用户名: 密码: 验证码:
实时相控阵三维成像声纳的波束形成及阵列稀疏技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时相控阵三维成像声纳系统采用单频窄带声脉冲信号透射整个水下探测场景,通过大规模平面换能器阵列接收声纳回波信号,并且运用相控阵技术同时产生数以万计个波束强度信号,从而获得实时三维图像。在实现实时相控阵三维成像声纳系统过程中,为了克服波束形成计算量庞大和硬件系统复杂且成本昂贵的难题,本论文分别针对相控阵三维成像声纳系统的波束形成算法和阵列稀疏优化算法进行深入研究,并将理论与实践相结合,应用于实时相控阵三维成像声纳系统设计。
     第一章绪论部分首先阐述了研究背景与选题意义,然后对国内外研究现状以及相关技术进行了综述和总结,最后列出本文的主要研究内容。
     第二章研究并提出一种远场波束形成算法,分布式并行子阵(DPS)波束形成算法。全面阵被分解成两级分布式子阵,一级子阵和二级子阵之间采用流水线分布式计算结构,一级子阵波束形成采用并行计算结构。首先对DPS波束形成算法过程进行了阐述并给出数据通路;然后将该算法与直接(DM)波束形成算法和快速傅立叶变换(FFT)波束形成算法进行计算效率对比和分析;最后通过仿真测试结果验证:在减少参数存储空间和计算负载的前提下,DPS波束形成算法保持波束方向图性能不变。
     第三章针对近场波束形成算法计算量过大的问题,首先基于时延参数的菲涅耳近似表达式和泰勒级数展开优化了近场时延参数;然后结合优化后的时延参数,针对DPS波束形成算法进行相位补偿和聚焦,将远场DPS算法扩展到近场成像区域;最后基于Matlab进行仿真测试,结果可以验证:近场DPS波束形成算法的波束方向图可以保持主瓣宽度和抑制旁瓣能量,内存需求量和计算需求量也得到大幅度降低。
     第四章针对平面换能器阵列的阵元数目多和硬件成本高的问题,将DPS波束形成算法和模拟退火算法相结合,应用于接收换能器稀疏优化设计。首先基于DPS波束形成算法重新定义一个能量函数;然后以新能量函数为目标,采用模拟退火算法进行阵列稀疏优化;最后将优化后的算法应用于接收阵设计并进行仿真测试,实验结果表明:优化后的算法与其它算法相比较,采用更少的换能器数目和更低的权重系数比,获得了相同的波束方向图性能,大幅度降低了系统的硬件复杂度和成本。
     第五章将理论与实践相结合,基于DPS波束形成算法设计了一个实时相控阵三维成像声纳系统的原理样机。首先,通过权衡系统制造成本、波束形成计算量和成像性能,根据DPS波束形成算法的精度、参数取值范围和约束条件,配置接收换能器阵列参数;随后详细阐述信号处理机的硬件系统设计和控制逻辑设计方案;最后将研制开发的原理样机应用于湖试和海试,测试结果表明:原理样机可以实现高达每秒20帧的实时高分辨率水下三维成像。
     第六章总结了本论文的研究成果和创新点,并进一步展望未来该课题相关领域的研究方向和内容。
To start the processing of the3D imaging, the real-time phased-array three-dimensional (3D) imaging sonar system transmits an acoustic pulse to insonify the scene of interest under narrow-band. A large scale planar transducer array gathers he backscattered signals and beamforms in more than then thousands of steering directions. This thesis investigates the research on new techniques of beamforming and sparse array to overcome the huge computational load and the complicated hardware system.
     Chapter1demonstrates the background of the research, presents the current status of the relevant techniques in different contries, and lists the main content of the thesis.
     Chapter2proposes a beamforming algorithm worked in far field:Distributed and Parallel Subarray (DPS) Beamforming. The full array is subdivided into two distributed subarrays and the parallel beamforming is implemented in two-stage subarrays. First, the DPS beamforming process is described and a data-path is illustrated. Second, the computational requirements are compared among DPS, DM and FFT beamforming. Third, the algorithm is simulated and the experimental results verify that the DPS beamforming achieves a similar beam pattern performance with lower computational and memory requirements.
     In Chapter3, the near-field time-delay parameters are optimized based on the Fresnel Approximation and the Taylor Series Expansion first. Second, the DPS beamforming algorithm is extended to the near field condition and the optimized time-delay is applied to compensate the phase shift and focus in a point. Finally, the near-field DPS beamforming algorithm is simulated in Matlab. The experimental results demonstrate that the algorithm can not only maintain the mainlobe width and the sidelobe energy, but also reduce the memory and computational requirements.
     In Chapter4, the DPS beamforming algorithm is combined with the simulated annealing algorithm in order to thin and weight the transducers of the receiving array. First, a new energy function is defined based on the DPS. Second, the simulated annealing algorithm with the new energy function is applied to design the sparse array. Finally, the optimized algorithm is employed on a target array and the experimental results demonstrate that:The optimized algorithm can achieve the similar beam pattern with less transducers and a lower CTR.
     Chapter5combines the theory and the engineering applications. A prototype is designed based on the DPS beamforming algorithm. First, considering the costs, computational requirements and the image quality, the parameters of the receiving array are chosen based on the approximations, constraints and the range validity of the coefficients in DPS. Second, the detail of the signal processor is described. Finally, the prototype is tested in lake and sea and it can image the scene with a high resolution and20frames per second.
     The last chapter concludes the innovation points of the research in this thesis. The prospect of the future research is also described.
引文
[1]R. K. Hansen, U. Castellani, V. Murino, A. Fusiello, E. Puppo and L. Papaleo, M. Pittore, M. Gobbi, L. Bisone, K. Kleppe, and M. Hall. Mosaicing of 3D Sonar Data Sets-Techniques and Applications [C]. Proceeding IEEE/MTS OCEANS Conference,2005:2326-2333
    [2]R. K. Hansen and P. A. Andersen. The Application of Real Time 3D Acoustical Imaging [C]. Proceeding OCEANS Conference,1998:738-741
    [3]Davis and A.Lugsdin. High Speed Underwater Inspection for Portand Harbour Security Using Coda Echoscope 3D Sonar [C]. Proceeding IEEEOCEANS MTS,2005:2006-2011
    [4]李启虎,进入21世纪的声纳技术[J].信号处理,2012,28(1):1-11
    [5]田坦.声纳技术[M].哈尔滨,哈尔滨工程大学出版社,2009
    [6]R. Giannitrapani, A. Trucco, and V. Murino. Segmentation of Underwater 3D Acoustical Images for Augmented and Virtual Reality Applications [C]. Proceeding IEEE OCEANS MTS,1999:459-465
    [7]S. Repetto, M. Palmese, and A. Trucco. High-resolution 3-D Imaging by ASparse Array:Array Optimization and Image Simulation [C]. Proceeding Oceans,2005:763-768
    [8]M. Palmese and A. Trucco. Characterizing the Objects Embedded in the Sea-Bottom by Processing 3-D Acoustic Images [C]. IEEE Instrumentation and Measurement Technology Conference,2006:168-173
    [9]D. Kraus and R. M. Lemor. High Frequency 3D-Sonar Imaging for the Inspection of Underwater Constructions [C]. The 8th European Conference on Synthetic Aperture Radar,2010:1-4
    [10]R. K. Hansen and P. A. Andersen. A 3D Underwater Acoustic Camera Properties and Applications [M]. New York, Plenum Press,1996
    [11]U. Castellani, A. Fusiello, and V. Murino. Object Reconstruction and 3D Mosaicing [R]. University of Genova,2004
    [12]L. Papaleo and E. Puppo. Online Data Fusion for Building 3D Models FromAcoustical Range Images [R]. University of Genova,2004
    [13]V. Murino and A. Trucco. Three-dimensional Image Generation and Processing in Underwater Acoustic Vision [J]. Proceedings of IEEE.2000,88(12): 1903-1948
    [14]A. Trucco, M. Palmese and S. Repetto. Devising an Affordable Sonar System for Underwater 3-D Vision [J]. IEEE Transactions on Instrumentation and Measurement,2008,57(10):2348-2354
    [15]CSIR, World's first low element-count 3D underwater imaging system developed at the CSIR [EB/OL]. http://www.csir.co.za/enews/2010 aug/12.html, 2010-8-24/2012-6-16
    [16]P. Chen, B. Shen, L. Zhou, et al. Optimized Simulated Annealing Algorithm for Thinning and Weighting Large Planar Arrays [J]. Journal of Zhejiang University-Science C,2010,11(4):261-269
    [17]P. Chen, X. Tian and Y.Chen. Optimization of the Digital Near-Field Beamforming for Underwater 3-D Sonar Imaging System [J]. IEEE Transactions on Instrumentation and Measurement,2010,59(2):415-424
    [18]陈朋,陈耀武,三维声纳频域波束形成算法的优化及实现[J].吉林大学学报(工学版),2010,40(3):830-835
    [19]S. Repetto, M. Palmese, and A. Trucco. Design and Assessment of a Low-Cost 3-D Sonar Imaging System Based on a Sparse Array [C]. Proceeding of IEEE Instrumentation and Measurement Technology Conference.2006:410-415
    [20]M. Palmese and A. Trucco. Acoustic Imaging of Underwater Embedded Objects: Signal Simulation for Three-dimensional Sonar Instrumentation [J]. IEEE Transactions on Instrumentation and Measurement.2006,55 (4):1339-1347
    [21]M. Palmese and A. Trucco. From 3-D Sonar Images to Augmented Reality Models for Objects Buried on The Seafloor [J]. IEEE Transactions on Instrumentation and Measurement.2008,57 (4):820-828
    [22]C. T. Chen Ed. The Past, Present, and the Future of Underwater Acoustic Signal Processing [J]. IEEE Signal Processing Magzine.1998,5(4):21-53
    [23]J. L. Sutton. Underwater Acoustic Imaging [J]. Proceedings of the IEEE.1979, 67(4):554-566
    [24]X. Chen, Z. Tang, Y. He, et al. A Simultaneous Multiple-section Photoacoustic Imaging Technique Based on Acoustic Lens [J]. Journal of Applied Physics. 2010,108(7):073116-073122
    [25]M. Palmese and A. Trucco.Three-Dimensional Acoustic Imaging by Chirp Zeta Transform Digital Beamforming [J]. IEEE Transactions on Instrumentation and Measurement.2009,58(7):2080-2086
    [26]I. Kaiho. A Dream for Realization of High-speed,3D Volume Image by Lens-focused Method [J]. International Congress Series.2004,1274:38-46
    [27]B. Deviss. Snap Happy Under the Sea [J]. New Scientists.1996,150(2035): 31-38
    [28]R. Chatham, E. Chang, M. Nelson et al. The Synthetic Aperture Sonar Revolution [C]. Proceeding of AUSI Conference.2000,1-23
    [29]S. Stergiopoulos. Optimum Bearing Resolution for A Moving Towed Array and Extension of Its Physical Aperture [J]. The Journal of Acoustical Society of America.1990,87(5):2128-2140
    [30]Codaoctopus. ECHOSCOPE Ⅱ Technical Specification.2005
    [31]Codaoctopus. High Resolution 3-Dimensional Images in Real Time Unique Sonar Technology [EB/OL]. [2009-07-15]. http://www.codaoctopus.com/ 3d_ac_im/index.asp
    [32]P. Chen, X. Tian, Y. Chen, and X Yang. Delay-sum Beamforming on FPGA [C]. Proceeding of the 9th International Conference on Signal Processing(ICSP'08). 2008,2542-2545
    [33]P. Chen, X. Tian, and Y. Chen. Frequency-Domain Sonar Processing in FPGAs[C]. Proceeding of IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application(PACIIA 2008).2008,756-760
    [34]陈朋,相控阵三维成像声纳系统的稀疏阵及波束形成算法研究[D].浙江大学,2009
    [35]袁龙涛,相控阵三维摄像声纳系统信号处理关键技术研究[D].浙江大学,2013
    [36]袁龙涛,周凡,陈耀武.相控阵三维摄像声纳系统的稀疏阵列优化设计.华南理工大学学报(自然科学版)
    [37]L.Yuan, R. Jiang, and Y. Chen. Gain and Phase Auto-calibration of Large Uniform Rectangular Arrays for Underwater 3-D Sonar Imaging Systems [J]. IEEE Journal of Oceanic Engineering.2013
    [38]袁龙涛,蒋荣欣,陈耀武.基于TSI方位估计的三维摄像声纳幅相误差校正[J].北京工业大学学报(自然科学版).2013
    [39]L. Yuan, X., Y. Han, and Y. Chen. Digital Beamforming by Multiple Chirp Zeta Transforms for 3-D Sonar Imaging Systems [J]. Journal of Donghua University (English Edition).2012
    [40]L. Yuan, X. Tian, and Y. Chen. Pruning split-radix FFT with time shift [C]. IEEE International Conference on Electronics, Communications and Control, ICECC.2011:1581-1586
    [41]袁龙涛,田翔,陈耀武.一种相控阵三维摄像声纳的自适应阂值方法[J].吉林大学学报(工学版).2012
    [42]V. B. Van and K. M. Buckley. Beamforming:AVersatile Approach to Spatial Filtering [J]. IEEE Signal Processing Magazine.1988,5(2):4-24
    [43]R. J. Urick. Principles of Underwater Sound,3rd ed [M]. New York: McGraw-Hall,1983
    [44]侯自强,李贵斌.声呐信号处理——原理与设备[M].北京:海洋出版社,1986
    [45]R. O. Nielsen. Sonar Signal Processing [M]. Boston:Artech House,1991
    [46]R. Mucci. A Comparison of Efficient Beamforming Algorithms [J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1984,32(3):548-558
    [47]B. Maranda. Efficient Digital Beamforming in the Frequency Domain [J]. The Journal of the Acoustical Society of America.1989,86(5):1813-1819
    [48]M. Palmese and A. Trucco. Digital Near Field Beamforming for Efficient 3-D Underwater Acoustic Image Generation [C]. Proceedingof IEEE International Workshop on Imaging Systems and Techniques.2007:1-5
    [49]M. Palmese, T. G. De, and A. Trucco.3-D Underwater Acoustic Imaging by an Efficient Frequency Domain Beamforming [C]. Proceeding of IEEE International Workshop on Imagining Systems and Techniques.2006:86-90
    [50]M. Palmese and A. Trucco. Chirp Zeta Transform Beamforming for Three-dimensional Acoustic Imaging [J]. The Journal of the Acoustical Society of America.2007,122(5):191-195
    [51]M. Palmese and A. Trucco. An Efficient Digital CZT Beamforming Design for Near-Field 3-D Sonar Imaging [J]. IEEE Journal of Oceanic Engineering.2010, 35(3):584-594
    [52]S. Ries. Digital Time-delay Beamforming with Interpolated Signals [J]. Signal Processing.2004,84(12):2403-2423
    [53]V. Murino and A. Trucco. Underwater 3D Imaging by FFT Dynamic Focusing Beamforming [C]. Proceeding of IEEE International Conference on Image Processing.1994:890-894
    [54]J. A. Johnson, M. Karaman,and B. T. Khuri-Yakub. Phased Subarray Processing for Underwater 3D Acoustic Imaging [C]. Proceeding of IEEE/MTS OCEANS Conference.2002:2145-2151
    [55]J. A. Johnson, M. Karaman,and B. T. Khuri-Yakub. Coherent-array Imaging Using Phased Subarrays Part I:Basic Principles [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.2005,52(1):37-50
    [56]J. A. Johnson, M. Karaman,and B. T. Khuri-Yakub. Coherent-array Imaging Using Phased Subarrays Part II:Simulations and Experimental Results [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.2005, 52(1):51-64
    [57]L. J. Ziomek. Three Necessary Conditions for the Validity of the Fresnel Phase Approximation for the Near-field Beam Pattern of An Aperture [J]. IEEE Journal of Oceanic Engineering.1993,18(1):73-75
    [58]A. Trucco. A Least-squares Approximation for the Delays Used in Focused Beamforming [J]. The Journal of the Acoustical Society of America.1998, 104(1):171-175
    [59]A. Trucco. Enlarging the Scanning Region of AFocused Beamforming System [J]. Electronics Letters.1997,33(17):1502-1504
    [60]S. Repetto and A. Trucco. Frequency-Invariant Beamforming in Very Short Arrays for AUVs Instrumentation [J]. Proceedings of the IEEE.2005,2: 1113-1118
    [61]W. Liu and S. Weiss. Design of Frequency Invariant Beamformers for Broadband Arrays [J]. IEEE Transactions on Signal Processing.2008,56(2): 855-860
    [62]W. Liu, S. Weiss, J. G. Mcwhirter et al. Frequency Invariant Beamforming for Two-dimensional and Three-dimensional Arrays [J]. Signal Processing.2007, 87(11):2535-2543
    [63]W. Liu. Adaptive Wideband Beamforming with Sensor Delay-lines [J]. Signal Processing.2009,89(5):876-882
    [64]B. O. Odelowo. A Fast Beamforming Algorithm for Planar/Volumetric Arrays [C]. Proceeding of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers.2005:1707-1710
    [65]H. L. Vantrees. Optimum Array Processing. Part IV of Detection, Estimation, and Modulation Theory [M]. New York:Wiley,2002
    [66]S. K. Mitra. Digital Signal Processing,2nd Edition [M]. New York, Me Graw Hill,2001
    [67]F. J. Harris. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform [J]. Proceedings of IEEE.1978,66(1):51-83
    [68]M. Karaman, I. O. Wygant, O. Oralkan, et al. Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging [J]. IEEE Transactions on Medical Imaging.2009,28(7):1051-1061
    [69]C. Ma, Y. Tat Soon, T. Chee Seng, et al. Sparse Array 3-D ISAR Imaging Based on Maximum Likelihood Estimation and CLEAN Technique [J]. IEEE Transactions on Image Processing.2010,19(8):2127-2142
    [70]W. Roberts,L.Xu,J.Li, et al. Sparse Antenna Array Design for MIMO Active Sensing Applications [J]. IEEE Transactions on Antennas and Propagation.2011, 59(3):846-858
    [71]M. J. Wilson and R. McHugh. Harmonic Array Design:Technique for Efficient Non-periodic Array Optimisation in Digital Sonar Beamforming [J]. IEE Proceedings on Radar, Sonar and Navigation.2006,153(1):63-68
    [72]J. Galejs. Minimization of Sidelobes in Space Tapered Linear Arrays [J]. IEEE Transactions on Antennas and Propagation.1964,12(4):497-498
    [73]B. Steinberg. The Peak Sidelobe of the Phased Array Having Randomly Located Elements [J]. IEEE Transactions on Antennas and Propagation.1972, 20(2):129-136
    [74]D. G. Leeper. Isophoric Arrays-massively Thinned Phased Arrays with Well-controlled Sidelobes [J]. IEEE Transactions on Antennas and Propagation. 1999,47(12):1825-1835
    [75]M. J. Wilson andR. Mchugh. Harmonic Array Design:Technique for Efficient Non-periodic Array Optimisation in Digital Sonar Beamforming [J]. IEE Proceedings-Radar, Sonar and Navigation.2006,153(1):63-68
    [76]M. J. Wilson andR. Mchugh. Sparse-periodic Hybrid Array Beamformer [J]. IET Radar, Sonar & Navigation.2007,1(2):116-123
    [77]S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing [J]. Science.1983,220(4598):671-680
    [78]T. J. Hayward. Optimization of Acoustic Array Design Using the Simulated Annealing Algorithm [J]. Journal of the Acoustical Society of America.1992, 91(4):24-45
    [79]V. Murino, A. Trucco and C. S. Regazzoni. Synthesis of Unequally Spaced Arrays by Simulated Annealing [J]. IEEE Transactions on Signal Processing. 1996,44(1):119-122
    [80]A. Trucco and V. Murino. Stochastic Optimization of Linear Sparse Arrays [J]. IEEE Journal of Oceanic Engineering.1999,24(3):291-299
    [81]A. Trucco, E. Omodei, and P. Repetto. Synthesis of Sparse Planar Arrays [J]. Electronics Letters.1997,33(22):1834-1835
    [82]A. Trucco. Thinning and Weighting of Large Planar Arrays by Simulated Annealing [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.1999,46(2):347-355
    [83]A. Trucco. Weighting and Thinning Wide-band Arrays by Simulated Annealing [J]. Ultrasonics.2002,40(1-8):485-489
    [84]P. Chen, Y. Zheng, and W. Zhu. Optimized Simulated Annealing Algorithm for Thinning and Weighting Large Planar Arrays in Both Far-field and Near-field [J]. IEEE Journal of Oceanic Engineering.2011,36(4):658-664
    [85]T. Isernia, F. J. A. Pena, O. M. Bucci, et al. A Hybrid Approach for the Optimal Synthesis of Pencil Beams Through Array Antennas [J]. IEEE Transactions on Antennas and Propagation.2004,52(11):2912-2918
    [86]J. E. Kirkebo and A. Austeng. Sparse Cylindrical Sonar Arrays [J]. IEEE Journal of Oceanic Engineering.2008,33(2):224-231
    [87]G. Cardone, G. Cincotti, and M. Pappalardo. Design of Wide-Band Arrays for Low Side-Lobe Level Beam Patterns by Simulated Annealing [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.2002,49(8): 1050-1059
    [88]A. Trucco. Synthesizing Asymmetric Beam Patterns [J]. IEEE Journal of Oceanic Engineering.2000,25(3):347-350
    [89]J. H. Holland. Adaptation in Natural and Artificial Systems [M]. Ann Arbor, MI: University of Michigan Press,1975
    [90]R. L. Haupt. An Introduction to Genetic Algorithms for Electromagnetics [J]. IEEE Antennas and Propagation Magazine.1995,37(2):7-15
    [91]R. L. Haupt and D. H. Werner. Genetic Algorithms in Electromagnetics [M]. New Jersey, Wiley,2007
    [92]R. L. Haupt. Thinned Arrays Using Genetic Algorithms [J]. IEEE Transactions on Antennas and Propagation.1994,42(7):993-999
    [93]R. L. Haupt. Interleaved Thinned Linear Arrays [J]. IEEE Transactions on Antennas and Propagation.2005,53(9):2858-2864
    [94]R. L. Haupt. Interleaving Thinned Sum and Difference Linear Arrays [C]. Proceeding of IEEE Antennas and Propagation Society International Symposium.2006:4773-4776
    [95]R. L. Haupt. Antenna Design With a Mixed Integer Genetic Algorithm [J]. IEEE Transactions on Antennas and Propagation.2007,55(3):577-582
    [96]R. L. Haupt. Optimized Element Spacing for Low Sidelobe Concentric Ring Arrays [J]. IEEE Transactions on Antennas and Propagation.2008,56(1): 266-268
    [97]R. L. Haupt. Optimized Weighting of Uniform Subarrays of Unequal Sizes [J]. IEEE Transactions on Antennas and Propagation.2007,55(4):1207-1210
    [98]R. L. Haupt. Unit Circle Representation of Aperiodic Arrays [J]. IEEE Transactions on Antennas and Propagation.1995,43(10):1152-1155
    [99]M. G. Bray, D. H. Werner, D. W. Boeringer, et al. Optimization of Thinned Aperiodic Linear Phased Arrays Using Genetic Algorithms to Reduce Grating Lobes During Scanning [J]. IEEE Transactions on Antennas and Propagation. 2002,50(12):1732-1742
    [100]C. Ling, S. Wee, L. Zhu, et al. Linear Sparse Array Synthesis With Minimum Number of Sensors [J]. IEEE Transactions on Antennas and Propagation.2010, 58(3):720-726
    [101]D. S. Weile and E. Michielssen. The Control of Adaptive Antenna Arrays with Genetic Algorithms Using Dominance and Diploidy [J]. IEEE Transactions on Antennas and Propagation.2001,49(10):1424-1433
    [102]C. Kesong, Y. Xiaohua, Z. He, et al. Synthesis of Sparse Planar Arrays Using Modified Real Genetic Algorithm [J]. IEEE Transactions on Antennas and Propagation.2007,55(4):1067-1073
    [103]P. Lopez, J. A. Rodriguez, F. Ares, et al. Low-sidelobe Patterns From Linear and Planar Arrays with Uniform Excitations Except for Phases of A Small Number of Elements [J]. Electronics Letters.2001,37(25):1495-1497
    [104]G. Oliveri and A. Massa. Genetic Algorithm (GA)-Enhanced Almost Difference Set (ADS)-Based Approach for Array Thinning [J]. Microwaves, Antennas & Propagation, IET.2011,5(3):305-315
    [105]A. Massa, M. Donelli, N. F. De, et al. Planar Antenna Array Control with Genetic Algorithms and Adaptive Array Theory [J]. IEEE Transactions on Antennas and Propagation.2004,52(11):2919-2924
    [106]A. Tweedie, V. Murray and G. Hay ward. Aperiodic and Deterministic 2D Phased Array Structures for Ultrasonic Imaging [C]. Ultrasonics Symposium (IUS),2009 IEEE International.2009.406-409
    [107]付云起,袁乃昌,毛钧杰.基于遗传算法和模拟退火算法的不等间距稀布阵的设计[J].电子与信息学报.2001,23(7):700-704
    [108]F. J. Villegas. Parallel Genetic-Algorithm Optimization of Shaped Beam Coverage Areas Using Planar 2-D Phased Arrays [J]. IEEE Transactions on Antennas and Propagation.2007,55(6):1745-1753
    [109]F. J. Ares-pena, J. A. Rodriguez-gonzalez, E. Villanueva-lopez, et al. Genetic Algorithms in the Design and Optimization of Antenna Array Patterns [J]. IEEE Transactions on Antennas and Propagation.1999,47(3):506-510
    [110]D. S. Weile and E. Michielssen. Genetic Algorithm Optimization Applied to Electromagnetics:AReview [J]. IEEE Transactions on Antennas and Propagation.1997,45(3):343-353
    [111]D. Marcano and F. Duran. Synthesis of Antenna Arrays Using Genetic Algorithms [J]. IEEE Antennas and Propagation Magazine.2000,42(3):12-20
    [112]J. Kennedy and R. Eberhart. Particle Swarm Optimization [C]. Proceeding of IEEE International Conference on Neural Networks.1995:1942-1948
    [113]R. Eberhart and J. Kennedy. A New Optimizer Using Particle Swarm Theory [C]. Proceeding of the Sixth International Symposium on Micro Machine and Human Science.1995:39-43
    [114]Y. Shi and R. Eberhart. A Modified Particle Swarm Optimizer [C]. Proceeding of IEEE International Conference on Evolutionary Computation.1998:69-73
    [115]J. W. Hooker and R. K. Arora. Optimal Thinning Levels in Linear Arrays [J]. IEEE Antennas and Wireless Propagation Letters.2010,9:771-774
    [116]D. W. Boeringer and D. H. Werner. Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis [J]. IEEE Transactions on Antennas and Propagation.2004,52(3):771-779
    [117]N. Jin and Y. Rahmat-Samii. Advances in Particle Swarm Optimization for Antenna Designs:Real-Number, Binary, Single-Objective and Multiobjective Implementations [J]. IEEE Transactions on Antennas and Propagation.2007, 55(3):556-567
    [118]J. S. Petko and D. H. Werner. The Pareto Optimization of Ultrawideband Polyfractal Arrays [J]. IEEE Transactions on Antennas and Propagation.2008, 56(1):97-107
    [119]K. V. Deligkaris, Z. D. Zaharis, D. G. Kampitaki, et al. Thinned Planar Array Design Using Boolean PSO With Velocity Mutation [J]. IEEE Transactions on Magnetics.2009,45(3):1490-1493
    [120]S. Selleri, M. Mussetta, P. Pirinoli, et al. Differentiated Meta-PSO Methods for Array Optimization [J]. IEEE Transactions on Antennas and Propagation.2008, 56(1):67-75
    [121]A. Modiri and K. Kiasaleh. Modification of Real-Number and Binary PSO Algorithms for Accelerated Convergence [J]. IEEE Transactions on Antennas and Propagation.2011,59(1):214-224
    [122]O. M. Bucci, M. D'Urso, T. Isernia, et al. Deterministic Synthesis of Uniform Amplitude Sparse Arrays via New Density Taper Techniques [J]. IEEE Transactions on Antennas and Propagation.2010,58(6):1949-1958
    [123]D. Caratelli and M. C. Vigano. A Novel Deterministic Synthesis Technique for Constrained Sparse Array Design Problems [J]. IEEE Transactions on Antennas and Propagation.2011,59(11):4085-4093
    [124]A. Ishimaru. Theory of Unequally-spaced Arrays [J]. IRE Transactions on Antennas and Propagation.1962,10(6):691-702
    [125]Y. Chow. On Grating Plateaux of Nonuniformly Spaced Arrays [J]. IEEE Transactions on Antennas and Propagation.1965,13(2):208-215
    [126]P. Angeletti and G. Toso. A Combined Amplitude-density Synthesis Approach for the Design of Linear Aperiodic Arrays [C].2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY).2010:1-5
    [127]M. Skolnik, G. Nemhauser and J. Sherman. Dynamic Programming Applied to Unequally Spaced Arrays [J]. IEEE Transactions on Antennas and Propagation.1964,12(1):35-43
    [128]B. P. Kumar and G. R. Branner. Generalized Analytical Technique for the Synthesis of Unequally Spaced Arrays with Linear, Planar, Cylindrical or Spherical Geometry [J]. IEEE Transactions on Antennas and Propagation.2005, 53(2):621-634
    [129]D. G. Leeper. Isophoric Arrays-massively Thinned Phased Arrays with Well-controlled Sidelobes [J]. IEEE Transactions on Antennas and Propagation. 1999,47(12):1825-1835
    [130]B. L. Hutchings, B. E. Nelson. GigaOp DSP on FPGA [J]. The Journal of VLSI Signal Processing.2004,36(1):41-55
    [131]M. J. Crocker, Handbook of Acoustics [M]. New York:Wiley,1998
    [132]J. E. Volder. The CORDIC Trigonometric Computing Technique [J]. IRE Transactions on Electronic Computers.1959, EC-8(3):330-334
    [133]J. S. Walther. A Unified Algorithm for Elementary Functions [C]. Proceeding of Spring Joint Computer Conference.1971:379-385
    [134]W. Zeng, X. Li, H. Zou, et al. Near-field Multiple Source Localization Using Joint Diagonalization [J]. Signal Processing.2009,89(2):232-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700