用户名: 密码: 验证码:
放电引发非链式脉冲DF激光器主机结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电对抗领域对高功率中红外波段(3-5μm)相干光源的需求,DF激光越来越受到重视。DF激光输出波段为3.5-4.2μm,中心波长为3.8μm,处于军事急需的中波红外波段。其运行方式分为链式和非链式两种,链式DF激光器输出功率虽高,但结构庞大、工作气体易爆炸、维护较难。非链式脉冲DF激光器则避免了连续波运行时易爆炸和腐蚀的缺点,且体积小、易操作,具有高的平均功率和峰值功率。
     本文研制了一种新型的脉冲DF激光器主机,并利用研制的结果对激光器的输出性能进行了研究分析。脉冲DF激光器主要由真空系统、气体循环冷却系统、光学谐振腔系统、主机支架等组成。其中,风机、换热器、流道、分子筛等组成了气体循环冷却系统。通过改变管路的结构和布局,成功地将快轴流激光器用风机应用到了DF横流激光器上,并采用两台风机并联的方式,为气体的循环流动提供驱动力。光学谐振腔采用平-凹稳定腔,全反镜为球面镜,输出镜为平面镜。谐振腔具有多方位的调整结构来调整光轴的方向。分子筛的作用是吸附工作过程中产生的消激发物质,维持激光器的稳定输出。
     为保证激光器的稳定工作,运用有限元方法对整体结构进行了静力学分析,并针对结构中出现的不足进行了优化改进。优化后,结构的最大变形量由2.34mm降至1.67mm,且整体的变形减小。最大应力由296MPa降至193MPa,减轻了应力集中现象,整个结构的强度和刚度均满足工作要求。为保证放电区均匀的气体放电,实现激光的稳定输出,运用计算流体动力学(CFD)原理对流场中气体的运动状态进行了数值模拟分析。分析的对象包括气体流动时流场中的压力损失,放电区的流速以及均匀性分布等,并根据其影响因素对流道结构进行了优化改进。优化后,采用皮托管测得的放电区气体的流速达到16.3m/s,流速分布纵向最大不均匀度为7.1%,横向最大不均匀度为4.3%,均符合激光稳定输出所需的工作要求。
     利用脉冲DF激光器主机的研制结果进行单脉冲及重频放电试验,在工作气压为8.1KPa,气体比例为SF6:D2=8:1时,单脉冲激光输出能量达到3.6J,重复频率为50Hz时的平均功率达到150W。
With the request of high-power coherent light source in middle-infrared wavebands in the area of photoelectric confrontation, DF lasers have been paid more andmore attentions. DF lasers, which have an output wave bands ranging from3.5-4.2μmand the central wave length of3.8μm, locate in the middle-infrared wave bands thatare in an urgent need for military aspect. Generally, DF lasers can be divided into twoworking categories: chained and unchained. The chained DF lasers are with a largestructure, simple explosion of working gas and difficult maintenance, though a highpower output. However, unchained pulsed DF lasers, available to avoid thedisadvantages of explosion and decay during continuous wave operations, have asmall volume and are manipulated simply, with high average power and peak power.
     The research work in this dissertation is about developing a novel kind of pulsedDF laser mainframe and then analyzing the properties of output laser by the developedmainframe. The pulsed DF laser mainly consists of a vacuum system, a gas cycliccooling system, an optical resonator system, and a main support. The gas cycliccooling system has the components of fans, heat exchanger, flow passage, andmolecular sieve. After changing the structures and positions of the pipelines, theoff-centric fans which are special for fast axial flow lasers are successfully applied onDF transverse flow laser. The two units of fans provide the driving force for the gas cyclic flowing by parallel-connected way. In this paper, the flat-concave stable cavityis applied to the optical resonator. Total-reflecting mirror is a spherical mirror whileoutput mirror is a flat mirror. The resonator modulates the directions of optical axesthrough a multi-orientation structural adjustment. The molecular sieve has thefunction of absorbing excited species extinctions generated by working process tomaintain the stable output of lasers.
     In order to ensure the steady operation of laser, the finite element method is usedto study the static properties of the whole mechanism and then optimize themechanism to obtain an improvement. After optimized, the mechanism whosemaximum deformation is reduced from2.34mm to1.67mm has a smaller entiredeformation than before. The maximum stress is reduced from296MPa to193MPa todecrease the stress concentration phenomena. It can conclude that the strength andstiffness of the whole mechanism meet working requirements. Then, in order toensure the uniformity of gas discharge in discharge chamber and achieve the steadyoutput of laser, the principle of computational fluid dynamics is employed tonumerically analyze the motion states of gas in flow field. The analyses include thepressure loss in gas flowing process, flowing velocities of discharged areas, anduniform distribution, and so on. Furthermore, the flow passage is optimized as to animprovement in accordance with its influential factors. After optimized, by pitot tubes,the measured flowing velocity of discharged areas is up to16.3m/s. The maximumnon-uniformity of longitudinal flowing velocity distribution is up to7.1%while thelateral4.3%. Both of the tested results can satisfy the working requirements for lasersteady output.
     Experiments of single pulse and repetition discharging are carried out with thedeveloped pulsed DF laser mainframe. From experimental results, in the workingpressure of8.1KPa, when the proportion between gases is SF6:D2=8:1, output energyof single pulsed laser reaches to3.6J. Also, when the repeat frequency is50Hz, theaverage power reaches to150W.
引文
[1] Kasper. J. V. V, Pimentel. G. C. HCL Chemical laser [J]. Phys. Rev. Lett,1965,14(10):352.
    [2] T F Deutsch. Molecular laser action in Hydrogen and deuterium halides [J]. ApplPhys Lett,1967,10(8):234-236.
    [3] Zhengqi Zhao, Shulian Zhang, Peng Zhang, et al. Displacement sensor based onpolarization mixture of orthogonal polarized He-Ne laser at1.15um [J]. CHINESEOPTICS LETTERS,2012,10(3):1-4.
    [4]姚志欣,孙威. Mn/MnCl2蒸气激光器[J].中国激光,1983,11(4):193-195.
    [5] CHEN Lin, TAO Yongxian, YIN Xianhua, et al. The study and new progress in thehigh power copper vapor laser [J]. Chinese Science Bulletin,1998,43(3):207-209.
    [6]程勇,孙斌,王晓兵,等.定向棱镜谐振腔准分子激光器[J].量子电子学报,2001,18(6):521-524.
    [7]马树森,王广昌,熊旭明,等.一体化小型XeCl准分子激光器[J].量子电子学,1992,9(2):170-172.
    [8]谈小虎,张志忠,张晓卫,等.紧凑型10瓦级铜蒸气激光器[J].激光杂质,2010,31(3):4-5.
    [9] N A Lyabin, A D Chursin, S A Ugol’nikov, et al. Development, productionand application of sealed-off copper and gold vapour lasers [J]. IEEE Journalof Quantum Electronics,2001,31(3):191-202.
    [10] M.J.Kushner. A self-consistent model for copper vapor high repetition ratelasers [J].Quantum Electronics,1981,17(8):1555-1565.
    [11] N S BENERJI, NEERAJ VARSHNAY, LALA ABHINADAN, et al. A co-mpact spark pre-ionized pulser sustainer TE-CO2laser [J].Sadhan a,2004,29(3):29-301.
    [12]张传盛,李殿军,杨贵龙,等.大功率TEA CO2激光器的脉冲激励电源[J].中国光学与应用光学,2009,2(3):242-247.
    [13] M. V. Ivashchenko, A.I. Karapuzikov, A.N. Malov, et al. A TEA CO2La-ser with a Peak Radiation Power of100MW [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES,2000,40(1):119-125.
    [14] Chongyi Wan, Yanning Yu, Rongqing Tan, et al. Rotating spark gap switcheddischarge TEA CO2laser with average power up to12Kw [J]. SPIE,2005,5777:426-432.
    [15] G. Schweizer, L. Werner. Industrial2kW TEA CO2laser for paint stripping ofaircraft [J]. SPIE,1995,2502:57-62.
    [16]赵翔,左都罗,卢宏,等.TEA CO2激光器的电极与放电研究[J].光学与光电技术,2005,3(4):33-35.
    [17]陈钰琦,左都罗,程祖海,等.TEA CO2激光器不同放电电路放电过程的比较[J].强激光与粒子束,2008,20(5):729-733.
    [18]王红岩,张煊喆,李强,等.氮稀释高效电激励连续波HF/DF化学激光器[J].光学精密工程,2011,19(2):304-309.
    [19]王红岩,袁圣付,李强,等.用于大气吸收测量的小型电激励连续波DF/HF选线化学激光器[J].中国激光,2008,35(7):997-1000.
    [20]华卫红,姜宗福,赵伊君.连续波DF激光器高腔压运转的数值研究[J].强激光与粒子束,1997,9(2):221-226.
    [21] Tsikrikas. G. N, Serafetinides. A. A.Discharge and circuit simulation of plasmacathode TEA HF laser operating with a He/SF6/C3H8gas mixture [J]. Opt. Commun,1997,134:145-148.
    [22] R. I. Rudko, Z. Drozdowicz, S. Linhares. High-repetition-reat, recirculatinghydrogen fluoride/deuterium fluoride laser [J]. Rev. Sci. Instrum,1982,53(4):452-457.
    [23] I.A. Fedorov, Yu.P.Maksimov, N.E.Tret’yakov, et al. Spectral Composition ofRadiation of Supersonic CW Chemical Laser: A DF Laser [J]. OPTICS ANDSPECTROSCOPY,2002,93(6):941-946.
    [24]柯常军,万重怡.放电引发非链式脉冲HF/DF激光器的研究进展[J].激光与红外,2003,33(4):304-305.
    [25]白光.400W重复率DF激光器[J].激光与光电子学进展,2002,39(4):33-35.
    [26] D S Perry, J C Polanyi. Energy distribution among reaction products. VI. F+H2,D2[J]. J Chem Phys,1976,57(4):1574-1586.
    [27] W H Flygare. Molecular relaxation [J]. Acc Chem Res,1968,1(4):121-127.
    [28] K L Kompa, J H Parker, G C Pimentel. UF6-H2hydrogen fluoride chemical laser:operation and chemistry [J]. J Chem Phys,1968,49(10):4257-4264.
    [29] K L Kompa, J Wanner. Study of some fluorine atom reactions using a chemicallaser method [J]. Chem Phys Lett,1972,12(4):560-563.
    [30] S N Suchard, G C Pimentel. Deuterium fluorium vibrational overtone chemicallaser [J]. Appl Phys Lett,1971,18(12):530-531.
    [31] S N Suchard, R W F Gross, J S Whittier. Time-resolved spectroscopy of aflash-initiated H2-F2laser [J]. Appl Phys Lett,1971,19(10):411-413.
    [32] J H Parker, G C Pimentel. Vibrational energy distribution through chemical-l laser studies. I. Fluorine atoms plus hydrogen or methane [J]. J Chem Phys,1969,51(1):91-96.
    [33] R J Jensen, W W Rice. Thermally initiated HF chemical laser [J]. ChemPhys Lett,1971,8(2):214-216.
    [34] V V Apollonov, A A Belevtsev, S Y Kazantsev, et al. Development of aself-initiated volume discharge in nonchain HF lasers [J]. Quantum Electronics,2002,32(2):95-100.
    [35] G. Renz, M. Jung, W.Mayerhofer, et al. Pulsed CO2-laser with15kW averagepower at100Hz rep-rate [J].SPIE,1997,3092:114-117.
    [36] V V Apollonov, K N Firsov, S Y Kazantsev, et al. High-power non-cha-in HF (DF) lasers initiated by self-sustained volume discharge [J]. SPIE,1998,3574:374-384.
    [37] P Ruan, J J Xie, L M Zhang, et al. Computer modeling and experimentalstudy of non-chain pulsed electric-discharge DF laser [J]. OPTICS EXPRESS,2012,20(7):28912-28922.
    [38] V V Apollonov, S Y Kazantsev, V F Oreshkin, et al. Feasibility of increa-sing the output energy of a non-chain HF(DF) laser [J]. Quantum Electronics,1997,27(3):207-209.
    [39] V V Apollonov, A A Belevtsev, K N Firsov, et al. Advanced studies onpowerful wide-aperture non-chain HF (DF) lasers with a self-sustained volumedischarge to initiate chemical reaction [J]. SPIE,2003,5120:529-541.
    [40] K R Rickwood. A semiconductive preionizer for transversely excited atmo-spheric CO2lasers [J]. J Appl Phys,1982,53(4):2840-2842.
    [41] H Seguin, J Tulip. Photoinitiated and Photosustained Laser [J]. Appl PhysLett,1972,21(2):415-416.
    [42] A C I. Chis, V Draganescu, D Dragulinescu, et al. Design and perform-ance of a high repetition rate TEA CO2laser [J]. J Phys E: Sci Instrum,1988,21:393-396.
    [43] H M Lamberton, P R Pearson. Improved excitation techniques for atmosp-heric pressure CO2lasers [J]. Electron Lett,1971,7(5-6):141-142.
    [44]黄飚,王欲知.TEA CO2激光器中均匀脉冲放电预电离条件的研究[J].真空科学与技术,1995,15(4):242-248.
    [45]陈冰. TEA-CO2激光器的几种典型的预电离技术[J].激光杂质,2003,24(5):33-35.
    [46] Y. Sakai, M.Takahashi, S.Sakamoto, et al. CO2TEA laser discharge development-A high-speed-camera investigation [J]. J. Appl. Phys,1979,50(2):647-652.
    [47] R. G. Buser, J.J.Glow Discharge [J]. JOURNAL OF APPLIED PHYSICS,1970,41(2):472-479.
    [48] V V Apollonov, K N Firsov, S Y Kazantsev, et al. Scaling up of non-c-hain HF (DF) laser initiated by self-sustained volume discharge [J]. SPIE,2000,3886:370-381.
    [49] A A Belevtsev, S Y Kazantsev, I G Kononov, et al. Detachment instabil-ity of self-sustained volume discharge in active media of non-chain HF(DF) lasers [J]. Quantum Electronics,2010,40(6):484~489.
    [50] D W fradin, P P Chenausky, R J Freberg. A recirculating, self-containedDF/HF pulsed laser [J]. IEEE J Quantum electronics,1975,11(8):631-633.
    [51] M R Harris, A V Morris, E K Gorton. A closed-cycle,1khz pulse repeti-tion frequency, HF(DF) laser [J]. SPIE,1998,3268:247-251.
    [52] H Brunet. Improved DF performance of a repetitively pulsed HF/DF laserusing a deuterated compound [J]. SPIE,1997,3092:494-497.
    [53]柯常军,李晨,谭荣清,等.电引发非链式脉冲DF激光器实验研究[J].光电子激光,2010,21(2):172-174.
    [54]续魁昌,王洪强,盖京方.风机手册[M].北京:机械工业出版社,2010.
    [55]邵春雷.高功率TEA CO2激光器气体循环系统的设计[J].强激光与粒子束,2009,21(1):1-5.
    [56]汪艳萍,路智敏,刘晓霞,等.板翅式换热器优化设计[J].内蒙古工业大学学报,2004,23(4):261-264.
    [57]凌祥,涂善东,陆卫权.板翅式换热器的研究与应用进展[J].石油机械,2000,28(5):54-58.
    [58]李革,于功志,程木军,等.提高翅片管式换热器热力性能的方法[J].大连水产学院学报,2006,21(1):68-71.
    [59]韩建荒,刘扬,李君书,等.翅片管式换热器传热与流场流动特性的数值模拟[J].化工机械,2013,40(3):347-350.
    [60]尹林,王晓明,沈亚鹏.结构变形最优控制的数值分析[J].力学学报,1995,27(6):711-718.
    [61]王宁红.大型H型焊接钢结构失效分析[J].现代冶金,2010,38(3):34-36.
    [62]聂润兔,邹振祝,邵成勋.基于神经网络的结构变形估计和形状控制[J].应用力学学报,1998,15(1):122-126.
    [63]靳慧,周奇才,张其林.焊接结构系统的疲劳可靠性分析[J].同济大学学报,2005,33(11):1428-1432.
    [64]宗培,曹雷,邵国良.焊接结构质量的主成分分析[J].机械工程学报,2005,41(5):65-68.
    [65]巴文厂,杜运峰,姜虎强.基于CAN总线的电磁阀控制系统实现[J].SCIENCEINFROMATION,2007(9):81-82.
    [66]刘潜峰,薄涵亮,秦本科.直动电磁阀参数设计与分析[J].原子能科学技术,2010,44(6):706-711.
    [67]李艺,赵文,梁磊,等.结构系统强度和刚度耦合的可靠性分析[J].华南理工大学学报,2007,35(7):127-130.
    [68]李宏娟,陶元芳.桥门机主梁设计时强度与刚度的关系[J].太原科技大学学报,2011,32(1):28-32.
    [69]宋玉泉,管志平,聂毓琴,等.圆管的弯曲刚度和强度分析[J].中国科学E辑技术科学,2006,36(11):1263-1272.
    [70]达道安.真空设计手册[M].北京:国防工业出版社,2006.686-688.
    [71]赵飞明,徐永祥,汪树军.低温静密封技术研究[J].低温工程,2001(2):23-26.
    [72]李良福.国外静密封及其发展状况[J].轻工机械,2000(3):8-10.
    [73]蔡仁良.静密封技术发展新趋势[J].压力容器,1996,13(2):159-167.
    [74]谢荷芬,樊建清.氟橡胶的再生与应用[J].橡胶工业,2000,47(9):541-542.
    [75]边俊峰,王珍,谭光志,等.高性能系列氟橡胶[J]橡胶工业,2003,50(1):21-23.
    [76]王爱红,徐格宁,杨萍,等.基于神经网络方法的复杂超静定结构失效概率分析[J].中国安全科学学报,2007,17(6):151-156.
    [77]王冬,张卫华.铁路提速转向架典型结构失效分析与优化[J].失效分析与预防,2007,2(3):1-6.
    [78]周宗和,尹喜庆.基于虚位移原理的随机有限元方法研究[J].石河子大学学报,2013,31(2):242-248.
    [79] Zuorong, Chen, A. P. Bunger, Xi Zhang, et al. COHESIVE ZONE FINITEELEMENT-BASED MODELING OF HYDRAULIC FRACTURES [J]. ActaMechanica Solida Sinica,2009,22(5):443-452.
    [80] T.T.Nguyen, G. R. Liu, K. Y. Dai, et al. Selective Smoothed Finite ElementMethod [J]. TSINGHUA SCIENCE AND TECHNOLOGY,2007,12(5):497-508.
    [81] SADRNEJAD S A, GHASEMZADEH H, GHOREISHIAN, et al. A controlvolune based finited element method for simulation incompressible two-phase flow inheterogeneous porous media and its application to reservoir engineering [J]. Pet. Sci.2012,9:485-497.
    [82] CHEN Yue, ZHOU Jian-ting, SHEN Pei-wen. Sensor placement of long-term health monitoring for large bridges based on the real-time correction of finite element model [J]. Journal of Chongqing University,2013,12(3):123-130.
    [83]徐济进,陈立功,倪纯珍.机械应力消除法对焊接残余应力的影响[J].机械工程学报,2009,45(9):291-295.
    [84]李利.铝合金板淬火残余应力的拉伸消除方法[J].轻合金加工技术,1999,27(5):16-18.
    [85]郝桂芳,檀雪峰,程珩.基于断裂理论的焊接结构缺陷失效评定分析[J].太原理工大学学报,2012,43(5):580-582.
    [86]邵明振,邵春雷,卢启鹏,等.高功率TEA CO2激光器主机结构优化设计[J].发光学报,2013,34(3):388-393.
    [87]刘永刚,李显,李少华.焊后去应力退火的机理及应用[J].金属加工,2009(14):60-61.
    [88]蒲建雄.应变检测法在工程实际中的应用[J].甘肃科技,2004,20(8):118-119.
    [89]张佳薇,刘方.高精度应变检测电路设计及误差分析[J].自动化仪表,2011,32(6):83-86.
    [90]陈思奇.大型直接空冷机组真空泵的选择[J].中国电力,2005,38(2):18-21.
    [91]黄英,李建军,韩晶雪,等.干式涡旋真空泵的发展与关键问题[J].真空,2013,50(3):26-29.
    [92]郝利军,顾海明,朱翔.往复真空泵的参数化设计系统开发[J].真空,2011,48(1):54-56.
    [93]陈亚光,陈博,李捷,等.一种法兰结构中O型密封圈漏率检测装置[J].润滑与密封,2013,38(12):76-78.
    [94]闫荣鑫,肖祥正,赵忠,等.温度变化对漏率的影响[J].真空与低温,1995,1(1):12-15.
    [95]陈叔平,昌锟,刘振全,等.贮箱漏率正压检测方法[J].低温与超导,2005,33(3):43-45.
    [96]韩琰,孙立臣,冯琪,等.长时间累计检漏技术的可行性研究[J].航天器环境工程,2013,30(5):539-543.
    [97] Brown R T. High repetition-rate effects in TEA laser [J]. IEEE J. Quant-um Electron,1973,9(11):1120—1122.
    [98] Max Gunzburger, Eunjung Lee, Yuki Saka.Analysis of Nonlinear SpectralEddy-Viscosity Models of Turbulence [J]. J Sci Comput,2010(45):294-332.
    [99] WANG HongBo,WANG ZhenGuo, SUN MingBo, et al. Hybrid Reynoldsave-raged Navier-Stokes/large-eddy simulation of jet mixing in a supersonic crossfl-ow [J].Sci China Tech Sci,2013,56(6):1435-1448.
    [100] V. M. Hazins.Large Eddy Simulation Approach in Problems on Floating Up ofHigh-Temperature Thermals in Stratified Atmosphere [J].High Temperture,2010,48(3):402-410.
    [101] Rahim Hassanzadeh, Besir Sahin, Muammer Ozgoren. Large eddy simulat-ion of flow around two side-by-side spheres [J].Journal of Mechanical Scienceand Technology,2013,27(7):1971-1979.
    [102] SHEN Zhi, LI YuPeng, CUI GuiXiang, et al. Large eddy simulation of stablystratified turbulence [J].Sci China Phys Mech Astron,2010,53(1):135-146.
    [103] A. V. Vasin, O A. Timofeeva. MODELING ZONES OF EDDY CURRE-NTS IN WATER-SUPPLY GALLERIES OF LOCKS [J].Power Technology andEngineering,2013,47(2):114-118.
    [104]张也影.流体力学[M].北京:高等教育出版社,1999.273-293.
    [105]邵明振,邵春雷.高功率脉冲TEA CO2激光器主机结构设计与流场优化[J].红外与激光工程,2012,41(6):1508-1513.
    [106]杨世铭.传热学[M].北京:高等教育出版社,2006.4-11.
    [107]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.386.
    [108]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [109]陈五高.光学谐振腔[J].高等函授学报,1998(1):21-23.
    [110]梁志强,曲彦臣,赵卫疆,等.TEA CO2激光器的Fox2Smith谐振腔研究[J].光学学报,2009,29(12):3424-3428.
    [111]曹清,张为俊,罗治江,等.多元谐振腔的等价腔[J].光学学报,1994,14(2):135-139.
    [112]武建强.高功率横流CO2激光器锥面反射镜谐振腔的研究[D]:[硕士学位论文].武汉:华中科技大学,2007.
    [113]钟如涛,唐霞辉,秦应雄.高功率横流CO2激光器新型激光谐振腔实验研究[J].应用激光,2009,29(4):351-358.
    [114]阎吉祥.激光原理与技术[M].北京:高等教育出版社,2004.39-43.
    [115]吴谨,彭先兆,谭荣清,等.高平均功率脉冲TEA CO2激光器输出光束质量评价[J].中国激光,1999,26(7):589-593.
    [116]曾元,谭荣清,陈静.可调谐TEA CO2激光器谐振腔结构稳定性研究[J].激光与红外,2009,39(9):928-930.
    [117]王德芳,武连文.利用切割光束法测量激光束发散角[J].长春光学精密机械学院学报,1988(4):74-77.
    [118]马琨,毕谦.氦氖激光传播路径上发散角的控制[J].昆明工学院学报,1995,20(2):81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700