用户名: 密码: 验证码:
液晶/聚合物光栅激光器的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶/聚合物光栅是通过液晶中光敏单体的定域光聚合而形成的折射率周期变化结构。如果在光栅形成之前将激光染料混合到材料中,就能制作出染料掺杂的分布反馈激光器:在泵浦光激发下染料能级实现粒子数反转,再由光栅的选模、增益放大后,出射激光。该激光器制作成本低,阈值低,线宽窄,具有出射波长可调谐的特点,因而有巨大潜力应用在材料研究的特种光源与高分辨率光谱仪领域。
     由于染料的浓度淬灭现象,只能以低浓度掺杂到液晶/聚合物光栅中,使得增益介质层对泵浦光吸收效率低下,激光的能量转化率很低。另外,液晶/聚合物分布反馈激光器的阈值较高,模式多,激光光斑发散角大且无法控制,严重阻碍了器件的实用化进展。针对以上问题,本论文进行了以下几方面的研究工作。
     首先对液晶/聚合物光栅的制备条件进行了深入研究,发现在低强度曝光时相分离出来的液晶能够形成均匀层结构,而不是像通常人们报道的那样以液滴形状出现,由此使光栅散射损失小于4%,符合激光器谐振腔的要求。通过分别实时监测液晶/聚合物光栅形成过程中的S偏振光和P偏振光衍射效率,证实在制备完成的光栅中,相分离的液晶分子沿着光栅矢量取向排列。据此设计了光延迟实验定量给出光栅的相分离度,进一步的以该测量方法为依据,系统研究了照射光偏振,强度以及光栅周期对相分离度的影响,获得了一些制备理想光栅谐振腔的普适规律。光栅矢量方向是激光器中光子的谐振方向,按照初衷谐振腔的设计,液晶分子须沿垂直光栅矢量方向排列,以使光栅界面△n最大、光子的谐振效率最高。依据进一步的实验现象分析得出,液晶分子沿着光栅矢量自取向是缘于来不及到达聚合物层的光敏单体丝状聚合产生的体锚定作用,要克服这种丝状聚合,有效的办法是提高制备光栅时的温度至清亮点以上,令液晶分子在光栅中混乱取向,相对提高光栅界面△n。实验结果表明,通过这一改进使得激光能量效率从0.3%上升到了0.9%,说明了光栅界面△n对于分布式反馈激光器非常重要。
     进一步探讨了液晶/聚合物光栅激光器的选模机理,发现这种DFB激光器所支持的模式由两个机理决定,一是以HPDLC层为导芯层的波导机理,使谐振光子在两基板间全反射传播;二是光子在光栅中的布拉格衍射机理,使光子在行进中有效撞击染料中心而反馈增益。基于此理论,通过减小光栅介质与基板间的折射率差、控制光子全反射振荡周期,得到了单模出射的激光器;并对激光器施加电场,改变液晶层的分子取向,得到出射波长8nm变化的连续调谐
     为大幅提高能量转化效率,将高吸光效率的有机半导体增益介质引入到液晶/聚合物激光器中,由于其与液晶不互溶,所以设计成外反馈DFB腔,即液晶/聚合物光栅位于该增益薄膜之上,光栅反馈腔不但触发MEH-PPV膜层激射、同时对激射波产生布拉格衍射作用,形成沿光栅槽出射的截面为直线状的激光束。MEH-PPV薄膜的最佳厚度为75nm,采用S偏振光泵浦,器件出射TE偏振单模激光。在周期590nm的液晶/聚合物三级衍射DFB腔中,工作阈值低至21μJ/cm2,仅为染料光栅激光器的十分之一,能量效率达到6.5%,上升了七倍。采用周期为390nm的液晶/聚合物光栅,实现了二级布拉格反馈条件,工作阈值进一步降至13μJ/cm2,且激光近乎垂直于基板表面发射。出射光斑在平行光栅槽方向呈线状光束,发散角在垂直光栅槽方向近于衍射极限。
     本论文系统研究了液晶/聚合物光栅激光器的制备方法,大幅提高了能量转化效率、减小发散角,为可调谐DFB激光器的实用化打下了坚实基础。
Holographic polymer dispersed liquid crystal (HPDLC) gratings are formedthrough photo-polymerization induced anisotropic phase separation of liquid crystal(LC) from the polymer matrix. Distributed feedback (DFB) lasers can be made bydoping the laser dye at a suitable concentration into the HPDLC prepolymer syrup.The HPDLC grating film not only provides coherent Bragg scattering at eachcorrugation for positive optical feedback, but also works as the gain medium forlight amplification. Lasing can be obtained once input pump energy exceeds thelaser threshold. These organic lasers have advantages of simple fabrication, lowworking threshold, narrow linewidth and wavelength tunability across the wholevisible range. Thus they are very promising in using as optical sources for highsensitivity spectroscopic analysis.
     However, the current output lasing from dye-doped HPDLC lasers ismulti-mode with a large divergence. The reported lasing threshold is high and theslope efficiency is ultra-low. In order to address these problems, the correlationsbetween parameters of HPDLC gratings and laser device working performance haveto be considered and the studies into enhancing lasing properties throughoptimization of HPDLC cavities should be put forward. Besides, novel gain mediumshould be introduced to replace the laser dye, as it suffers severely from concentration quenching and provides low absorption efficiency. The mainresearches of this dissertation are listed as follows:
     1. We successfully fabricated polymer scaffolding morphologic HPDLCtransmission gratings from common acrylate monomers. The phase separated LCsform homogeneous layers instead of spherical domains. Transmittance measurementshows the grating exhibits little scattering which is less than4%. We also show thatdue to the anchoring effect of polymer filaments across the pure LC layer, thesephase separated LC molecules are well aligned along the grating vector. We furtherdesigned a birefringence experiment to measure the LC phase separation degree inHPDLC gratings, so all structural parameters can be obtained. Based on aboveunderstandings of the grating structure, we then analyzed the effect of fabricationconditions, such as polarization state of the writing beams, exposure intensity andgrating period on LC phase separation degree and obtained some fabrication rulesfor efficient HPDLC gratings. At last, the phase separated LC director configurationis altered by recording the grating at a high temperature. In this way, the refractiveindex modulation for light propagating along the grating vector can be increased andthe slope efficiency for output lasing is enhanced from0.3%to0.9%.
     2. We investigated the mode selection mechanism and found it was based ontwo principles. First, the resonant modes should fulfill the waveguide conditions inthe core layer which is the grating layer in dye-doped HPDLC DFB lasers. So thelaser modes could not leak out through the two glass substrates, and light could beeffectively confined inside the grating layer. Second, the resonant mode shouldfulfill the Bragg condition of the grating, so positive optical feedback can beobtained through coherent Bragg scattering at each corrugation. The mode couldthen be amplified through stimulated emission when it is travelling around. Themode emits lasing when the pump energy reaches the working threshold. Based onthe mode selection mechanism, we modulate or optimize the output lasing modesaccordingly. We show that the lasing wavelength could be continuously tuned over8nm by applying an electrical field. The homogenously aligned LC molecules along the grating vector could be reoriented to the cell normal, thereby increasing theeffective refractive index experiencing by the laser mode. The electrical tunability oflasing wavelength from HPDLC based DFB lasers is an attracting advantage and canbe used in optical spectroscopy. The DFB working structure is optimized from theperspective of refractive index difference between the cladding layer and the corelayer to allow only one lasing mode being resonated.
     3. Organic semiconductor has been introduced as gain medium to HPDLC basedDFB lasers. Unlike the dye molecules, organic semiconductor is immiscible withHPDLC prepolymer syrup. So we have designed a new DFB working structure inwhich the grating layer is fabricated separately on top of the gain medium layer. Thetwo layers interact with each other by evanescent wave spread into the claddinglayer. We show that the thickness of the organic semiconductor layer has to bearound75nm to balance optical feedback and light amplification in order to obtain ahigh performance lasing output. The output lasing shows single-mode, linearpolarization performance, and can be tuned in the gain spectrum of the gain medium.The working threshold is21μJ/cm2(one tenth that of dye-doped HPDLC lasers) andthe slope efficiency is increased to5.9%(six times that of dye doped HPDLC lasers).We further show the effect of pump polarization on working performance and finds-polarization guarantees best working performance. We then made verticallysurface-emitting organic lasers by employing second-order Bragg scattering. Theperiod of the HPDLC grating is just394nm and emitted lasing is coupled outthrough first-order scattering. Thanks to more efficient light coupling insecond-order Bragg scattering, the laser threshold of this surface-emitting laser isreduced to13μJ/cm2. We also investigate the effect of pump length on laserthreshold, and show the refractive index modulation HPDLC grating is sufficient forefficient feedback as long as the pump length is longer than0.03cm.
引文
[1]周炳琨.激光,令人激动的光——纪念激光器发明50周年[J].中国激光,2010,37:0258
    [2]江剑平.半导体激光器[M].北京:电子工业出版社,2000.1-6
    [3]马养武,陈钰清.激光器件[M].杭州:浙江大学出版社,1994.1-105
    [4] S. Chénais, S. Forget. Recent advances in solid-state organic lasers [J]. Polym Int,2011,
    [5] P. P. Sorokin, J. R. Lankard. Stimulated emission observed from an organic dyechloro-aluminum phthalocynine [J]. Ibm Journal of research and development,1966,10:162
    [6] B. H. Soffer, B. McFarlan. Continuously tunable narrow-band organic dye lasers[J]. Appl Phys Lett,1967,10:266
    [7] R. M. Oconnell, T. T. Saito. Plastics for high-power laser applications-a review [J].Opt Eng,1983,22:393-399
    [8] N. Tsutsumi, T. Kawahira, W. Sakai. Amplified spontaneous emission anddistributed feedback lasing from a conjugated compound in various polymer matrices[J]. Appl Phys Lett,2003,83:2533-2535
    [9] N. Tsutsumi, A. Fujihara. Tunable distributed feedback lasing with narrowedemission using holographic dynamic gratings in a polymeric waveguide [J]. ApplPhys Lett,2005,86:061101
    [10] A. Costela, I. Garc′a-Moreno, C. G mez, et al. Laser performance ofpyrromethene567dye in solid polymeric matrices with different cross-linkingdegrees [J]. J Appl Phys,2001,90:3159-3166
    [11] A. Costela, I. Garcia-Moreno, J. Barroso, et al. Laser performance of Coumarin540A dye molecules in polymeric host media with different viscosities: From liquidsolution to solid polymer matrix [J]. J Appl Phys,1998,83:650-660
    [12] A. Costela, I. Garcia-moreno, J. M. Figuera, et al. Polymeric matrices for lasingdyes: recent developments [J]. Laser Chem,1998,18:63-84
    [13] R. E. Hermes, T. H. Allik, S. Chandra, et al. High-efficiency pyrromethene dopedsolid-state dye lasers [J]. Appl Phys Lett,1993,63:877-879
    [14] H. Rabbani-Haghighi, S. Forget, S. Chénais, et al. Highly efficient,diffraction-limited laser emission from a vertical external-cavity surface-emittingorganic laser [J]. Opt Lett,2010,35:1968-1970
    [15] C. Grivas, M. Pollnau. Organic solid-state integrated amplifiers and lasers [J].Laser Photonics Rev,2012,6:419-462
    [16] R. Chen, V. D. Ta, H. D. Sun. Single Mode Lasing from Hybrid HemisphericalMicroresonators [J]. Sci Rep,2012,2:244
    [17] Y. Xiao, C. Meng, P. Wang, et al. Single-Nanowire Single-Mode Laser [J]. NanoLett,2011,11:1122-1126
    [18] T. Kobayashi, N. Byrne. Plastic evanescent microlaser [J]. Appl Phys Lett,2011,99:153307
    [19] N. Djellali, I. Gozhyk, D. Owens, et al. Controlling the directional emission ofholey organic microlasers [J]. Appl Phys Lett,2009,95:101108
    [20] F. Gutmann, L. E. Lyons. Organic semiconductors [M].New York: John Wileyand Sons,1963.
    [21] M. Pope, H. P. Kallmann, P. Magnante. Electroluminescence in organic crystals[J]. J Chem Phys,1963,38:2042-2043
    [22] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes [J]. Appl PhysLett,1987,51:913-915
    [23] C. W. Tang, S. A. Vanslyke, C. H. Chen. Electroluminescence of doped organicthin-films [J]. J Appl Phys,1989,65:3610-3616
    [24] N. Tessler, G. J. Denton, R. H. Friend. Lasing from conjugated-polymermicrocavities [J]. Nature,1996,382:695-697
    [25] M. D. McGehee, A. J. Heeger. Semiconducting (conjugated) polymers asmaterials for solid-state lasers [J]. Adv Mater,2000,12:1655-1668
    [26] I. D. W. Samuel, G. A. Turnbull. Organic semiconductor lasers [J]. Chem Rev,2007,107:1272-1295
    [27] C. Karnutsch, C. Gyrtner, V. Haug, et al. Low threshold blue conjugated polymerlasers with first-and second-order distributed feedback [J]. Appl Phys Lett,2006,89:201108
    [28] G. Heliotis, R. Xia, G. A. Turnbull, et al. Emission Characteristics andPerformance Comparison of Polufluorene Lasers with One-and Two-DimensionalDistributed Feedback [J]. Adv Funct Mater,2004,14:91-97
    [29] Y. Yang, G. A. Turnbull, I. D. W. Samuel. Hybrid optoelectronics: a polymer laserpumped by a nitride light-emitting diode [J]. Appl Phys Lett,2008,92:163306
    [30] M. Pope, C. E. Swenberg. Electronic processes in organic solids [J]. AnnualReviews in Physical Chemistry,1984,35:613
    [31] M. Kasha. Characterization of electronic transitions in complex molecules [J].Discussions of the Faraday Society,1950,9:14-19
    [32] T. Aimono, Y. Kawamura, K. Goushi, et al.100%fluorescence efficiency of4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplifiedspontaneous emission threshold [J]. Appl Phys Lett,2005,86:071110
    [33] M. Ahmad, M. D. Rahn, T. A. King. Singlet oxygen and dye-triplet-statequenching in solid-state dye lasers consisting of Pyrromethene567–dopedpoly(methyl methacrylate)[J]. Appl Opt,1999,38:6337-6342
    [34] M. Lehnhardt, T. Riedl, T. Weimann, et al. Impact of triplet absorption andtriplet-singlet annihilation on the dynamics of optically pumped organic solid-statelasers [J]. Phys Rev B,2010,81:165206
    [35] T. Rabe, K. Gerlach, T. Riedl, et al. Quasi-continuous-wave operation of anorganic thin-film distributed feedback laser [J]. Appl Phys Lett,2006,89:081115
    [36] V. Bulovic, V. G. Kozlov, V. B. Khalfin, et al. Transform-limited,narrow-linewidth lasing action in organic semiconductor microcavities [J]. Science,1998,279:553-555
    [37] S. V. Frolov, M. Shkunov, Z. V. Vardeny, et al. Ring microlasers from conductingpolymers [J]. Phys Rev B,1997,56: R4363
    [38] S. V. Frolov, Z. V. Vardeny, K. Yoshino. Plastic microring lasers on fibers andwires [J]. Appl Phys Lett,1998,72:1802-1804
    [39] M. Berggren, A. Dodabalapur, R. E. Slusher, et al. Organic lasers based onForster transfer [J]. Synth Met,1997,91:65-68
    [40] S. V. Frolov, A. Fujii, D. Chinn, et al. Microlasers and micro-LEDs fromdisubstituted polyacetylene [J]. Adv Mater,1998,10:869-872
    [41] V. G. Kozlov, V. Bulovi, P. E. Burrows, et al. Laser action in organicsemiconductor waveguide and double-heterostructure devices [J]. Nature,1997,389:362-364
    [42] V. G. Kozlov, V. Bulovic, P. E. Burrows, et al. Study of lasing action based onForster energy transfer in optically pumped organic semiconductor thin films [J]. JAppl Phys,1998,84:4096-4108
    [43] H. Kogelnik, C. V. Shank. Stimulated emission in a periodic structure [J]. ApplPhys Lett,1971,18:152-154
    [44] C. V. Shank, J. E. Bjorkholm, H. Kogelnik. Tubable distributed-feedback dyelaser [J]. Appl Phys Lett,1971,18:395-396
    [45] K. P. Kretsch, W. J. Blau, V. Dumarcher, et al. Distributed feedback laser actionfrom polymeric waveguides doped with oligo phenylene vinylene model compounds[J]. Appl Phys Lett,2000,76:2149-2151
    [46] R. Gupta, M. Stevenson, A. J. Heeger. Low threshold distributed feedback lasersfabricated from blends of conjugated polymers: Reduced losses through F rstertransfer [J]. J Appl Phys,2002,92:4874-4877
    [47] G. Heliotis, R. Xia, D. D. C. Bradley, et al. Blue, surface-emitting, distributedfeedback polyfluorene lasers [J]. Appl Phys Lett,2003,83:2118-2120
    [48] G. Tsiminis, Y. Wang, P. E. Shaw, et al. Low-threshold organic laser based on anoligofluorene truxene with low optical losses [J]. Appl Phys Lett,2009,94:243304
    [49] E. M. Calzado, J. M. Villalvilla, P. G. Boj, et al. Blue surface-emitting distributedfeedback lasers based on TPD-doped films [J]. Appl Opt,2010,49:463-470
    [50] H.-H. Fang, R. Ding, S.-Y. Lu, et al. Distributed feedback lasers based onthiophene/phenylene co-oligomer single crystals [J]. Adv Funct Mater,2012,22:33-38
    [51] W. Huang, Y. Liu, L. Hu, et al. Second-order distributed feedback polymer laserbased on holographic polymer dispersed liquid crystal grating [J]. Org Electron,2013,14:2299-2305
    [52] G. Kranzelbinder, G. Leising. Organic solid-state lasers [J]. Rep Prog Phys,2000,63:729-762
    [53] G. A. Turnbull, P. Andrew, M. J. Jory, et al. Relationship between photonic bandstructure and emission characteristics of a polymer distributed feedback laser [J]. PhysRev B,2001,64:125122
    [54] D. P. Schinke, R. G. Smith, E. G. Spencer, et al. Thin-film distributed-feedbacklaser fabricated by ion milling [J]. Appl Phys Lett,1972,21:494-496
    [55] M. D. McGehee, M. A. D′az-Garc′a, F. Hide, et al. Semiconducting polymerdistributed feedback lasers [J]. Appl Phys Lett,1998,72:1536-1538
    [56] S. Riechel, C. Kallinger, U. Lemmer, et al. A nearly diffraction limited surfaceemitting conjugated polymer laser utilizing a two-dimensional photonic band structure[J]. Appl Phys Lett,2000,77:2310-2312
    [57] G. A. Turnbull, T. F. Krauss, W. L. Barnes, et al. Tuneable distributed feedbacklasing in MEH-PPV films [J]. Synth Met,2001,121:1757-1758
    [58] C. Karnutsch, C. Pflumm, G. Heliotis, et al. Improved organic semiconductorlasers based on a mixed-order distributed feedback resonator design [J]. Appl PhysLett,2007,90:131104
    [59] V. Navarro-Fuster, I. Vragovic, E. M. Calzado, et al. Film thickness and gratingdepth variation in organic second-order distributed feedback lasers [J]. J Appl Phys,2012,112:043104
    [60] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Imprint lithography with25-nanometerresulution [J]. Science,1996,272:85-87
    [61] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Imprint of sub-25nm vias and trenchesin polymers [J]. Appl Phys Lett,1995,67:3114-3116
    [62] M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, et al. Efficient organic distributedfeedback lasers with imprinted active films [J]. Opt Express,2011,19:22443-22454
    [63] D. Pisignano, L. Persano, M. F. Raganato, et al. Room-temperature nanoimprintlithography of non-thermoplastic organic films [J]. Adv Mater,2004,16:525-529
    [64] D. Pisignano, L. Persano, E. Mele, et al. First-order imprinted organic distributedfeedback lasers [J]. Synth Met,2005,153:237-240
    [65] M. Berggren, Dodabalapur, R. E. Slusher, et al. Organic solid-state lasers withimprinted gratings on plastic substrates [J]. Appl Phys Lett,1998,72:410-411
    [66] C. Kallinger, M. Hilmer, A. Haugeneder, et al. A Flexible Conjugated PolymerLaser [J]. Adv Mater,1998,10:920-923
    [67] J. Herrnsdorf, B. Guilhabert, Y. Chen, et al. Flexible blue-emitting encapsulatedorganic semiconductor DFB laser [J]. Opt Express,2010,18:25535-25545
    [68] Y. Chen, J. Herrnsdorf, B. Guilhabert, et al. Laser action in a surface-structuredfree-standing membrane based on a p-conjugated polymer-composite [J]. OrgElectron,2011,12:62-69
    [69] G. Tsiminis, Y. Wang, A. L. Kanibolotsky, et al. Nanoimprinted organicsemiconductor laser pumped by a light-emitting diode [J]. Adv Mater,2013,25:2826-2830
    [70] M. D. McGehee, R. Gupta, S. Veenstra, et al. Amplified spontaneous emissionfrom photopumped films of a conjugated polymer [J]. Phys Rev B,1998,58:7035-7039
    [71] I. C. Khoo. Liquid Crystals (2nd edition)[M].Hoboken: John Wiley&Sons Inc,2007.
    [72] D. Demus, J. W. Goodby, G. W. Grey, et al. Handbook of Liquid Crystals [M].Weinheim: Wiley-VCH,1998.
    [73] C. C. Chang, L. C. Chien, R. B. Meyer. Electro-optical study of nematicelastomer gels [J]. Phys Rev E,1997,56:595
    [74] T. Gotoh, H. Murai. Preparation and characteristics of new reverse mode film ofpolymer dispersed liquid crystal type [J]. Appl Phys Lett,1992,60:392-394
    [75] D. Cupelli, F. P. Nicoletta, G. D. Filpo, et al. Reverse Mode Operation PolymerDispersed Liquid Crystal with a Positive Dielectric Anisotropy Liquid Crystal [J].Polym Sci Part B: Polym Phys2010,49:257-262
    [76] D. Yang, J. Lin, T. Li, et al. Effect of external electrical field on phase behaviorand morphology development of polymer dispersed liquid crystal [J]. Eur Polym J,2004,40:1823-1832
    [77] Y.-H. Fan, Y.-H. Lin, H. Ren, et al. Fast-response and scattering-free polymernetwork liquid crystals for infrared light modulators [J]. Appl Phys Lett,2004,84:1233-1235
    [78] H. Ren, Y.-H. Fan, S.-T. Wu. Liquid-crystal microlens arrays using patternedpolymernetworks [J]. Opt Lett,2004,29:1608-1610
    [79] Y.-H. Wu, Y.-H. Liu, Y.-Q. Lu, et al. Submillisecond response variable opticalattenuator based on sheared polymer network liquid crystal [J]. Opt Express,2004,12:6382-6389
    [80] H. Ren, Y.-H. Lin, Y.-H. Fan, et al. Polarization-independent phase modulationusing a polymer-dispersed liquid crystal [J]. Appl Phys Lett,2005,86:141110
    [81] J. W. Doane, N. A. Vaz, B. G. Wu, et al. Field controlled light scattering fromnematic microdroplets [J]. Appl Phys Lett,1986,48:269-271
    [82] N. A. Vaz, G. W. Smith, G. P. Montgomery. A light control film composed ofliquid crystal droplets dispersed in a UV-curable polymer [J]. Mol Cryst Liq Cryst,1987,146:1-15
    [83] J. L. West. Phase separation of liquid crystals in polymers [J]. Mol Cryst LiqCryst,1988,157:427-441
    [84] Y.-H. Lin, H.-S. Chen, H.-C. Lin, et al. Polarization-free and fast responsemicrolens arrays using polymer-stabilized blue phase liquid crystals [J]. Appl PhysLett,2010,96:113505-113503
    [85] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia. Bragg Gratings in an AcrylatePolymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes [J]. ChemMater,1993,5:1533-1538
    [86] L. H. Domash, T. Chen, B. N. Gomatam, et al. Switchable-focus lenses inholographic polymer-dispersed liquid crystal [J]. Proc SPIE,1996,2689:188
    [87] D. R. Cairns, C. C. Bowley, S. Danworaphong, et al. Optical strain characteristicsholographically formed polymer-dispersed liquid crystal films [J]. Appl Phys Lett,2000,77:2677-2679
    [88] A. K. Fontecchio, J. Qi, M. J. Escuti, et al. Diffuse renditions of spatiallypixelated and temporally multiplexed H-PDLC for full color reflective displays [J].SID Digest of Technical Papers ХХХ,2001,31:348-351
    [89] J. D. Margerum, A. M. Lackner, E. Ramos, et al. Polymer dispersed liquid crystalfilm devices and method of forming the same [P]. U. Patent,4.938.568.1990
    [90] K. Tanaka, K. Kato, S. Tsuru, et al. A liquid crystal/polymer optical deviceformed by holography for reflective color display applications [J]. SID Digest,1993,24:109-111
    [91] M. Date, N. Naito, K. Tanaka, et al. Three-primary-color holographic polymerdispersed liquid crystal (HPDLC) devices for reflective displays [J]. Asia Display,1995,
    [92] M. Date, Y. Takeuchi, K. Tanaka, et al. Full-color reflective display device usingholographically fabricated polymer-dispersed liquid crystal (HPDLC)[J]. Journal ofthe SID,1999,7:17-22
    [93] K. Tanaka, K. Kato, M. Date. Fabrication of holographic polymer dispersedliquid crystals (HPDLC) with high reflection efficiency [J]. J J Appl Phys,1999,38:L277-L278
    [94] H. Yuan, J. Colegrove, G. Hu, et al. HPDLC color reflective displays [J]. ProcSPIE,1999,3690:196-206
    [95] R. T. Pogue, L. V. Natarajan, S. A. Siwecki, et al. Monomer functionality effectsin the anisotropic phase separation of liquid crystals [J]. Polymer,2000,41:733-741
    [96] M. D. Sarkar, N. L. Gill, J. B. Whitehead, et al. Effect of Monomer Functionalityon the Morphology and Performance of the Holographic Transmission GratingsRecorded on Polymer Dispersed Liquid Crystals [J]. Macromolecules,2003,36:630-638
    [97] N. B. Cramer, T. Davies, A. K. O’Brien, et al. Mechanism and modeling of athiol-ene photopolymerization [J]. Macromolecules,2003,36:4631-4636
    [98] R. Caputo, L. D. Sio, A. Veltri, et al. Development of a new kind of switchableholographic grating made of liquid-crystal films separated by slices of polymericmaterial [J]. Opt Lett,2004,29:1261-1263
    [99] L. D. Sio, A. Veltri, R. Caputo, et al. POLICRYPS composite structures:realization, characterization and exploitation for electro-optical and all-opticalapplications [J]. Liquid Crystals Reviews,2013,DOI:10.1080/21680396.21682012.21742743
    [100] R. Caputo, A. D. Luca, L. D. Sio, et al. POLICRYPS: a liquid crystal composednano/microstructure with a wide range of optical and electro-optical applications [J]. JOpt,2009,11:024017
    [101] L. D. Sio, A. Tedesco, S. Serak, et al. Light sensitive liquid crystals forall-optical photonic devices [J]. Mol Cryst Liq Cryst,2012,560:143-148
    [102] L. D. Sio, S. Serak, N. Tabiryan, et al. Mesogenic versus non-mesogenic azodye confined in a soft-matter template for realization of optically switchablediffraction gratings [J]. J Mater Chem,2011,21:6811-6814
    [103] I. Dreven ek-Olenik, M. Jazbin ek, M. E. Sousa, et al. Structural transitions inholographic polymer-dispersed liquid crystals [J]. Phys Rev E,2004,69:051703
    [104] R. A. Ramsey, S. C. Sharma. Switchable holographic gratings formed inpolymer-dispersed liquid-crystal cells by use of a He-Ne laser [J]. Opt Lett,2005,30:592-594
    [105] R. A. Ramsey, S. C. Sharma, K. Vaghela. Holographically formed braggreflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Nelaser [J]. Appl Phys Lett,2006,88:051121
    [106] L. V. Natarajan, D. P. Brown, J. M. Wofford, et al. Visible light initiatedthiol-ene based reflection H-PDLCs [J]. Proc SPIE,2005,5936:59360F
    [107] L. V. Natarajan, D. P. Brown, J. M. Wofford, et al. Holographic polymerdispersed liquid crystal reflection gratings formed by visible ligh initiated thiol-enepolymerization [J]. Polymer,2006,47:4411-4420
    [108] J. M. Wofford, L. V. Natarajan, V. P. Tondiglia, et al. Holographic polymerdispersed liquid crystal (HPDLC) transmission gratings formed by visible lightinitiated thiol-ene photopolymerization [J]. Proc SPIE,2006,6332:63320Q
    [109] J. Klosterman, L. V. Natarajan, V. P. Tondiglia, et al. The influence of surfactantin reflective HPDLC gratings [J]. Polymer,2004,45:7213-7218
    [110] Y. J. Liu, X. W. Sun, H. T. Dai, et al. Effect of surfactant on the electro-opticalproperties of holographic polymer dispersed liquid crystal Bragg gratings [J]. OptMater,2005,27:1451-1455
    [111] Z. Zheng, J. Ma, W. Li, et al. Improvements in morphological andelectro-optical properties of polymer-dispersed liquid crystal grating using a highlyfluorine-substituted acrylate monomer [J]. Liq Cryst,2008,35:885-893
    [112] C. C. Bowley, G. P. Crawford. Diffusion kinetics of formation of holographicpolymer-dispersed liquid crystal display materials [J]. Appl Phys Lett,2000,76:2235-2237
    [113] J. Qi, L. Li, M. D. Sarkar, et al. Nonlocal photopolymerization effect in theformation of reflective holographic polymer-dispersed liquid crystals [J]. J Appl Phys,2004,96:2443-2450
    [114] H. Pu, D. Yin, B. Gao, et al. Dynamic characterizations of high diffractionefficiency in volume Bragg grating formed by holographic photopolymerization [J]. JAppl Phys,2009,106:083111
    [115] M. Jazbin ek, I. D. Olenik, M. Zgonik. Characterization of holographic polymerdispersed liquid crystal transmission gratings [J]. J Appl Phys,2001,90:3831-3837
    [116] J. J. Butler, M. S. Malcuit, M. A. Rodriguez. Diffractive properties of highlybirefringent volume gratings: investigation [J]. J Opt Soc Am B,2002,19:183-189
    [117] M. E. Holmes, M. S. Malcuit. Controlling the anisotropy of holographicpolymer-dispersed liquid-crystal gratings [J]. Phys Rev E,2002,65:066603
    [118] R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, et al. Coherent diffraction andrandom scattering in thiol-ene-based holographic polymer-dispersed liquid crystalreflection gratings [J]. J Appl Phys,2006,99:123104
    [119] R. Jakubiak, T. J. Bunning, R. A. Vaia, et al. Electrically Switchable,One-Dimensional Polymeric Resonators from Holographic Photopolymerization: Anew Approch for active photonic bandgap materials [J]. Adv Mater,2003,15:241-244
    [120] V. K. S. Hsiao, C. Lu, G. S. He, et al. High contrast switching ofdistributed-feedback lasing in dye-doped H-PDLC transmission grating structures [J].Opt Express,2005,13:3787-3794
    [121] Y. J. Liu, X. W. Sun, H. I. Elim, et al. Effect of liquid crystal concentration onthe lasing properties of dye-doped holographic polymer-dispersed liquid crystaltransmission gratings [J]. Appl Phys Lett,2007,90:011109
    [122] S. Deng, W. Li, W. Huang, et al. Distributed-feedback lasing from dye-dopedholographic polymer dispersed liquid crystal transmission grating [J]. Acta Phys Sin,2011,60:056102
    [123] Z. Zheng, L. Yao, R. Zhang, et al. Thermo-stability of acrylate basedholographic polymer dispersed liquid crystal gratings [J]. J Phys D: Appl Phys,2009,42:115504
    [124] W. Huang, Y. Liu, Z. Diao, et al. Theory and characteristics of holographicpolymer dispersed liquid crystal transmission grating with scaffolding morphology [J].Appl Opt,2012,51:4013-4020
    [125] W. Huang, S. Deng, W. Li, et al. A polarization-independent and low scatteringtransmission grating for a distributed feedback cavity based on holographic polymerdispersed liquid crystal [J]. J Opt,2011,13:085501
    [126] H. Kogelnik. Coupled wave theory for thick hologram gratings [J]. The BellSystem Technical Journal,1969,69:2909-2946
    [127] G. Montemezzani, M. Zgonik. Light diffraction at mixed phase and absorptiongratings in anisotropic media for arbitrary geometries [J]. Phys Rev E,1997,55:1035-1047
    [128] M. D. Sarkar, J. Qi, G. P. Crawford. Influence of partial matrix fluorination onmorphology and performance of HPDLC transmission graings [J]. Polymer,2002,43:7335-7344
    [129] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, et al. Electrically switchablevolume gratings in polymer-dispersed liquid crystals [J]. Appl Phys Lett,1994,64:1074-1076
    [130] K. K. Vardanyan, J. Qi, J. N. Eakin, et al. Polymer scaffolding model forholographic polymer-dispersed liquid crystals [J]. Appl Phys Lett,2002,81:4736-4738
    [131] A. Veltri, R. Caputo, C. Umeton, et al. Model for the photoinduced formation ofdiffraction gratings in liquid-crystalline composite materials [J]. Appl Phys Lett,2004,84:3492-3494
    [132] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, et al. Polarization andswitching properties of holographic polymer-dispersed liquid-crystal gratings. II.Experimental investigations [J]. J Opt Soc Am B,2002,19:3004-3012
    [133] W. Huang, S. Deng, Y. Liu, et al. Study on anisotropic diffraction properties ofholographic dispersed liquid crystal transmission grating [J]. Acta Phys Sin,2012,61:094208
    [134] P. Hariharan. Basics of Holography [M].New York: Cambridge University Press,2002.
    [135] J. Qi, M. D. Sarkar, G. T. Warren, et al. In situ shrinkage measurement ofholographic polymer dispersed liquid crystals [J]. J Appl Phys,2002,91:4795-4800
    [136] R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan. Evolution of anisotropicreflection gratings formed in holographic polymer-dispersed liquid crystals [J]. ApplPhys Lett,2001,79:1420-1422
    [137] J. Qi. Holographic polymer-dispersed liquid crystals: physics and applications
    [D]:[Thesis for PHD degree]. Rhode Island: Brown University,2003
    [138] H. Kogelnik, C. V. Shank. Coupled-Wave Theory of Distributed FeedbackLasers [J]. J Appl Phys,1972,43:2327-2335
    [139]李文萃,刘永刚,宣丽.表面摩擦处理对全息聚合物分散液晶光栅电光特性的影响[J].物理学报,2011,60:040000
    [140] W. Huang, Z. Diao, L. Yao, et al. Electrically tunable distributed feedback laseremission from scaffolding morphologic holographic polymer dispersed liquid crystalgrating [J]. Appl Phys Express,2013,6:022702
    [141] K. Okamoto. Fundamentals of Optical Waveguides [M].Burlington: Academicpress,2006.26
    [142] B. Wenger, N. Tétreault, M. E. Welland, et al. Mechanically tunable conjugatedpolymer distributed feedback lasers [J]. Appl Phys Lett,2010,97:193303
    [143] M. Stroisch, T. Woggon, C. Teiwes-Morin, et al. Intermediate high index layerfor laser mode tuning in organic semiconductor lasers [J]. Opt Express,2010,18:5890-5895
    [144] S. Klinkhammer, X. Liu, K. Huska, et al. Continuously tunablesolution-processed organic semiconductor DFB lasers pumped by laser diode [J]. OptExpress,2012,20:6357-6364
    [145] B. H. Wallikewitz, G. O. Nikiforov, H. Sirringhaus, et al. A nanoimprinted,optically tuneable organic laser [J]. Appl Phys Lett,2012,100:173301
    [146] D. E. Lucchetta, F. Vita, R. Castagna, et al. Laser emission based on first orderreflection by novel composite polymeric gratings [J]. Photonics and Nanostructures-Fundamentals and Applications,2012,10:140-145
    [147] R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, et al. Dynamic Lasing fromAll-OrganicTwo-Dimensional Photonic Crystals [J]. Adv Mater,2005,17:2807-2811
    [148] Y. J. Liu, X. W. Sun, P. Shum, et al. Low-threshold and narrow-linewidth lasingfrom dye-doped holographic polymer-dispersed liquid crystal transmission gratings[J]. Appl Phys Lett,2006,88:061107
    [149] Y. Oki, S. Miyamoto, M. Maeda, et al. Multiwavelength distributed-feedbackdye laser array and its application to spectroscopy [J]. Opt Lett,2002,27:1220-1222
    [150] T. Matsui, M. Ozaki, K. Yoshino. Single-mode operation of electrotunable laserin a dye-doped nematic liquid-crystal waveguide under holographic excitation [J]. JpnJ Appl Phys,2003,42: L1462-L1464
    [151] C. Vannahme, S. Klinkhammer, U. Lemmer, et al. Plastic lab-on-a-chip forfluorescence excitation with integrated organic semiconductor lasers [J]. Opt Express,2011,19:8179-8186
    [152] W. Huang, Z. Diao, Y. Liu, et al. Distributed feedback polymer laser with anexternal feedback structure fabricated by holographic polymerization technique [J].Org Electron,2012,13:2307-2311
    [153] D. Moses. High quantum efficiency luminescence from a conducting polymer insolution: A novel polymer laser dye [J]. Appl Phys Lett,1992,60:3215-3217
    [154] V. G. Kozlov, V. Bulovic, P. E. Burrows, et al. Study of lasing action based onForster energy transfer in optically pumped organic semiconductor thin films [J]. JAppl Phys,1998,84:4096-4108
    [155] S. Richardson, O. P. M. Gaudin, G. A. Turnbull, et al. Improved operationallifetime of semiconducting polymer lasers by encapsulation [J]. Appl Phys Lett,2007,91:261104
    [156] C. Karnutsch. Low threshold organic thin-film laser devices [D]:[Thesis forPHD degree]. Karlsruhe: Universit t Karlsruhe,2007
    [157] T.-Q. Nguyen, V. Doan, B. J. SchwartZ. Conjugated polymer aggregates insolution: Control of interchain interactions [J]. J Chem Phys,1999,110:4068-4078
    [158] D. J. Choo, A. Talaieb, Y. K. Lee, et al. Examination of EL and PL properties ofMCHM-PPV and MEH-PPV: a study towards introduction of a new series of thin filmEL devices [J]. Thin Solid Films,2000,363:37-41
    [159] T.-Q. Nguyen, g. B. Martini, J. Liu, et al. Controlling interchain interactions inconjugated polymers: the effects of chain morphology on exciton-exciton annihilationand aggregation in MEH-PPV films [J]. J Phys Chem B,2000,104:237-255
    [160] M. Nakamura, K. Aiki, J.-i. Umeda, et al. GaAs-Ga1_x AI xAsdouble-heterostructure distributed-feedback diode lasers [J]. Appl Phys Lett,1974,25:487-488
    [161] J. H. C. Casey, M. B. Panish, W. O. Schlosser, et al. GaAs-AtGa1_xAsheterostructure laser with separate optical and carrier confinement [J]. J Appl Phys,1974,45:322-333
    [162] M. Tammer, A. P. Monkman. Measurement of the anisotropic refractive indicesof spin cast thin Poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylenevinylene)(MEH-PPV) films [J]. Adv Mater,2002,14:210-212
    [163] D. Wright, E. Brasselet, J. Zyss, et al. Dye-doped organic distributed-feedbacklasers with index and surface gratings: the role of pump polarization and molecularorientation [J]. J Opt Soc Am B,2004,21:944-950
    [164] I. Gozhyk, G. Clavier, R. Méallet-Renault, et al. Polarization properties ofsolid-state organic lasers [J]. Phys Rev A,2012,86:043817
    [165] S. A. v. d. Berg, G. W. t. Hooft, E. R. Eliel. Orientational relaxation in polymerand dye solutions and its consequence for the laser threshold [J]. Chem Phys Lett,2001,347:167-172
    [166] G. Heliotis, R. Xia, K. S. Whitehead, et al. Investigation of amplifiedspontaneous emission in oriented films of a liquid crystalline conjugated polymer [J].Synth Met,2003,139:727-730
    [167] V. Navarro-Fuster, P. G. Boj, J. M. Villalvilla, et al. Second-order distributedfeedback lasers based on films containing perylenediimide derivatives [J]. Proc SPIE,2010,7722:77221G
    [168] V. M. Fitio, O. V. Sakhno, T. N. Smirnova. Analysis of the diffraction by thegratings generated in the materials with a nonlinear response [J]. Optik,2008,119:236-246
    [169] V. M. Fitio, T. N. Smirnova. Effective values of variable components of therefractive index upon nonlinear recording of phase holograms [J]. Optics andSpectroscopy,2004,96:952-960
    [170] G. Zhao, P. Mouroulis. Second order grating formation in dry holographicphotopolymers [J]. Opt Commun,1995,115:528-532
    [171] L. Cerdán, A. Costela, I. García-Moreno. On the characteristic lengths in thevariable stripe length method for optical gain measurements [J]. J Opt Soc Am B,2010,27:1874-1877
    [172] E. M. Calzado, J. M. Villalvilla, P. G. Boj, et al. Influence of the excitation areaon the thresholds of organic second-order distributed feedback lasers [J]. Appl PhysLett,2012,101:223303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700