L603-L605.
    [43] S. Fujita, H. Tanaka, S. Fujita,MBE growth of wide band gap wurtziteMgZnO quasi-alloys with MgO/ZnO superlattices for deep ultraviolet opticalfunctions[J]. J Cryst Growth,2005,278(ssue):264-267.
    [44] X.T. Zhang, M.L. Chen, J. Wen, L.L. Wu, H. Gao, D. Zhang,Side by sideZnO/ZnS hetero-junction nanocrystal arrays with superior field emission property[J].Crystengcomm,2013,15(ssue):1908-1913.
    [45] M.R. Yu, G. Suyambrakasam, R.J. Wu, M. Chavali,Performanceevaluation of ZnO-CuO hetero junction solid state room temperature ethanol sensor[J].Mater Res Bull,2012,47(ssue):1713-1718.
    [46] T.H. Yang, K.C. Chiu, J.M. Wu,Compensation of N-Related Defects inp-Type Al-N Codoped MgZnO Films[J]. Electrochem Solid St,2012,15(ssue):H153-H156.
    [47] J.D. Hwang, Y.L. Lin, C.Y. Kung,Enhancement of the Schottky barrierheight of Au/ZnO nanocrystal by zinc vacancies using a hydrothermal seed layer[J].Nanotechnology,2013,24(ssue).
    [48] J.D. Hwang, C.Y. Kung, Y.L. Lin,Non-Surface-Treated Au/ZnO SchottkyDiodes Using Pre-Annealed Hydrothermal or Sol-Gel Seed Layer[J]. Ieee TNanotechnol,2013,12(ssue):35-39.
    [49] J. Herran, I. Fernandez, R. Tena-Zaera, E. Ochoteco, G. Cabanero, H.Grande,Schottky diodes based on electrodeposited ZnO nanorod arrays for humiditysensing at room temperature[J]. Sensor Actuat B-Chem,2012,174(ssue):274-278.
    [50] Q.A. Xu, J.W. Zhang, K.R. Ju, X.D. Yang, X. Hou,ZnO thin filmphotoconductive ultraviolet detector with fast photoresponse[J]. J Cryst Growth,2006,289(ssue):44-47.
    [51] M. Zhao, X. Wang, J. Cheng, L. Zhang, J. Jia, X. Li,Synthesis andethanol sensing properties of Al-doped ZnO nanofibers[J]. Current Applied Physics,2013,13(ssue):403-407.
    [52] T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo,H. Koinuma, Optical properties of ZnO: Al epilayers and of undoped epilayerscapped by wider-gap MgZnO grown by laser MBE[J]. Physica Status Solidi B-BasicSolid State Physics,2002,229(ssue):853-857.
    [53] M. Ahmad, E. Ahmed, Y.W. Zhang, N.R. Khalid, J.F. Xu, M. Ullah, Z.L.Hong,Preparation of highly efficient Al-doped ZnO photocatalyst by combustionsynthesis[J]. Current Applied Physics,2013,13(ssue):697-704.
    [54] S. Dhar, A. Degiron, D.R. Smith, N.M. Jokerst,Planar Integrated OpticalDetection of a Hybrid Long-Range Surface Plasmon Using an InGaAs Inverted-MSMDetector Bonded to Silicon[J]. Ieee Photonic Tech L,2010,22(ssue):841-843.
    [55] L.X. Wang, X.K. Chen, G. Wu, W.T. Guo, Y.F. Wang, S. Cao, K. Shang,W. Han, Study on trapping center and trapping effect in MSM ultravioletphoto-detector on microcrystalline diamond film[J]. Phys Status Solidi A,2010,207(ssue):468-473.
    [56] L.S. Chuah, Z. Hassan, H. Abu Hassan, High-qualityIn(0.47)Ga(0.53)N/GaN heterostructure on Si(111) and its application to MSMdetector[J]. Microelectron Int,2008,25(ssue):3-8.
    [57] Nitrogen implantation boosts gallium arsenide MSM detectorperformance[J]. Laser Focus World,2003,39(ssue):11-11.
    [58] T.A. Yost, A. Madjar, P.R. Herczfeld,Frequency response mechanismsfor the GaAs MSM photodetector and electron detector[J]. Ieee T Microw Theory,2001,49(ssue):1900-1907.
    [59] Insulator cuts leakage current in MSM detector[J]. Laser Focus World,1999,35(ssue):13-13.
    [60] P.C. Chang, Z.Y. Fan, W.Y. Tseng, A. Rajagopal, J.G. Lu, beta-Ga2O3nanowires: Synthesis, characterization, and p-channel field-effect transistor[J].Applied Physics Letters,2005,87(ssue).
    [61] C. Li, J.L. Yan, L.Y. Zhang, G. Zhao,Electronic structures and opticalproperties of Zn-doped beta-Ga2O3with different doping sites[J]. Chinese Phys B,2012,21(ssue).
    [62] J.L. Yan, Y.N. Zhao,Electronic structure and optical properties of N-Znco-doped beta-Ga2O3[J]. Sci China Phys Mech,2012,55(ssue):654-659.
    [63] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens,Cathodedependence of the open-circuit voltage of polymer: fullerene bulk heterojunctionsolar cells[J]. Journal of Applied Physics,2003,94(ssue):6849-6854.
    [64] P. Peumans, S. Uchida, S.R. Forrest,Efficient bulk heterojunctionphotovoltaic cells using small-molecular-weight organic thin films[J]. Nature,2003,425(ssue):158-162.
    [65] M.M. Wienk, J.M. Kroon, W.J.H. Verhees, J. Knol, J.C. Hummelen, P.A.van Hal, R.A.J. Janssen,Efficient methano70fullerene/MDMO-PPV bulkheterojunction photovoltaic cells[J]. Angewandte Chemie-International Edition,2003,42(ssue):3371-3375.
    [66] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D.Meissner, N.S. Sariciftci, Nanoscale morphology of conjugatedpolymer/fullerene-based bulk-heterojunction solar cells[J]. Advanced FunctionalMaterials,2004,14(ssue):1005-1011.
    [67] C. Winder, N.S. Sariciftci,Low bandgap polymers for photon harvestingin bulk heterojunction solar cells[J]. Journal of Materials Chemistry,2004,14(ssue):1077-1086.
    [68] W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen,Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells[J]. Journal ofPhysical Chemistry B,2005,109(ssue):9505-9516.
    [69] F. Bertazzi, G. Conte, S.D. Guerrieri, F. Bonani, G.Ghione,Two-dimensional physics-based low-frequency noise modeling of bipolarsemiconductor devices in small-and large-signal operation[J]. Noise and Fluctuations,2005,780(ssue):783-786.
    [70] J.G. Xue, B.P. Rand, S. Uchida, S.R. Forrest,A hybrid planar-mixedmolecular heterojunction photovoltaic cell[J]. Advanced Materials,2005,17(ssue):66-+.
    [71] F. Yang, M. Shtein, S.R. Forrest,Controlled growth of a molecular bulkheterojunction photovoltaic cell[J]. Nature Materials,2005,4(ssue):37-41.
    [72] H. Hoppe, N.S. Sariciftci,Morphology of polymer/fullerene bulkheterojunction solar cells[J]. Journal of Materials Chemistry,2006,16(ssue):45-61.
    [73] V.D. Mihailetchi, H.X. Xie, B. de Boer, L.J.A. Koster, P.W.M.Blom,Charge transport and photocurrent generation in poly (3-hexylthiophene):Methanofullerene bulk-heterojunction solar cells[J]. Advanced Functional Materials,2006,16(ssue):699-708.
    [74] S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J.Roncali,Triphenylamine-thienylenevinylene hybrid systems with internal chargetransfer as donor materials for heterojunction solar cells[J]. Journal of the AmericanChemical Society,2006,128(ssue):3459-3466.
    [75] M.C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J.Heeger, C.L. Brabec,Design rules for donors in bulk-heterojunction solar cells-Towards10%energy-conversion efficiency[J]. Advanced Materials,2006,18(ssue):789-+.
    [76] P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov,Devicephysics of polymer: fullerene bulk heterojunction solar cells[J]. Advanced Materials,2007,19(ssue):1551-1566.
    [77] M.D. Irwin, B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks,p-Typesemiconducting nickel oxide as an efficiency-enhancing anode interfacial layer inpolymer bulk-heterojunction solar cells[J]. Proceedings of the National Academy ofSciences of the United States of America,2008,105(ssue):2783-2787.
    [78] J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee,G.C. Bazan, A.J. Heeger,Processing additives for improved efficiency from bulkheterojunction solar cells[J]. Journal of the American Chemical Society,2008,130(ssue):3619-3623.
    [79] J. Chen, Y. Cao,Development of Novel Conjugated Donor Polymers forHigh-Efficiency Bulk-Heterojunction Photovoltaic Devices[J]. Accounts of ChemicalResearch,2009,42(ssue):1709-1718.
    [80] G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-FullereneBulk-Heterojunction Solar Cells[J]. Advanced Materials,2009,21(ssue):1323-1338.
    [81] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses,M. Leclerc, K. Lee, A.J. Heeger,Bulk heterojunction solar cells with internal quantumefficiency approaching100%[J]. Nature Photonics,2009,3(ssue):297-U295.
    [82] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams,Polymer-Fullerene Bulk-Heterojunction Solar Cells[J]. Advanced Materials,2010,22(ssue):3839-3856.
    [83] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu,For theBright Future-Bulk Heterojunction Polymer Solar Cells with Power ConversionEfficiency of7.4%[J]. Advanced Materials,2010,22(ssue): E135-+.
    [84] J.M. Luther, J. Gao, M.T. Lloyd, O.E. Semonin, M.C. Beard, A.J.Nozik,Stability Assessment on a3%Bilayer PbS/ZnO Quantum Dot HeterojunctionSolar Cell[J]. Advanced Materials,2010,22(ssue):3704-+.
    [85] P.R. Chalker, P.A. Marshall, S. Romani, J.W. Roberts, S.J.C. Irvine, D.A.Lamb, A.J. Clayton, P.A. Williams,Atomic layer deposition of Ga-doped ZnOtransparent conducting oxide substrates for CdTe-based photovoltaics[J]. J Vac SciTechnol A,2013,31(ssue).
    [86] H.L. Hsu, C.B. Yang, C.H. Huang, C.Y. Hsu, Electrical and opticalstudies of Ga-doped ZnO thin films[J]. J Mater Sci-Mater El,2013,24(ssue):13-19.
    [87] Y. Li, Q. Huang, X.F. Bi, The change of electrical transportcharacterizations in Ga doped ZnO films with various thicknesses[J]. Journal ofApplied Physics,2013,113(ssue).
    [88] C. Nahm, S. Shin, W. Lee, J.I. Kim, D.R. Jung, J. Kim, S. Nam, S. Byun,B. Park,Electronic transport and carrier concentration in conductive ZnO:Ga thinfilms[J]. Current Applied Physics,2013,13(ssue):415-418.
    [89] T. Terasako, H. Song, H. Makino, S. Shirakata, T. Yamamoto,Temperature dependence of electrical properties of Ga-doped ZnO films deposited byion plating with DC arc discharge[J]. Thin Solid Films,2013,528(ssue):19-25.
    [90] L.L. Wu, Q. Li, X.T. Zhang, T.Y. Zhai, Y. Bando, D. Golberg,EnhancedField Emission Performance of Ga-Doped In2O3(ZnO)(3) Superlattice Nanobelts (vol115, pg24564,2011)[J]. Journal of Physical Chemistry C,2013,117(ssue):3680-3680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700