用户名: 密码: 验证码:
植入式脑机接口神经元锋电位的时变特征分析与解码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑机接口系统在大脑与外部机械装置之间建立了一条直接交互的渠道,为残障病人修复运动功能提供新的方式。其中,解码算法是脑机接口系统的核心部分,承担着将神经信号准确翻译为运动指令的关键使命。以往的解码算法假设神经元活动与运动表达之间的联系是静态不变的,然而研究发现神经元的锋电位发放规律可在短期实验中观察到明显的变化,并导致解码效果逐渐下降。本文在基于大鼠和非人灵长类动物的植入式脑机接口平台上,分析运动皮层神经元编码特征的时变规律,并在此基础上设计能跟踪时变性神经活动的解码算法,用于提高解码准确性,延长模型的使用时间。
     本文搭建了基于大鼠压杆实验和猴子二维手臂运动的实验平台,同步采集了初级运动皮层(M1)的神经电信号及多种运动参数。以往研究定性地观察到神经元锋电位的发放模式会随着时间变化,在此基础上,本文提出了基于黑盒模型的时变广义回归神经网络算法。该方法能不断吸收新出现的发放模式,·忘记不再出现的旧模式,从而动态实现对神经元时变活动的跟踪。本文进一步研究了单个神经元锋电位的编码模态,设计了具有生理基础的灰盒模型时变解码算法。首先建立了神经元编码函数时变分析的定量方法,发现神经元存在多种编码形式;神经元重要子集的成员和信息量都存在明显的时变现象,并建立了编码函数时变规律的预测方法。本文将神经元编码的时变性质融入解码算法中,提出了双重蒙特卡罗点过程滤波器。这种基于灰盒模型的算法能跟踪神经元编码特征的时变规律,在仿真数据和真实数据上实验都表现出更好的解码效果。
     本研究工作实现了大鼠及猴子运动皮层神经元编码特征时变规律的定量分析和解码研究,主要创新点在于,(1)设计模式层动态增长的广义回归神经网络算法,降低了大鼠压杆系统中解码压力信号的平均误差;(2)建立了基于线性-非线性-泊松编码模型的神经元时变规律的预测方法,能够更好地适应捕捉神经元编码的多样性和时变性;(3)提出融入神经元编码特性的双重蒙特卡罗点过程滤波方法,用于动态解析神经元集群的时变活动,将猴子二维摇杆的轨迹预测误差降低5%以上。本研究探索了一条定量描述和解析神经元时变规律的新思路,为提高解码效果,设计能更稳定工作的脑机接口系统奠定了基础。
Brain machine interfaces (BMIs) build a direct pathway for the communication between the brain and the external instruments, aiming to help restoring motor function for motor-impaired patients. The decoding algorithm is the core of BMIs, which translates the neural activity into behavior. Previous methods usually assume a static functional map between neural firing and movement. However, recent work indicates the significant time variance in neural activities during short experiments, which greatly reduces the decoding performance. Based on the invasive BMIs on rats and non-human primates, we analyze the time-varying neural encoding characteristics and integerate it into the design of the non-stationary decoding algorithms, which makes the prediction more accuracy and more stable.
     We establish the invasive BMI platform on rats performning lever-pressing task and non-human primates performing2D tracking task. Neural activities are collected from primary motor cortex and syncrized with the movement. As the firing patterns have been qualitatively proved to be time-varying, we develope a time-varying general regression neural network (GRNN) as a black box to decode the neural firings. The model is designed with a dynamic pattern layer, which can take in the new patterns and forget the old ones in time. Therefore it can follow the change of firing patterns. Futhermore, we analysis the tuning characteristic of single unit activity, and design a time-varying decoding algorithm as a grey box that involes more physiological information. First, we estimate the time-variant tuning curves in a data-driven way and find both functionally "inhibitory" and the traditional "excitatory" function neurons. Then, we find worthy noticing changes in both information amount and member of the important neuron subset. Also, we propose a random walk model to predict time-variant tuning curves. Based on these time-varying neural tuning analyses, we propose a dual Monte Carlo point process filter (MCPP). The grey box method enables the estimation on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning model.
     This study first evaluates the non-stationary neural activity of M1in rats and monkey quantitatively. The innovations are,(i) desiging a time-varying GRNN with a dynamic pattern layer. When applied to pressure prediction in rats'data, the mean prediction error decreases;(ii) establishing a parameteric way to predict time-varing neural activity based on the linear-nonlinear-posisson model, which captures multiple neural tuning propeties;(iii) proposing a dual MCPP method with updated tuning models. When applied to trajractory estimation of monkeys, the normalized mean square error decreases over5%. Overall, our results raise a promising way to design a long-term-performing model for BMI decoder.
引文
Acharya S, Tenore F, Aggarwal V, Etienne-Cummings R, Schieber MH, Thakor NV. Decoding individuated finger movements using volume-constrained neuronal ensembles in the Ml hand area. IEEE Trans Neural Syst Rehabil Eng.2008, 16(1):15-23.
    Allison BZ, Leeb R, Brunner C, Muller-Putz GR, Bauernfeind G, Kelly JW, Neuper C. Toward smater BCIs:extending BCIs through hybridization and intelligent control. J Neural Eng.2012,9(1):13001.
    Andersen RA, Musallam S, Pesaran B. Selecting the signals for a brain-machine interface. Curr Opin Neurobiol.2004,14(6):720-726.
    Baker JJ, Scheme E, Englehart K, Hutchinson DT, Greger B. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering.2010,18:424-432.
    Bennett KM, Lemon RN. Corticomotoneuronal contribution to the fractionation of muscle activity during precision grip in the monkey. J. of Neurophysiology.1996, 75:1826-1842.
    Bergman N. Recursive Bayesian estimation:navigation and tracking application. Ph.D. dissertation, Linkoping University, Sweden.1999.
    Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Reconstructing three-dimensional hand movements from noninvasive electroencephalographic singals. The Journal of Neuroscience.2010,30(9):3432-3437.
    Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull.2000,51(4):293-306.
    Brockwell AE, Rojas AL, Kass RE. Recursive Bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol.2004,91:1899-1907.
    Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci.1998,18:7411-7425.
    Brown EN, Nguyen DP, Frank LM, Wilson MA, Solo V. An analysi of neural receptive field plasticity by point process adaptive filtering. PNAS.2001,98: 12261-12266.
    Brown S. Stealth sharks to patrol the high seas. New Scientist.2006,2541:30-31.
    Cacoullos T. Estimation of a multivariate density. Ann. Inst. Statist. Math.1996, 18(2):179-189.
    Carmena JM, Lebedev MA, Crist RE, O'Doherty, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology.2003,1(2):193-208.
    Chan KS, Ledolter J. Monte Carlo estimation for time series models involving counts. J. Am. Stat. Assoc.1995,90:242-252.
    Chandra R and Optican LM. Detection, classification and superposition resolution of action-potentials in multiunit single-channel recordings by an online real-time neural-network. IEEE Trans. Biomed. Eng.1997,44:403-412.
    Chap in JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience.1999,2(7):664-670.
    Cipriani C. Control developments for prosthetic and cybernetic hands. Ph.D. dissertation. Pisa, Italy:Scuola Superiore Sant'Anna.2008,60-80.
    Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol.1998,79: 1117-1123.
    Coyle SM, Ward TE, Markham M. Brian-computer interface using a simplified functional near-infrared spectroscopy system. J. of Neural Enginnering.2007, 4(3):219-226.
    Dai JH, Liu XC, Zhang SM, Zhang HJ, Xu Q, Chen WD, Zheng XX. Continuous neural decoding method based on general regression neural network. Inte J. of Digital Content Technology and its Applications.2010,4(8):1-6.
    Davare M, Kraskov A, Rothwell JC, Lemon RN. Interactions between areas of the cortical grasping network. Curr Opin Neurobiol.2011,21(4):565-570.
    Diggle PJ, Liang KY, Zeger SL. Analysis of longitudinal data. Oxford,1995.
    Digiovanna J, Mahmoudi B, Fortes J, Principe JC, Sanchez JC. Coadaptive brain-machine interface via reinforcement learning. IEEE T Bio-Med Eng.2009, 56(1):54-64.
    Doucet A. On sequential monte carlo sampling methods for Bayesian filtering. Ph.D. dissertation. Department of Engineering, University of Cambridge.1998.
    Doucet A, de Freitas N, Gordon N. Sequential monte carlo methods in practice. New York:Springer-Verlag.2001.
    Eden UT, Truccolo W, Fellows MR, Donoghue JP, Brown EN. Reconstruction of hand movement trajectories from a dynamic ensemble of spiking motor cortical neurons. IEMBS 26th Ann Int Conf IEEE.2004,4017-4020.
    Ergun A, Barbieri R, Eden U, Wilson MA, Brown E. Construction of point process adaptive filter algorithms for neural systems using sequential monte carlo methods. IEEE Trans, on Biom. Engin.2007,54(3):419-428.
    Fee MS, Mitra PP and Kleinfeld D. Automatic sorting of multiple-unit neuronal signals in the presence of anisotropic and non-gaussian variability. J. Neurosci. Meth.1996,69:175-188.
    Fetz EE, Cheney PD. Postpike facilitation of forelimb muscle activity by primate corticomotoneruronal cells. J. of Neurophysiology.1980,44:751-772.
    Frank LM, Eden UT, Solo V, Wilson MA, Brown EN. Contrasting patterns of receptive field plasticity in thehippocampus and the entorhinal cortex:An adaptive filtering approach. J. of Neuroscience.2002,22:3817-3830.
    Frank LM Stanley GB, Brown EN. Hippocampal plasticity across multiple days of exposure to novel environments. J. of Neuroscience.2004,24:7681-7689.
    Fritsch G, Hitzig E. Ueber dir elektrische Erregbarkeit des Grosshirms. Arch. Anat. Physiol. Lpz.1870,37:300-332.
    Gabbiani F, Koch C. Principles of spike train analysis. Methods in Neuronal Modeling: From Ions to Networks.1998,313-360.
    Gage GJ, Ludwig KA, Otto KJ, Ionides EL, Kipke DR. Naive coadaptive cortical control. J. Neural Eng.2005,2:52-63.
    Ganguly K, Carmena JM. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol.2009,7(7):e1000153.
    Gao X, Xu D, Cheng M. A BCI-based environmental controller fo the motion-disabled. IEEE Tran. On Neural Sys. And Reha. Engin.2003,11(2):137-140
    Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J.Neurosci.1982,2:1527-1537.
    Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science.1986,233:1416-1419.
    Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non -gaussian Bayesian state estimation. IEEE Proceedings on Radar and Signal Processing.1993, 140:107-113.
    Gozani SN and Miller JP. Optimal discrimination and classification of neuronal action-potential waveforms from multiunit, multichannel recordings using software-based linear filters. IEEE Trans. Biomed. Eng.1994,41:358-372.
    Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature.2006,442(7099):164-171.
    Jackson A, Gee VJ, Baker SN, Lemon RN. Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron.2003,38:115-125.
    Jensen W, Rousche PJ. On variability and use of rat primary motor cortex responses in behavioral task discrimination. J. of Neural Engineering.2006,3:7-13.
    Kakei S, Hoffman DS, Strick PL. Muscle and movement representations in the primary motor cortex. Science.1999,285:2136-2139.
    Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nature Neuroscience.2005,8:679-685.
    Kass RE, Ventura V. A spike train probability model. Neural Comput.2001,13: 1713-1720.
    Kim SP, Sanchez JC, Erdogmus D, Rao YN, Wessberg J, Principe JC, Nicolelis MA. Divide-and-conquer approach for brain machine interfaces:nonlinear mixture of competitive linear models. Neural Network.2003,16:865-871.
    Kim SP, Sanchez JC, Principe JC. Real time input subset selection for linear time-variant MIMO systems. Optim Meth Software.2007,22:83-98.
    Kipke DR, Vetter RJ, Williams JC. Silicon-substrate intracortical microelectrode arrays for long-term recoding of neuronal spike activity in cerebral cortex. IEEE Transactions on Neural Systems and Rehabilitation Engineering.2003,11:151-155.
    Konrad P, Shanks T. Implantable brain computer interface:chanllenges to neurothchnology translation. Neurobiol Dis.2010,38:369-375.
    Laubach M, Wessberg J, Nicolelis MA. Cortical ensemble activity increasingly predicts behavior outcomes during learning of a motor task. Nature.2000,405: 567-571.
    Lebedev MA, Carmena JM, O'Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MA. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J Neurosci.2005, 25(19):4681-4693.
    Lewicki MS. A review of methods for spike sorting:the detection and classification of neural action potentials. Network.1998,9(4):R53-R78.
    Leyton ASF, Sherrington CS. Observations and excitable cortex of the chimpanzee, orange-utan and gorilla. Q. J. Exp. Physiol.1917,11:135-222.
    Li Bao, Nenggan Zheng, Huixia Zhao, Yaoyao Hao, Huoqing Zheng, Fuliang Hu, Xiao xiang Zheng. Flight control of tethered honeybees using neural electrical stimulation. In Neural Engineering (NER),2011 5th International IEEE/EMBS Conference on.2011,558-561.
    Li CR, Padoa-Schioppa C, Bizzi E. Neuronal correslates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron.2001,30:593-607.
    Lin Li, Park IM, Seth S, Choi JS, Francis JT, Sanchez JC, Principe JC. An adaptive decoder from spike trains to micro-stimulation using kernel least-mean-squares (KLMS). IEEE workshop on Machine Learning for Signal Processing.2011.
    Li Z, O'Doherty JE, Lebedev MA, Nicolelis MA. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates. Neural Computation. 2011,23:3162-3204.
    Linberg EW, Miller LE, Oby ER, Slutzky MW. Decoding muscle activity with local field potentials. IEEE EMBS Conference on Neural Engineering.2011,278-281.
    Linderman MD, Santhanam G, Kemere CT, Gilja V, O'Driscoll S, Yu BM, Afshar A, Ryu SI, Shenoy KV, Meng TH. Signal processing challenges for neural prostheses. Signal Processing Magazine, IEEE.2008,25(1):18-28.
    Madsen K, Nielsen HB, Tingleff O. Methods for non-linear least squares problems. Technical university of Denmark.2004,34-39.
    Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc. Natl Acad. Sci.1997,94:10979-10984.
    Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical electrode array:a recording structure for potential brian-computer interfaces. Electro -encephalogr Clin Neurophysiol.1997,102(3):228-239.
    Mckeown MJ, Jung TP, Makeig S, Brown G, Kindermann SS, Lee TW, Sejnowski TJ. Spatially independent activity patterns in functional magnetic resonance imaging data during the stroop color-naming task. Proc. Natl Acad. Sci.1998,95:803-810.
    Mellinger J, Schalk G, Braun C, PreissI H, Rosenstiel W, Birbaumer N, Kubler A. An MEG-based brain-computer interface (BCI). NeuroImage.2007,36(3):581-593.
    Michael SG, Richard BI, George RM. Cognitive neuroscience, the biology of the mind. 3rd edition.中国轻工业出版社.2013,63.
    Moran DW, Schwartz AB. Motor cortical representation of speed and direction during reaching. J. of Neurophysiology.1999,82:2676-2692.
    Moritz CT, Perlmutter SI, Fetz EE. Direct control of paralysed muscles by cortical neurons. Nature.2008,456(7222):639-642.
    Nazarpour K, Ethier C, Paninski L, Rebesco JM, Miall RC, Miller LE. EMG prediction from motor cortical recordings via a nonnegative point-process filter. IEEE Tran. On Biomedical Engineering.2012,59:1829-1838.
    Nicolelis MA, Ribeiro S. Multielectrode recordings:the next steps. Curr Opin Neurobiol.2002,12(5):602-606.
    Nigg BM, Herzog W. Biomechanics of the musculo-skeletal system. Wiley.1999,349.
    Okatan M, Wilson MA, Brown EN. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput.2005, 17:1927-1961.
    O'Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA. A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci.2009,3:20.
    Parzen E. On estimation of a probability density function and mode. Ann. Math. Statist. 1962,33:1065-1076.
    Paz R, Boraud T, Natan C, Bergman H, Vaadia E. Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nature Neuroscience.2003, 6(8):882-890.
    Perel S, Sadtler PT, Godlove JM, Ryu SI, Wang W, Batista AP, Chase SM. Direction and speed tuning of motor-cortex multi-unit activity and local field potentials during reaching movements.35th Annual International Conference of the IEEE EMBS.2013,299-302.
    Pistohl T, Schulze-Bonhage A, Aertsen A, Mehring C, Ball T. Decoding natural grasp types from human ECoG. Neuroimage.2012,59(1):248-260.
    Pohlmeyer EA, Solla SA, Perreault EJ, Miller LE. Prediction of upper limb muscle activity from motor cortical discharge during reaching. J. of Neural Engineering. 2007,4:369-379.
    Pohlmeyer EA, Oby ER, Perreault EJ, Solla SA, Kilgore KL, Kirsch RF, Miller LE. Toward the restoration of hand use to a paralyzed monkey:brain-controlled functional electrical stimulation of forearm muscles. PLoS ONE.2009,4(6):e5924.
    Polat O, Yildirim T. FPGA implementation of a general regression neural network:an embedded pattern classification system. Digital signal processing.2010, 3(20):851-856.
    Pruszynski JA, Lillicrap TP, Scott SH. Complex spatio-temporal tuning in human upper-limb muscles. J Neurophysiol.2010,103:564-572.
    Rathelot JA, Strick PL. Muscle representation in the macaque motor cortex:an anatomical perspective. PNAS.2006,103:8257-8262.
    Reich DS, Victor JD, Knight BW. The power ratio and the interval map:spiking models and extracellular recordings. J Neurosci.1998,18:10090-10104.
    Rickert J, Oliverira SC, Vaadia E, Aertsen A, Rotter S, Mehring C. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J Neurosci.2005,25(39):8815-8824.
    Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W. Spikes:exploring the neural code. Cambridge, MA, MIT.1997.
    Roitman AV, Pasalar S, Johnson MTV, Ebner TJ. Position, direction of movement and speed tuning of cerebellar purkinje cells during circular manual tracking in monkey. J Neurosci.2005,25:9244-9257.
    Rotkowski TM. Auditory brain-computer/machine-interface paradigms design. Haptic and Audio Interaction Design.2011,6851:110-119.
    Sanchez JC, Erdogmus D, Principe JC, Wessberg J, Nicolelis MA. A comparison between nonlinear mappings and linear state estimation to model the relation from motor cortical neuronal firing to hand movements. Proc. of SAB'02 Workshop on Motor Control of Humans and Robots:On the Interplay of Real Brains and Artificial Devices.2002a,59-65.
    Sanchez JC, Kim SP, Erdogmus D, Rao YN, Principe JC, Wessberg J, Nicolelis MA. Input-output mapping performance of linear and nonlinear models for estimating hand trajectories from cortical neuronal firing patterns. Proc. of Neural Net. Sig. Proc.2002b,139-148.
    Sanchez JC, Carmena JM. Ascertaining the importance of neurons to develop better brain-machine interfaces. IEEE Tran. On Biomedical Engineering.2004, 51:943-953.
    Sanchez JC, Erdogmus D, Principe JC, Wessberg J, Nicolelis MA. Interpreting spatial and temporal neural activity through a recurrent neural network brain machine interface. IEEE Trans Neural Syst Rehabil Eng.2005,13:213-219.
    Sanger TD. Probability density methods for smooth function approximation and learning in populations of tuned spiking neurons. Neural Computation.1998, 10(6):1567-1586.
    Schafer EA. The cerebral cortex. Testbook of Physiology.1900,697-782.
    Schwartz AB. Motor cortical activity during drawing movements:single-unit activity during sinusoid tracing. J Neurophysiol.1992,68:528-541.
    Seng T, Khalid M, Yusof R. Adaptive general regression neural network for modelling of dynamic plants. Proc. Ins. Mech Eng I:J Syst Control Eng.1999,213:275-287.
    Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Instant neural control of a movement signal. Nature.2002,416(6877):141-142.
    Shadlen MN, Newsome WT. The variable discharge of cortical neurons:implications for connectivity, computation, and information coding. J Neurosci.1998,18: 3870-3896.
    Simoncelli EP, Paninski L, Pillow J, Schwartz O. Characterization of neural responses with stochastic stimuli. The New Cognitive Neurosci.3rd edition, MIT Press.2004.
    Singhal G, Aggarwal V, Acharya S, Aguayo J, He J, Thakor N. Ensemble fractional sensitivity:A quantitative approach to neuron selection for decoding motor tasks. Computational Intelligence and Neuroscience.2010,1-9.
    Smith AC, Brown EN. State-space estimation from point process observations. Neural Computation.2003,15:965-991.
    Specht DF. Generation of polynomial discriminant functions for pattern recognition. IEEE Trans. Electron. Comput.1967,16:308-319.
    Specht DF. A general regression neural network. IEEE Trans. on Neu. Networks.1991, 2(6):568-576.
    Suminski AJ, Tkach DC, Hatsopoulos NG. Exploiting multiple sensory modalities in brain-machine interfaces. Neural Netw.2009,22(9):1224-1234.
    Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. Reliability of signals from a chronically implanted, silicon-based electrode array in non -human primate primary motor cortex. IEEE T Neur Sys Reh.2005,13(4):524-541.
    Suzuki WA, Brown EN. Behavioral and neurophysiological analyses of dynamic learning processes. Behavioral and Cognitive Neuroscience Reviews.2005,4(2): 67-97.
    Talmadoe E. Japan's latest innovation:a remote-control roach. Associated Press.2001.
    Talwar SK, Xu Shaohua, Hawley ES, Weiss SA, Moxon KA, Chapin JK. Rat navigation guided by remote control.2002,417:37-38.
    Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuro -prosthetic devices. Science.2002,296:1829-1832.
    Todorov E. Direct cortical control of muscle activation in voluntary arm movements:a model. Nature Neuroscience.2000,3:391-398.
    Thickbroom GW, Byrnes ML, Stell R, Mastaglia FL. Reversible reorganization of the motor cortical representation of the hand in cervical dystonia. Movement Disorders. 2003,18(4):395-402.
    Tillery SIH, Taylor DM, Schwarz AB. Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles. Rev Neurosci. 2003,107-119.
    Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A point process frame work for relation neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophy.2005,93:1074-1089.
    Tuckwell H. Introduction to theoretical neurobiology. Cambridge university Press. 1988.
    Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature.2008,453(7198):1098-1101.
    Wahnoun R, He J, Tillery SIH. Selection and parameterization of cortical neurons for neuroprosthetic control. J. of Neural Engineering.2006,3:162-171.
    Wang Y, Paiva ARC, Principe JC, Sanchez JC. Sequential Monte Carlo point -process estimation of kinematics from neural spiking activity for brain-machine interfaces. Neu Comput.2009a,21:2894-2930. Biomedical Engineering, IEEE Transactions on. 2004,51(6):966-970.
    Wang Y, Principe JC. Tracking the non-stationary neuron tuning by dual kalman filter for brain machine interfaces decoding.30th Annual International IEEE EMBS Conference.2008,1720-1723.
    Wang Y, Paiva AR, Principe Jose, Sanchez JC. Sequential monte carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces. Neuron Computation.2009a,21:2894-2930.
    Wang Y, Principe J, Sanchez JC. Ascertaining neuron importance for kinematics decoding by information theoretical analysis in motor brain machine interfaces. Neu Network.2009b,22:781-790.
    Wang Y, Principe JC. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces. J. of Neural Engineering.2010,7:1-15.
    Weisokpf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, Birbaumer N. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng.2004, 51(6):966-970.
    Welch G, Bishop G. An introduction to the kalman filter.2006,1:16.
    Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MA. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature.2000,408:361-365.
    Wu W, Black MJ, Gao Y, Bienenstock E, Serruya M, Shaikhouni A, Donoghue JP. Neural decoding of cursor motion using a Kalman filter. Adv Neu Inform Process Syst.2003,15:133-140.
    Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput.2006,18:80-118.
    Wu W, Hatsopoulos NG. Real-time decoding of nonstationary neural activity in motor cortex. IEEE Trans Neu Syst Rehabil Eng.2008,16:213-222.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brian-computer interfaces for communication and control. Clin Neurophysiol.2002, 113(6):767-791.
    Xu K, Wang YW, Wang YM, Wang F, Hao YY, Zhang SM, Zhang QS, Chen WD, Zheng XX. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.2013,10(2):026008.
    Xu K, Wang YW, Wang F, Liao YX, Zhang QS, Li HB, Zheng XX. Neural decoding using a parallel sequential monte carlo method on point processes with ensemble effect. Biomed Research International.2014, in press.
    Xu ZM, Keng K, Guan C, Hoa HT. Neural representation and identification of reaching targets by spike trains in motor cortex. Computational Intelligence, Congnitive Algorithms, Mind, and Brain (CCMB),2013 IEEE Symposium on. 2013,130-137.
    Yoshimura N, Dasalla CS, Hanakawa T, Sato M, Koike Y. Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents. Neurolmage.2012,59:1324-1337.
    Yu Y, Zhang SM, Zhang HJ, Liu XC, Zhang QS, Zheng XX, Dai JH. Neural decoding based on probabilistic neural network. Zhejiang Univ-Sci B.2010,11(4):298-306.
    Zach N, Inbar D, Grinvald Y, Bergman H, Vaadia E. Emergence of novel representations in primary motor cortex and premotor neurons during associative learning. J. of Neuroscience.2008,28(38):9545-9556.
    Zhang KC, Ginzburg I, McNaughton BL, Sejnowski TJ. Interpreting neuronal population activity by reconstruction:a unified framework with application to hippocampal place cells. J Neurophys.1998,79:1017-1044.
    Zhang QS, Zhang SM, Hao YY, Zhang H, Zhu J, Zhao T, Zhang J, Wang Y, Zheng X, Chen W. Development of an invasive brain-machine interface with a monkey model. Chinese Sci Bull.2012,57(16):2036-2045.
    郝耀耀.猴子伸-抓动作在大脑运动皮层中的表征及解码.[博士学位论文].杭州:浙江大学.2013.31.
    明东,万柏坤.功能性电刺激技术在截瘫行走中的应用研究紧张.生物医学工程学杂志.2007,24(4):932-936.
    王勇,槐瑞托,王敏,杨斌.基于脑微刺激的智能动物的研究.中国生物医学工程学报.2006,25(4):497-502.
    张巧生.基于猴子M1区的腕部解码系统研究.[博士学位论文].杭州:浙江大学.2012,21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700