用户名: 密码: 验证码:
集成垂直耦合结构的光波导电光调制器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芯片的发展趋势是电-光-电的光电混合集成,微光电子集成芯片是将集成电路与光子集成器件并为一体,实现具有实际价值的光电子集成系统。利用光子器件能够高密度并行操作以及快速的输入/输出能力,与电子器件结合起来后实现超快速大规模的集成系统。具有发射、调制、探测光信号以及放大、逻辑运算、智能控制电信号的功能。在光互连、光交换、光信息处理等方面具有重要的意义以及广泛的应用前景。在这个背景下基于绝缘体上硅(SOI)材料的微环谐振腔片上集成系统逐渐受到国内外学者的广泛关注。
     本文就是以目前国际最新成果作为指引,面向高Q值光学微环谐振腔片上集成系统,开展了集成光栅垂直耦合的光波导电光调制器的研究。主要是围绕光波导电光调制器,对其耦合单元及敏感单元分别进行了详细的研究,包括光栅耦合器、环形谐振器等。主要的研究内容归纳为以下几方面:
     (1)理论及设计方面:光栅耦合器和环形谐振器分别作为电光调制器的耦合单元和敏感单元,对三者的相互关系以及基本理论进行了深入的研究;利用FDTD、BPM以及Rsoft光学仿真软件分别对垂直光栅耦合器、环形谐振器的关键参数进行了模拟仿真分析,深入研究了光栅刻蚀深度、周期及光束的入射角度等参数对耦合性能的影响,以及波导宽度、弯曲半径和耦合间距等参数与环形谐振器谐振性能之间的关系,设计了一种新型的四环级联结构谐振器,可以实现谐振峰的分裂;利用SentaurusTCAD软件对二极管特性进行了仿真分析,最终确定光波导电光调制器的结构参数以及工艺参数。
     (2)加工制备方面:利用电子束曝光及感应耦合等离子体刻蚀工艺相结合的方式完成了光栅耦合器和环形谐振器的制备。根据设计的掺杂浓度及掺杂深度,利用离子注入法完成了电光调制器P-I-N二极管的制备,并与PCB版接连后完成调制器的整体结构制备。
     (3)测试方面:首先对端面耦合与垂直耦合方式进行了对比效率实验,经过计算分析实验结果可以得到端面耦合的耦合效率为12%,光栅耦合器添加增透膜后的耦合效率可以达到26%,并对光纤-光栅耦合区域进行了固化封装,测试结果发现可以较大程度地提高器件的稳定性,实现了高效且稳定的耦合单元;测试发现设计的新型四环级联结构的谐振器不但可以实现光的延迟,还能保证较高的品质因数(Q=0.72×105),并且对温度有较好的敏感度0.16nm/℃。在验证了具有较好的光耦合单元及性能较好的敏感单元后,搭建调制器测试平台,分别对调制器的静态特性和动态特性进行了测试。测试结果实现了光谱曲线中谐振峰的偏移,动态测试中,目前可获得30MHz的稳定输出信号。
Hybrid integrated of electricity-optics-electricity is the development of chip. MEMSintegrated chip constitute optoelectronic integrated system with practical value. Takes fulladvantage of high-density integrated photonic devices operating in parallel andhigh-speed optical input/output capability, skillfully combined with the photon functionsand electronic functions, constitute a high-speed and large scale integrated systems withtransmit, modulation, detection optical signal and amplify, logical, intelligent controlelectrical signals. It has great significance and broad prospect in optical interconnects,optical switching, optical information processing. Micro-ring resonator integrated systemwhich fabricated on silicon-on-insulator (SOI) gradually attracted widespread attentionfrom domestic and international scholars.
     This dissertation based on the latest international achievements as guidelines, forhigh-Q optical micro-ring resonator chip integrated system carried out a study ofsilicon-based optical waveguide several discrete devices, which is mainly around thewaveguide electro-optic modulator including the grating couplers, ring resonators andet.al. The main contents are summarized in the following aspects:
     (1) Theory and design: Grating coupler and ring resonator look as coupling unit andsensitive unit of electro-optic modulator respectively and do the thorough research onthese basic theories. Grating coupler and ring resonator are simulated about groove depthof grating, period, the angle of incidence by optical simulation software FDTD.Meanwhile, key parameters of waveguide width, bend radius and the gap betweenwaveguide and resonator are investigated. A novel four-ring cascade structure is designed.Resonance peaks split can be realized. Simulation analysis of the electro-optic effect andthe frequency modulation is performed by simulation software Sentaurus TCAD todetermine the final modulator parameters of structures and technics.
     (2)Preparation process: The preparation of grating coupler and ring resonator isfabricated with electron beam lithography and inductively coupled plasma etchingprocess. According to the design of the doping concentration and doping depth, the modulator is used of ion implantation to complete the preparation of electro-opticmodulator PIN diode, and the final structure of the modulator was prepared after a seriesof PCB versions connecting.
     (3)Testing: compared with the experiments of end-face coupling and verticalcoupling, the result indicate that the coupling efficiency of end-face coupling method isaround12%,while the coupling efficiency of grating coupler with antireflective coating isaround26%. The encapsulation experiment of fiber-grating is carried out, and theefficiency and stability of the device is improved considerably. In terms of characteristicsof resonator, four-ring structure not only obtains a high quality factor with72,000, opticaldelay but also can achieve a nice temperature sensitivity0.16nm/℃. The testing platformfor modulator after verifying a better performance of optical coupler and a sensitive unitis set up. Static and dynamic characteristics of the modulator are tested, respectively. Theshift of the resonance peak in spectral curve is achieved by experiments. The stableoutput signal of30MHz is achieved in dynamics tests.
引文
[1]. D. A. B. Miller. Rationale and challenges for optical interconnects to electronic chips[J], Proc. IEEE,2000,88(6):728-749.
    [2].西原浩等著,梁瑞林译.集成光路[M].北京:科学出版社,2004:29~30.
    [3]. Lionel Kimerling. Microphotonics: Hardware for the Information Age. MITCommuni-cations Technology Roadmap.
    [4]. Kerry J. Vahala. Optical microcavities. Nature,2003,424:839-846.
    [5]. Fabryand A. Perot,“A Multipass Interferometer,” Ann. Chim. Phys, vol.16, pp.115,1899.
    [6]. D. K. Armani, T. J. Kippenberg, S. M. Spillane. K. J. Vahala. Ultra-high-Q toroidmicro-cavity on a chip. Nature,2003,421:925-928.
    [7]. L.F.Stokes and M.Chodorow,“All-single-mode fiber resonator,”Opt.Lett.7,288(1982).
    [8]. Martin T. Hill, Harmen J. S. Dorren, Tjibbede Vries. A fast low-power optical memorybased on coupled micro-ring lasers. Nature,2006,432:206-209.
    [9]. Haisheng Rong, Shengbo Xu, ODED Cohen. A cascaded silicon Raman laser. NaturePhotonics,2008,2:170-174.
    [10]. Payam Rabiei, William H. Steier, Cheng Zhang, Larry R. Dalton. Polymer micro-ringfilters and modulators. Journal of Lightwave Technology,2002,20:1968-1975.
    [11]. Bipin Bhola, William H. Steier. A novel optical microring resonator accelerometer.IEEE Sensors Journal,2007,7(12):1759-1766.
    [12]. Isa Kiyat, Coskun Kocabas and Atilla Aydinli. Integrated micro ring resonatordisplacement sensor for scanning probe microscopies. Journal of Micromechanics andMicroengineering,2004,14:374–381.
    [13]. Jacob Scheuer, Amnon Yariv. Sagnac effect in coupled-resonator slow-light waveguidestructures. PRL,2006,96,053901:1-4.
    [14]. A.Layadi, A.Vonsovici, R.Orobtchouk, D.Pascal, A.Koster. Low loss opticalwaveguide on standard SOI/SIMOX substrate [J]. Optics Communications.1998,146(1-6):31-33.
    [15].张自嘉,许安涛.薄包层长周期光纤光纤光栅的折射率传感特性[J].传感技术学报,2009,22(8):1105-1108.
    [16]. Robert G.Hunsperger, Integrated Optics Theory and Technology[M]. USA: SpringerScience Business Media,2009:107-128.
    [17]. R.A.Soref, B.R.Bennett. Electro Optical Effects in Silicon[C]. Ieee J Quantum Elect1987,23(l):123-129.
    [18]. A.Shacham, K.Bergman, and L.P.Carloni.Photonic Networks-on-Chip for FutureGenerations of Chip Multiprocessors[J], IEEE Trans. Compute,2008,57(9):1246-1260.
    [19]. B.Wang, J.H.Jiang, and G.P.Nordin,“Compact slanted grating couplers. Opt.Express,vol.12, pp.3313~3326,2004.
    [20]. Sharee J. McNab, Nikolaj Moll, and Yurii A. Vlasov, Ultra-low loss photonicintegrated circuit with membrane-type photonic crystal waveguides, OpticsExpress, Vol.11, Issue22, pp.2927-2939(2003).
    [21]. Gunther Roelkens, Student Member, IEEE, Pieter Dumon, Student Member, EfficientSilicon-on-Insulator Fiber Coupler Fabricated Using248-nm-Deep UV Lithography.IEEE photonics technology letters, Vol.17, No.12,2005.
    [22]. F. V. Laere, G. Roelkens, M. Ayre. Compact and Highly Efficient Grating CouplersBetween Optical Fiber and Nanophotonic Waveguides. Journal of LightwaveTechnology, Vol.25, Issue1, pp.151-156(2007).
    [23]. Kippenberg, T.J. Vahala, K.J. Demonstration of high-Q microdisk resonators:fabrication and nonlinear properties. Lasers and Electro-Optics,2007. CLEO:1-2.
    [24]. J. Kalkman, A. Polman, T.J. Kippenberg. Erbium-implanted silica microsphere laser.Nuclear Instruments and Methods in Physics Research B.2006,242:182–185.
    [25]. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala. Fabrication andcoupling to planar high-Q silica disk microcavities. Applied Physics Letters,83(4):797-799.
    [26]. Peter T. Rakich, Hideyuki Sotobayashi. Nano-scale photonic crystal microcavitycharacterization with an all-fiber based1.2–2.0μm super-continuums. Optics Express.2005,13(3):821-825.
    [27]. Jorge Bravo-Abad, Alejandro Rodriguez, Peter Bermel. Enhanced nonlinear opticsinphotonic-crystal microcavities. Optics Express,2007,15(24):16161-16176.
    [28]. Xiao-Wei Wu, Chang-Ling Zou, Jin-Ming Cui, Yong Yang, Zheng-Fu Han andGuang-Can Guo. Modal coupling strength in a fiber taper coupled silica microsphere.Journal of Physics B: Atomic, Molecular and Optical Physics.2009,42:085401.
    [29]. Bing Bai, Tao Li. Solutions for cylindrical cavity in saturated thermopor elasticmedium. Act Mechanic Solida Sonica.2009,22(1):85-94.
    [30]. T L Yeo, S Y Chen1, T Sun1, K T V Grattan1. Microsphere laser developments forpotential gas sensing Applications. Journal of Physics,2007,76:012067.
    [31]. Andrea M. Armani and Kerry J. Vahala. Heavy water detection using ultra-high-Qmicrocavities. Optics Letters,2006,31(12):1896-1898.
    [32]. Jin Yao, David Leuenberger, Ming-Chang M. Lee, Ming C. Silicon Microtoroidalresonators with integrated MEMS tunable coupler. IEEE Journal of Selected of Topicsin Quantum Electronics,2007,13:202-208.
    [33]. Mani Hossein-Zadeh, and Kerry J. Vahala. Free ultra-high-Q microtoroid: a tool fordesigning photonic devices.2007,15:166-175.
    [34]. Bipin Bhola, William H. Steier. A novel optical microring resonator accelerometer.IEEE Sensors Journal,2007,7(12):1759-1766.
    [35]. Isa Kiyat, Coskun Kocabas and Atilla Aydinli. Integrated micro ring resonatordisplacement sensor for scanning probe microscopies. Journal of Micromechanics andMicroengineering,2004,14:374–381.
    [36]. Xu,Q., Almeida, V.R. and Lipson, M.,“Micrometer-scale all-optical wavelengthconverter on silicon,” Optics Letters,Vol.30,No.20,2733-2735,15Oct.2005.
    [37]. Lenz G,Eggleton B J,Madsen C K.Optical delay lines based on optical filters[J].Quantum Electronics:2001,37(4):525-532.
    [38]. Yang J, Wang E, Jiang X. Linearization of mach-Zehnder modulator using microring-based all-pass filter [J]. Chinese Optics Letters:2005,3(6):333-341.
    [39]. Kyle Preston,Sasikanth Manipatruni,Alexander Gondarenko. Deposited siliconhigh-speed integrated electro-optic modulator [J], OPTICS EXPRESS,2009,17(7):5118-5124.
    [40]. J.M.Choi, R.K.Lee, and A.Yariv. Control of critical coupling in a ring resonator-fiberconfiguration: application to wavelength-selective switching, modulation,amplification, and oscillation [J], Opt. Lett.2001,26:1236-1238.
    [41]. Ling T, Chen SL, Guo LJ. Fabrication and characterization of high Q polymermicro-ring resonator and its application as a sensitive ultrasonic detector[J], OpticsExpress,2011,19(2):861-869.
    [42]. Po Dong, Shirong Liao, e.al. Low Vpp, ultralow-energy, compact, high-speed siliconelectro-optic modulator. Optics Express.2009,17(25):22484-22490.
    [43]. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett.2006,96:123901.
    [44]. Q. Xu, J. Shakya, and M. Lipson, Optics Express,2006,14:6463.
    [45]. J.E.Heebner, R.W.Boyd, and Q.H.Park, Phys. Rev.,2002,65:036619.
    [46]. David D. Smith, Hongrok Chang, Krik A. Fuller, A.T.Rosenberger, and Robert W.Boyd: Phys.Rev.A,2004,69:063804.
    [47]. Danfeng Cui, Liping Wei, et al.“Induced-transparency in silicon-on-insulator basednovel resonator systems”. Micro&Nano Letters, Volume8, Issue10, October2013, p.619–622.
    [48]. Almeida,V.R.,Barrios,C.A.,Panepucci,R.R.,Lipson,M.,“All-optical control of light on asilicon chip,”Nature,pp.1081-1084(Oct.2004).
    [49]. G. A. Wurtz, R. Pollard, and A. V. Zayats, Phys. Rev. Lett.,2006,97:057402.
    [50]. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, Opt. Express,2011,19:2910.
    [51]. L. Maleki, A.B. Matsko, A.A. Savchenkov, V.S. Ilchenko, Opt. Lett.,2004,29:626.
    [52]. J.K.S. Poon, J. Scheuer, Y. Xu, A. Yariv, J. Opt. Soc. Am. B,2004,21:1665.
    [53]. Totsuka K, Kobayashi N, Tomita M, et.al, Phys. Rev. Lett.,2007,98:213904.
    [54]. Yanik M F, Fan S, et.al, Phys. Rev. Lett.,2004,92:083901.
    [55].邱巍、掌藴东、叶建波等,物理学报,2008,57:2242.
    [56]. R. Quintero-Torres, M. Navarro, M. Ackerman, J.C. Diels, Opt.Commun.2004,241:179.
    [57]. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, Appl. Phys.Lett.2004,85:5833.
    [58]. Xu Q., Shakya J., Lipson M. Optics Express2006.14(14):6463-6468.
    [59]. Fengnian Xia, Lidija Sekaric and Yurii Vlasov,“Ultracompact optical buffers on asilicon chip,” Nature Photonics, vol.1, Jan.2007, pp.65-71.
    [60]. Jilei Hou, Student Member, IEEE, Paul H. Siegel,et al. Capacity-ApproachingBandwidth--Efficient Coded Modulation Schemes Based on Low-Density Parity-Check Codes[J]. IEEE transactions on transactions on information theory,49(9),2003.
    [61]. Seyf S. Bazarjani, Martin Snelgrove, and Tom MacElwee*. A1V Switched-CapacitorΣ Modulator. Canada.
    [62]. Xu Q, Schmidt B,pradian S,et al. Micrometre-scale silicon electro-optic modulator[J].Nature,2005,435(19):325-327.
    [63]. Ming Liu, Xiaobo Yin, Erick Ulin-Avila, et al. A graphene-based broadband opticalmodulator [J], Nature,2011,474(2),64-67.
    [64].李献杰,齐利芳,郭维廉,等.直波导耦合输出AlGaInAs多量子阱环形激光器研究.科学通报,2009,54:3088~3091.
    [65]. Limin Tong, Jingyi Lou, Eric Mazur. Single-mode guiding properties ofsubwavelength-diameter silica and silicon wire waveguides[J].OPTICSEXPRESS.2004,12(6):1025-1035.
    [66]. L.F.Stokes and M.Chodorow. All-single-mode fiber resonator [J]. Opt.Lett.1982,7:288.
    [67]. Akhmediev R A, Li Q Y and Pask C. J. Opt. Soc. Am. B.1992,9,884.
    [68].曹学龙等.中国激光.1988,15,313.
    [69]. Seaton C T, Xu M, Stegeman G I and Winful H G. Opt. Eng.1985,24,593.
    [70]. Moloney J V, Ariyasu J, Seaton C T and Stegeman G I. Appl. Phys. Lett.1986,48,826.
    [71]. Moloney J V, Ariyasu J, Seaton C T and Stegeman G I. Opt. Lett.1986,11,313.
    [72]. Jens Bolten, Thorsten Wahlbrink, Thomas Mollenhaue. CMOS compatiblecost-efficient fabrication of SOI grating couplers. Microelectronic Engineering,86(2009)1114-1116.
    [73]. T. W. Ang, G. T. Reed, A Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey,“Effects of grating heights on highly efficient unibond SOI waveguide gratingcouplers”, IEEE Photon, Technol. Lett, vol.12, no.1, pp.59-61,Jan.2000.
    [74]. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J.Van Campenhout, P. Bienstman, and D. Van Thourhout,“Nanophotonic waveguides insilicon-on-insulator fabricated with CMOS technology,” J.Lightw. Technol., vol.23,no.1, pp.401-412, Jan.2005.
    [75]. H.Xie, B.Li, et al. Focused ion beam Moire method, Opt. Laser Eng.40(3)(2003)163-177.
    [76]. D.T.Read, J.W.Dally, Theory of electron beam Moire, J.Res.Natl. Inst. StandardsTechnol.101(1)(1996)47-61.
    [77]. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J.Van Campenhout, P. Bienstman, and D. Van Thourhout,“Nanophotonic waveguide s insilicon-on-insulator fabricated with CMOS technology,” J. Lightw. Technol., vol.23,no.1, pp.401–412, Jan.2005.
    [78]. R. M. Emmons and D. G. Hall,“Buried-oxide silicon-on-insulator structures.2.Wave-gui de grating couplers,” IEEE J. Quantum Electron., vol.28, no.1, pp.164–175, Jan.1992.
    [79].“Embedded, slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett., vol.17, no.9, pp.1884–1886, Sep.2005.
    [80]. M Koshiba, Y Tsuji, M Hikari. Time-domain beam propagation method and itsapplication to photonic crystal cavity. Journal of Lightwave Technology,2000,18:102-105.
    [81]. Y. Xu, J. S. Vuc kovic, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv.Finite-difference time-domain calculation of spontaneous emission lifetime in amicrocavity.J.Opt.Soc.Am.B,1999,16:465-474.
    [82]. Hagness, S. C. Rafizadeh, D. Ho, S. T. Taflove, A.FDTD microcavity simulations:design and experimental realization of waveguide-coupled single-mode ring andwhispering-gallery-mode disk resonators. Lightwave Technology,1997,15:2154–2165.
    [83]. Scarmozzino R, Osgood R M. Comparison of finite-difference and Fourier-transformsolutions of the parabolic wave equation with emphasis on integrated-opticsapplications. Journal of Optical Society of America,1991,8(5):724-731.
    [84]. Yamauchi J, Kikuchi S.Beam propagation analysis of bent step-index slab waveguides.Electron.Lett,1990,26(12):822-833.
    [85]. Scarmozzino R, et al. Numerical techniques for modeling guided-wave photonicdevices. IEEE J. Quantum Electron.,1996,6(1):150-162.
    [86]. Yee K S. Numerical solution of initial boundary problems involving Maxwell’sequation in isotropic media. IEEE Trans. Antennas Propagat.,1966,14(3):302-307.
    [87]. Taflove A, Brodwin M E. Numerical solutions of steady state electromagneticscattering problems using the time-dependent Maxwell’s equations. IEEE Transactionson Microwave Theory and Techniques,1975,23:623-630.
    [88]. Taflove A. Computational Electromagnetics: The Finite-Difference Time-DomainMethod. Boston: Artech House,1995.
    [89]. KS Yee,JS Chen.The finite-difference time-domain (FDTD) and the finite-volumetime-domain (FVTD) methods in solving Maxwell's equations[J], Antennas andPropagation, IEEE Transactions on.1997,45(3):354-363.
    [90]. Andrei Tsarev. The New Design and Numerical Simulation by3D BPM of NewCompact Polarisation Rotator in Anisotropic LiNbO3Graded Index Waveguide [J].Russia, Siberian Branch of Russian Academy of Science Prospect Lavrenteva.
    [91]. FULLWAVE V.7, RSoft Design Group [J]. Inc: Ossining, NY.
    [92]. E.A.Kolosovsky et al. An exact method for analysing light propagation in anisotropicinhomogeneous optical waveguides [J]. Optics Communications,1982,43(1):21-25.
    [93].孙立.硅微通道板结构的热电特性研究[D].上海:华东师范大学.2010.
    [94]. F.Van Laere, T.Claes, J.Schrauwen, et al. Compact Focusing Grating Couplers forSilicon-on-Insulator Integrated Circuits. Photonics Technology Letters,2007,19(23):1919-1921.
    [95]. D.Taillaert, F.Van Laere, M.Ayre, et al. Grating Couplers for Coupling between OpticalFibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics (invited),2006,45(8A):6071-6077.
    [96].崔丹凤,薛晨阳,仝小刚等.垂直纳米光栅耦合器耦合效率分析与测试,传感技术学报,24(8),33-37,2011.
    [97]. Zhu Qing'e, Evanescent waves of the total internal reflection phenomenon. Journal ofBeijing Normal University (Natural Science).1985,2:15-18.
    [98]. Henri J. Lezec and Tineke Thio. Diffracted evanescent wave model for enhanced andsuppressed optical transmission through subwavelength hole arrays[J]. OPTICSEXPRESS,2004,12(16):3629-3651.
    [99]. J.S.Foresi,P.R.Villeneuve. Photonic-bandgap microcavities in optical waveguides[J].Nature,1997,390(13):143-145.
    [100]. Lei Shi, Yonghao Xu, Wei Tan and Xianfeng Chen*.Simulation of Optical MicrofiberLoop Resonators for Ambient Refractive Index Sensing [J]. Sensors2007,7,689-696.
    [101]. Nathaniel J.Quitoriano, Miro Belov,et al. Single-Crystal, Si Nanotubes, and TheirMec-hanical Resonant Properties[J]. Nano Lett,2009,9(4):1511–1516.
    [102]. C. E. Png, G. T. Reeda, W. R. Headley,et al. Design and experimental results of smallsilicon-based optical modulators[J]. Proc. of SPIE.2004,5356:44-55.
    [103]. Magdalena S. Nawrocka,Tao Liu, Xuan Wang, and Roberto R Panepucci. Tunablesilicon microring resonator with wide free spectral range [J]. Appl. Phys. Lett,2006,89(7):071110(1-3).
    [104].马春生,刘式墉.光波导模式理论.长春:吉林大学出版社,2006.
    [105].崔丹凤.芯片内光波导环形谐振腔谐振特性研究[D].太原:中北大学.
    [106]. K. Totsuka, N. Kobayashi, and M. Tomita, Phys. Rev. Lett.,2007,(98):213904.
    [107]. Xu Q., Dong P., Lipson M. Nature Physics,2007,3(6):406-410.
    [108].王楠,掌蕴东,王金芳等.环中环结构谐振腔中的耦合谐振透明特性研究,物理学报,11(15),2009.
    [109]. Olivier Krebs, Paul Voisin. Giant optical anisotropy of semiconductorheterostructures with no common atom and the quantum-confined Pockels effect [J].Physical review letters,1996,77(9):1829-1832.
    [110]. Sandalphon, B. Kippelen, K. Meerholz, et al. Ellipsometric measurements of polingbirefringence, the Pockels effect, and the Kerr effect in high-performancephotorefractive polymer composites[J]. Applied Optics,1996,35(14):2346-2354.
    [111]. DAB Miller, DS Chemla, S Schmitt-Rink. Relation between electroabsorption inbulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysheffect [J]. Physical Review B,1987,33(10):6976–6982.
    [112]. K. B. Nordstrom, K. Johnsen, S. J. Allen,et al. Excitonic Dynamical Franz-KeldyshEffect[J] Phys. Rev. Lett.1998,81(2):457–460.
    [113]. Vilson R. Almeida, Qianfan Xu, Michal Lipson. Ultrafast integrated semiconductoroptical modulator based on the plasma-dispersion effect [J]. Optics Letters,2005,30(18):2403-2405.
    [114]. Treyz, G.V. Silicon Mach–Zehnder waveguide interferometers based on the plasmadispersion effect [J]. Applied Physics Letters,1991,59(7)):771–773.
    [115]. R. A. Soref and J. P. Lorenzo. All-silicon active and passive guided-wavecomponents for λ=1.3and1.6μm [J]. IEEE J. Quantum Electron,1986,22(6):873-879.
    [116]. A. Brimont F.Y, Gardes, P. Sanchis1. Design of a micro-ring resonator electro-opticalmodulator embedded in a reverse biased PN junction [J], Eindhoven,The Netherlands,2008,11-13.
    [117]. JF Chen, JA Matthews. Mask for photolithography.1993, US Patent5242770.
    [118]. Rogers, J.A. Using an elastomeric phase mask for sub-100nm photolithography inthe optical near field [J]. Applied Physics Letters,70(20):2658–2660.
    [119]. C. Vieu,F. Carcenac1, A.Pépin, et al. Electron beam lithography: resolution limits andapplications[J]. Applied Surface Science,2000,164(4):111–117.
    [120].莫文琴.基于微环谐振器的光学加速度地震检波器的研究[D].武汉:华中科技大学.2011.
    [121].晋玉剑. SOI集成光波导的制备及传输特性研究[D].太原:中北大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700