用户名: 密码: 验证码:
电离层远紫外日辉辐射观测与O/N_2反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层远紫外日辉辐射是由光电子与高层大气碰撞激发而产生的,而且提供了电离层中主要的中性成分(N2,O,O2)的光学辐射信号,从空间对远紫外日辉辐射进行遥感观测,可以获得主要中性成分的密度及空间分布等信息,对其研究具有重要的科学价值和应用价值。本文主要围绕电离层中140-180nm波段的LBH(Lyman-Birge-Hopfield)日辉辐射及氧原子的135.6nm辐射(OI135.6nm)的辐射特性和O/N2的反演方法进行了研究,为风云三号气象卫星载荷仪器观测数据的模拟技术与反演技术的研制奠定了基础。
     1、首先介绍了远紫外日辉的辐射传输理论,光电子的传输理论,以及极光电子的传输理论。重点分析了电离层中远紫外日辉辐射的激发过程、吸收过程以及散射过程,从而为研究电离层中140-180nm波段的LBH及OI135.6nm日辉的辐射特性打下基础。
     2、分析了LBH辐射的谱带特征,采用电子碰撞直接激发理论和球几何大气模型,针对大视场观测模式,给出了一种改进的LBH日辉柱辐射率计算方法RAURIC(Revised Algorithm of AURIC)。RAURIC针对AURIC辐射算法的局限性做两点改进:一是增加了观测方位角;二是考虑了沿观测视线LOS方向上太阳天顶角的变化。使用RAURIC计算了140-180nm波段的LBH日辉辐射,并与AURIC进行了比较,结果表明:在天底方向上,二者具有非常好的一致性;在其他观测方向上,尤其在大视场观测模式下,则需要使用RAURIC进行计算。
     3、对风云三号气象卫星载荷仪器的观测结果进行数据处理,利用风云三号广角极光成像仪观测到的140-180nm波段的LBH日辉辐射与电离层光度计观测到的OI135.6nm日辉辐射进行了O/N2反演技术的研究。通过对两个远紫外日辉辐射特性的研究,结果表明二者的柱辐射率之比135.6/LBH与太阳活动相关;然后检验了太阳活动对O/N2反演曲线的影响,结果表明:太阳活动的变化会造成O/N2反演曲线之间存在比较大的偏差,因此在O/N2的反演方法中必须考虑消除太阳活动的影响。
Far Ultraviolet (FUV) dayglow emissions in the ionosphere, are produced byphotoelectrons impact on the particles of the upper atmosphere, and provide theoptical signals for remote sensing of chief neutral particles (N2, O, O2) of theionosphere. Observations of the FUV dayglow emissions from space can be apowerful method to derive the useful information on the densities and thedistributions of the chief neutral particles. Therefore, research on the FUV dayglowemissions has important scientific and application values. In this dissertation, wemainly study the LBH dayglow emissions in the range of140-180nm and the OI135.6nm dayglow emissions, which are the observation signals of the Wide-fieldAuroral Imager (WAI) and the Ionospheric Photometer respectively, and these twoinstruments will be carried on satellite FY-3D. So, this dissertation provides a solidbasis for simulating the image of ionospheric LBH dayglow emissions and the O/N2inversion technique.
     1. Firstly, the radiative transfer theory of the FUV dayglow emissions, the transfertheory of the photoelectrons, and the theory of auroral electrons have beenintroduced. Furthermore, we mainly analyse the excitation process, the absorptionprocess, and the scattering process of the FUV dayglow emissions in the ionosphere, so this work provides basis for studying the emission characteristics of the LBHdayglow emissions in the range of140-180nm and the OI135.6nm dayglowemissions.
     2. According to direct excitation theory and spherical geometry, the spectralcharacteristics of the LBH emission are analyzed and a revised method (RAURIC) tocalculate the column emission rate of the LBH dayglow emissions for large field ofview is given. Two main limitations of AURIC, that are the definition of theobservation azimuth angle and the treating of the solar zenith angle as a constantalong a line of sight, are improved in RAURIC. The column emission rates of theLBH bands in the range of140-180nm are calculated with the method. Comparisonswith results from AURIC show great agreement in nadir, while RAURIC should beused in other lines of light, especially for large field of view.
     3. We aim at the LBH band in the range of140-180nm and the OI135.6nmdayglow emissions, the observation signals of payloads on the meteorologicalsatellite FY-3, and do initial research on the O/N2retrieval technique for the firsttime. In our work an important finding is that135.6/LBH is correlated with solaractivity. Then we check the effects of the solar activity on the O/N2retrieval curves.And the results show that there are large deviations between the retrieval curves withdifferent solar activities, so the solar activity effect must be considered to beremoved in the O/N2retrieval method.
引文
[1] Meier, R. R., Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Science Reviews,1991,58(1):1-185.
    [2] Robert E. Huffman, Atmospheric Ultraviolet Remote Sensing [M], AcademicPress,1992.
    [3] Meier, R. R. Picone, J. M., Retrieval of absolute thermospheric concentrationsfrom the far UV dayglow: An application of discrete inverse theory [J], Journal ofGeophysical Research,1994,99(A4):6307-6320.
    [4] F. W. Schenkel, B. S. Ogorzalek, J. C. Larrabee, et al., Ultraviolet daytime auroraland ionospheric imagingfrom space [J], Applied Optics,1985,24(20):3395-3405.
    [5] A.K.Kuzmin, K.N.Chikov, Perspective panoramic auroral imager and itsopportunities for tomographic mapping and diagnostics of the Ionosphericcharacteristics from the satellite [J], Advancesin Space Research,2003,31(5):1321-1326.
    [6] D. Lummerzheim, M.H. Rees, G.J. Romick, The application of spectroscopicstudies of the aurora to thermospheric neutral composition [J], Planetary and SpaceScience,1990,38(1):67-78.
    [7]熊年禄,唐存琛,李行健.电离层物理概论[M],武汉:武汉大学出版社,1999.
    [8] S. Skone, M. E. Cannon, Ionospheric effects on differential GPS applicationsduringauroral substorm activity [J], ISPRS Journal of Photogrammetry&RemoteSensing,1999,54,279-288.
    [9] Robert P. McCoy, Using Space-based Remote Sensing forImproved GlobalNavigation and Communication [J], IEEE,2003, C,1016-1018.
    [10]王劲松,吕建永.空间天气[M],北京:气象出版社,2009.
    [11]王水,魏奉思,中国空间天气研究进展[J],地球物理学进展,2007,22(4):1025-1029.
    [12] http://upload.wikimedia.org/wikipedia/commons/6/60/IonosphereProfileNOAA.png
    [13] R.R. Meier, Thermospheric aurora and airglow [J], REVIEWS OF GEOPNYSICS,1987,25(3):471-477.
    [14] L. J. Paxton, D. Morrison, D. J. Strickland, et al., The use of Far UltravioletRemote Sensing to Monitor Space Weather [J], Advancesin Space Research,2003,31(4):813-818.
    [15] P. Z. Takacs, P. D. Fledman, Far Ultraviolet Atomic and Molecular NitrogenEmissions in the Dayglow [J], Journal of Geophysical Research,1977,82(32):5011-5023.
    [16] R. R. Meier, D. J. Strickland, P. D. Feldman. The Ultraviolet Dayglow.1. Far UVEmissions of N and N2[J], Journal of Geophysical Research,1980,85(A5):2177-2184.
    [17]王咏梅,付利平,王英鉴,星载远紫外极光/气辉探测发展综述[J],地球物理学进展,2008,23(5):1474-1479.
    [18] R. Link, D. J. Strickland, R. E. Daniell, Jr., AURIC airglow modules: phase1development and application [J], SPIE, Ultraviolet Technology IV,1992,1764:132-1441.
    [19] D. J. Strickland, J. S. Evans, J. Bishop, et al., Atmospheric Ultraviolet RadianceIntegrated Code (AURIC): Current Capabilities for Rapidly Modeling Dayglow fromthe Far UV to the Near IR [J], SPIE,1992,2831:184-199.
    [20] D. J. Strickland, J. Bishop, J. S. Evans, et al., Atmospheric Ultraviolet RadianceIntegrated Code (AURIC): Theory, Software architecture, inputs, and selected results[J], J. Quant. Spectrosc. Radiat.Transfer,1999,62:689-742.
    [21] Chubb, T. A.and G. T. Hicks. Observations of aurora in the far ultraviolet fromOGO-4[J], Journal of Geophysical Research,1970,75:1290-1311.
    [22] G. R.Carruthers, Apollo16Far Ultraviolet Imagery of the Polar Auroras,Tropical Airglow Belt, and General Airglow [J]. Journal of Geophysical Research,1976,81:483-496.
    [23] Frank, L.A., J.D. Craven, K.L. Ackerson, et al., Global auroral imaginginstrumentation for the Dynamics Explorer mission [J], Space ScienceInstrumentation,1981,5:369-393.
    [24] http://cdaweb.gsfc.nasa.gov/
    [25] C. I. Meng and R. E. Huffman, Ultraviolet imaging from space of the auroraunder full sunlight [J]. Geophysical Research Letters,1984,11(4):315-318.
    [26] Israel Oznovich, A. Ravitz, Moshe Tur, et al., Far Ultraviolet Remote Sensing ofIonospheric Emissions by Polar BEAR [J], IEEE Transactions on Geoscience andRemote Sensing,1993,31(5):931-945.
    [27] C. D. Anger, S. K. Babey, A. L. Broadfoot, et al., An Ultraviolet Auroral Imagerfor the Viking Spacecraft [J], Journal of Geophysical Research,1987,14(4):387-390.
    [28] S. B. Mende, H. Heetderks, H. U. Frey, et al., Far Ultraviolet Imaging from theIMAGE Spacecraft.2. Wideband FUV Imaging [J], Space Science Reviews,2000,91(1):271-285.
    [29] B. Hubert, J.C. Gerard, D. S. Evans, Total electron and proton energy inputduring auroral substorms: Remote sensing with IMAGE-FUV [J], Journal ofGeophysical Research,2002,107(A8):1-12.
    [30] V. Coumans, J.C. Gerard, B. Hubert,et al., Global auroral conductancedistribution due to electron and proton precipitation from IMAGE-FUV observations[J], Annales Geophysicae,2004,22:1595-1611.
    [31] H. U. Frey, S. B. Mende, T. J. Immel,et al., Summary of quantitativeinterpretation of IMAGE far ultraviolet auroral data [J], Space Science Reviews,2003,109:255-283.
    [32] N. P. Bannister, E. J. Bunce, S. W. H. Cowley,et al., A Wide Field AuroralImager (WFAI) for low Earth orbit missions [J], Annales Geophysicae,2007,25:519-532.
    [33] L. J. Paxton, C. I. Meng, G. H. Fountain, et al., Special Sensor UltravioletSpectrographic Imager (SSUSI): An Instrument Description [J], SPIE,1992,1745:2-15.
    [34] L. J. Paxton, A. B. Christensen, D. C. Humm, et al., Global ultraviolet imager(GUVI): measuring composition and energy inputs for the NASA ThermosphereIonosphere Energetics and Dynamics (TIMED) mission [J], SPIE,1999,3756:265-276.
    [35]蔡红涛,马淑英,濮祖荫,极光沉降粒子在极区大气中传输的数值研究[J],中国科学E:技术科学,2008,38(11):1958-1969.
    [36]宗秋刚,付绥燕,濮祖荫等,极光粒子沉降研究:谱形式及其在极区大气中的传输[J],极地研究,1999,11(3):203-220.
    [37]付利平,王咏梅,王英鉴等,远紫外宽带极光成像仪初步研究[J],中国科学E:技术科学,2009,39(12):1905-1910.
    [38] D. E. Anderson, L. J. Paxton, R. P. McCoy, et al.,The Atomic HydrogenDistribution and Solar Lyman-a Flux Deduced from STP78-1EUV SpectrometerObservations [J], Journal of Geophysical Research,1987,92:8759.
    [39] D. E. Anderson, R. R. Meier, R. R. Hodges,et al., H Balmer Alpha IntensityDistributions and Line Profiles from Multiple Scattering Theory Using RealisticGeocoronal Models [J], Journal of Geophysical Research,1987,92:7619.
    [40] D. J. Strickland, M. H. Rees,The OI λ1304and λ1356emissions in aurorae [J],Planetary and Space Science,1974,22(3):465-481.
    [41] R. R. Conway, R. R. Meier, R. E. Huffman, Satellite observations of the OI1304,1356and1641A dayglow and the abundance of atomic oxygen in the thermosphere[J], Planetary and Space Science,1988,36(10):963-973.
    [42] A. I. Stewart, Photoionization Coefficients and Photoelectron Impact ExcitationEfficiencies in the Daytime Ionosphere [J],Journal of Geophysical Research,1970,75:6333.
    [43] D. J. Strickland and T. M. Donahue, Excitation and Radiative Transport of OI130.4nm Resonance Radiation [J], Planetary and Space Science,1970,18:661.
    [44] R. R. Meier, Jong-Sen Lee, An analysis of the OI1304A dayglow using a MonteCarlo resonant scattering model with partial frequency redistribution [J], Planetaryand Space Science,1982,30(5):439-450.
    [45] R. R. Meier, R. R. Conway, D. E. Anderson, et al., The Ultraviolet Dayglow atSolar Maximum3. Photoelectron-Excited Emissions of N2and O [J], Journal ofGeophysical Research,1985,90:6608.
    [46] G. R. Gladstone, UV Resonance Line Dayglow Emissions on Earth and Jupiter[J], Journal of Geophysical Research,1988,93:14623.
    [47] J. P. Doering and E. E. Gulcicek, Absolute Differential and Integral ElectronExcitation Cross Sections for Atomic Oxygen8. The3P-5S0Transition (1356A) from13.9to30eV [J], Journal of Geophysical Research,1989,94:2733.
    [48] P. S. Julienne and J. Davis, Cascade and Radiation Trapping Effects onAtmospheric Atomic Oxygen Emission Excited by Electron Impact [J], Journal ofGeophysical Research,1976,81:1397.
    [49] E. J. Stone and E. C. Zipf, Electron Impact Excitation of the3S0ans5S0States ofAtomic Oxygen [J], J. Chem.Phys.,1974,60:4237.
    [50] E. C. Zipf and P. W. Erdman, Electron Impact Excitation of Atomic Oxygen:Revised Cross Sections [J], Journal of Geophysical Research,1985,90:11087.
    [51] R. R. Conway, Self-Absorption of the N2Lyman-Birge-Hopfield Bands in theFar Ultraviolet Dayglow [J], J. Geophys. Res.,1992,87(A2):859-866.
    [52] E. S. Oran, D. J. Strickland, Photoelectron Flux in the Earth’s Ionospheric [J],Planet. Space Sci.,1978,26:81-87.
    [53] D. J. McEwen, R. W. Nicholls, Intensity Distribution of theLyman-Birge-Hopfield Band System of N2[J], Nature,1966,209:902.
    [54] Z. V. Dashkevich, T. I. Sergienko, V. E. Ivanov, The Lyman-Birge-Hopfieldbands in aurora [J], Planet. Space Sci.,1993,41(1):81-87.
    [55] R. W. Eastes, Emissions from the N2Lyman-Birge-Hopfield Bands in theEarth’s Atmosphere [J], Phys. Chem. Earth,2000,25(5-6):523-527.
    [56] D. J. Strickland, J. S. Evans, L. J. Paxton, Satellite remote sensing ofthermospheric O/N2and solar EUV,1. Theory [J], J. Geophys. Res.,1995,100(A7):12,217-12,226.
    [57] J. S. Evans, D. J. Strickland, L. J. Paxton, Satellite remote sensing ofthermospheric O/N2and solar EUV,2. Data analysis [J], J. Geophys. Res.,1995,100(A7):12,227-12,233.
    [58] Kil, H., W. K. Lee, J. Shim, et al, The effect of the135.6nm emission originatedfrom the ionosphere on the TIMED/GUVI O/N2ratio [J], Journal of GeophysicalResearch,2013,118(A018112):1-7.
    [59] D. J. Strickland, R. J. Cox, R. R. Meier and D. P. Drob, Global O/N2derivedfrom DE1FUV dayglow data: Technique and examples from two storm periods [J],Journal of Geophysical Research,1998,104(A3):4251-4266.
    [60] Zhang, Y., L. J. Paxton, D. Morrison, B. Wolven, et al., O/N2changes during1-4October2002storms: IMAGE SI-13and TIMED/GUVI observations [J], Journal ofGeophysical Research,2004,109(A10308):1-16.
    [61] B. C. Bush, S. Chakrabarti, A Radiative Transfer model using spherical geometryand partial frequency redistribution [J], J. Geophys. Res.,1995,100(A10):19,627-19,642.
    [62] J. S. Lee andR. R. Meier, Angle-dependent frequency redistribution in aplane-parallel medium: External source case [J], Astrophys. J.,1980,240:185-195.
    [63] D. E. Anderson andR. R. Meier, The OII834A dayglow: A general model forexcitation rate and intensity calculations [J], Planetary and Space Science,1985,33(10):1179-1186.
    [64] D. E. Anderson andC. W. Hord, Multidimensional radiative transfer:Applications to planetary coronae [J], Planetary and Space Science,1977,25(6):563-571.
    [65] R. L. Rairden, L. A. Frank, andJ. D. Craven, Geocoronal imaging with DynamicsExplorer [J], J. Geophys. Res.,1986,91(A12):13,613-13,630.
    [66] X. He, R. B. Kerr, J. Bishop, et al., Determining exospheric hydrogen density byreconciliation of Ha measurements with radiative transfer theory [J],J. Geophys. Res.,1993,98(A12):21,611-21,626.
    [67] R. R. Meier and J. S. Lee, Angle-dependent frequency redistribution: internalsource case[J],Astrophys. J.,1981,250:376-383.
    [68] G. R. Gladstone, Auroral Resonance Line Radiative Transfer [J], Journal ofGeophysical Research,1992,97(A2):1377-1387.
    [69] Chandrasekhar, S., Radiative Transfer, Dover, Mineola, New York,1960.
    [70] Rees, M. H., Physics and Chemistry of the Upper Atmosphere [M], CambridgeUniv. Press, New York,1989.
    [71] J. W. Chamberlain and D. M. Hunten, Theory of Planetary Atmospheres [M],Academic, San Diego, Calif.,1987.
    [72] D. M. Cotton, G. R. Gladstone, and S. Chakrabarti, Sounding rocket observationof a hot atomic oxygen geocorona [J], Journal of Geophysical Research,1993,98(A12):21651-21657.
    [73] D. Mihalas, Stellar Atmospheres [M], W. H. Freeman, New York,1970.
    [74] D. G. Hummer, Non-coherent scattering, I, The redistribution functions withDoppler broadening [J], Mon. Not. R. Astron. Soc.,1962,125(1):21-37.
    [75] P. G. Richards, D. G. Torr, A Simple Theoretical Model for Calculating andParameterizing the Ionospheric Photoelectron Flux [J], Journal of GeophysicalResearch,1983,88(A3):2155-2162.
    [76] P. G. Richards, D. G. Torr, The Altitude Variation of the IonosphericPhotoelectron Flux: A Comparison of Theory and Measurement [J], Journal ofGeophysical Research,1985,90(A3):2877-2884.
    [77] J. R. Jasperse, E. R. Smith, The photoelectron flux in the Earth’s Ionosphere atenergies in the vicinity of Photoionization peaks [J], Journal of Geophysical Research,1978,5(10):843-846.
    [78] S. T. Butler and M. J. Buckingham, Energy loss of a fast ion in a plasma [J],Phys. Rev.,1962,126:1.
    [79] F. Perkins, Motion of a test particle in a plasma [J], Phys. fluids,1965,8:1361.
    [80] R. W. Schunk and P. B. Hays, Photoelectron energy losses to thermal electrons[J], Planetary and Space Science,1971,19:113.
    [81] G. P. Mantas, Theory of photoelectron thermalization and transport in theionosphere [J], Planetary and Space Science,1975,23:337.
    [82] H. E. Hinteregger, The extreme ultraviolet solar spectrum and its variation duringa solar cycle [J], Annales Geophysicae,1970,26:547.
    [83] R. F. Donnelly and J. H. Pope, The1-3000A solar flux for a moderate level ofsolar activity for use in modeling the ionosphere and upper atmosphere, NOAA Tech.Rept. ERL,1973,25:276-SEL.
    [84] T. R. Young and J. P. Boris, A numerical technique for solving stiff ordinarydifferential equations associated with reactive-flow problems, NRL MemorandumReport2611,1973, Naval Research Laboratory, Washington, D. C.
    [85] E. S. Oran, T. R. Anderson, D. V. Coffey, et al., Numerical model of themidlatitude ionosphere, NRL Memorandum Report2839,1974, Naval ResearchLaboratory, Washington, D. C.
    [86] H. M. Peek, Vacuum Ultraviolet Emission from Auroras [J], Journal ofGeophysical Research,1970,75(31):6209-6217.
    [87] Rogers, E. H., Nelson, D. F., and Savage, R. C., Auroral Photography from aSatellite [J], Science,1974,183,951.
    [88] G. A. Germany, M. R. Torr, D. G. Torr, and P. G. Richards, Use of FUV auroralemissions as diagnostic indicators [J], Journal of Geophysical Research,1994,99(A1):383-388.
    [89] B. Hubert, J.C. Gerard, D. S. Evans, Total electron and proton energy inputduring auroral substorms: Remote sensing with IMAGE-FUV [J],Journal ofGeophysical Research,2002,107(A8):1-12.
    [90] V.E.Ivanov, B.V.Kozelov, T.I.Sergienko, Modelling of electron and protonaurora [J], SPIE,1993,2050:68-79.
    [91] W.E. Sharp, M. H. Rees, Auroral Spectrum between1200and4000Angstroms[J], Journal of Geophysical Research,1972,77(10):1810-1819.
    [92] B. Basu, J. R. Jasperse, D. J. Strickland, et al., Transport-Theoretic Model for theElectron-Proton-Hydrogen Atom Aurora,1. Theory [J], Journal of GeophysicalResearch,1993,98(12):21517-21532.
    [93] M. H. Rees and M. Maeda, Auroral electron spectra [J], Journal of GeophysicalResearch,1973,78:8391.
    [94] M. H. Rees and R. A. Jones, Time dependent studies of the aurora, II,Spectroscopic morphology [J], Planetary and Space Science,1973,21:1213.
    [95] P. M. Banks, C. R. Chappell, andA. F. Nagy, A new model for the interaction ofauroral electrons with the atmosphere: Spectral degradation, backscatter, opticalemissions, and ionization [J], Journal of Geophysical Research,1974,79:1459.
    [96] D. J. Strickland, D. L. Book, T. P. Coffey, et al., Transport Equation Techniquesfor the Deposition of Auroral Electrons [J], Journal of Geophysical Research,1976,81(16):2755-2764.
    [97] G. T. Davidson, Expected spatial distribution of low-energy protons precipitatedin the auroral zones [J], Journal of Geophysical Research,1965,70:1061.
    [98] R. H. Eather, Auroral proton precipitation and hydrogen emissions [J], Rev.Geophys.,1967,5:207.
    [99] G. E. Iglesias and R. R. Vondrak, Atmospheric spreading of protons in auroralarcs [J], Journal of Geophysical Research,1974,79:280.
    [100] J. R. Jasperse and B. Basu, Transport theoretic solutions for auroral proton andH atom fluxes and related quantities [J], Journal of Geophysical Research,1982,87:811.
    [101] D. J. Strickland, R. E. Daniell, J. R. Jasperse, et al., Transport-Theoretic Modelfor the Electron-Proton-Hydrogen Atom Aurora,2. Model Results [J], Journal ofGeophysical Research,1993,98(12):21533-21548.
    [102] A. Loftus and P. H. Krupenie, The spectrum of molecular nitrogen [J], J. Phys.Chem. Ref. Data,1977,28:947.
    [103] J. T. Vanderslice, S. G. Tilford and P. G. Wilkinson, The high-resoluntionabsorption spectrum of nitrogen from1060to1520A, I, Thea11g X gsystem[J], Astrophys. J.,1965,141:395.
    [104] Ajello, J. M. and Shemansky, D. E., A Reexamination of Important N2CrossSections by Electron Impact with Application to the Dayglow: TheLyman-Birge-Hopfield Band System and NI (119.99nm)[J], Journal of GeophysicalResearch,1985,99(A10):9,845-9,861.
    [105] Doran J. Baker, Rayleigh: the Unit for Light Radiance,[J], APPLIED OPTICS,1974,13(9):2160-2163.
    [106] Doran J. Baker, Gerald J. Romick, The rayleigh: interpretation of the unit interms of column emission rate or apparent radiance expressed in SI units [J],APPLIED OPTICS,1976,15(8):1966-1968.
    [107] A. E. Hedin, MSIS-86Thermospheric Model [J], Journal of GeophysicalResearch,1987,92(A5):4,649-4,662.
    [108] A. E. Hedin, Extension of the MSIS thermosphere model into the middle andlower atmosphere [J], Journal of Geophysical Research,1991,96(A5):1,159-1,172.
    [109] J. P. Snyder, Map Projections-a working manual [M], U.S. Geological Survey,Reston, Va.,1987.
    [110] D. J. Strickland, R. J. Cox, R. P. Barnes, et al., Model for generating globalimages of emission from the thermosphere [J], Appl. Opt.,1994,33(16):3,578-3,594.
    [111] G. R. Gladstone, Simulations of DE1UV airglow images, J. Geophys. Res.,1994,99(A6):11,441-11,448.
    [112] Eiichi Sagawa, Takashi Maruyama, T. J. Immel, et al., Global view of thenighttime low-latitude ionosphere by the IMAGE/FUV135.6nm observations [J].Geophys. Res. Lett.,2003,30(10):1534-1537.
    [113] S. B. Mende, H. Heetderks, H. U. Frey, et al., Far Ultraviolet Imaging from theIMAGE Spacecraft.3. Spectral Imaging of the Lyman-a and OI135.6nm [J], SpaceSci Rev.,2000,91(1):287-318.
    [114] D. J. Strickland, D. E. Anderson, Jr., Radiation Transport Effects on the OI1356-Limb Intensity Profile in the Dayglow [J], Journal of Geophysical Research,1983,88(A11):9260-9264
    [115] Strickland, D. J., and R. R. Meier, A photoelectron model for the rapidcomputation of atmospheric excitation rates [J], NRL Memo, Rep.5004, Natl. Res.Lab., Washington, D. C., December1982.
    [116] Anderson, D. E., Jr., R. R. Meier, P. D. Feldman, and E. P. Gentieu, The UVdayglow3, OI emissions at989,1027,1152,1304, and1356[J], Geophys. Res.Lett.,7,1057,1980.
    [117] Gentieu, E. P., P. D. Feldman, and R. R. Meier, Spectroscopy of the extremeultraviolet dayglow at6.5resolution: Atomic and ionic emissions between530and1240[J], Geophys. Res. Lett.,6,325,1979.
    [118] Hinteregger, H.E., K. Fukui, and B. R. Gibson, Observational, reference andmodel data on solar EUV from measurements of AE-E [J], Geophysical ResearchLetters,1981,8,1147.
    [119] http://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700