用户名: 密码: 验证码:
胃十二指肠疾病高发区幽门螺杆菌毒力分析及dupA(2499)基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     幽门螺杆菌(H. pylori)是定植于人类胃粘膜上皮细胞表面的一种细菌,与胃十二指肠疾病的发生和发展密切相关。分析胃十二指肠疾病高发区(威海)H. pylori临床分离株毒力因子的分子特征(包括cagPAI、vacA基因和dupA基因),以评价该地区H. pylori I临床分离株的毒力。研究该地区H. pylori菌株的dupA基因功能,以探讨H. pylori dupA基因的致病机制。
     方法:
     1.选取胃十二指肠疾病高发区(威海)临床就诊的患者,进行胃粘膜组织分离培养H. pylori菌株。采用PCR扩增结合测序的方法,分析H.pylori I临床分离株cagPAI (cagA, cagE, cagl, cagL, cagM, cagT和cagX基因)、cagA基因3’端可变区、vacA基因和dupA基因类型,与NCBI (National Center of Biotechnology Information)中相关序列进行比对。并根据基因序列获得了相应蛋白的氨基酸序列,采用MEGA4.1构建相应系统发育树。
     2.研究分离于十二指肠溃疡患者的H. pylori WH-21菌株携带的dupA基因类型,并对其蛋白进行生物学信息学分析,包括该蛋白一级结构、二级结构和三级结构特征及该蛋白细胞定位和功能结构域等。
     3.构建pET-32a-dupA原核表达载体,转化于E. coli Rosetta(DE3)中。经IPTG诱导后表达重组DupA蛋白,以Ni2+-NTA珠分离纯化目的蛋白。利用ATPase分解ATP生成无机磷的原理,检测重组DupA蛋白的ATPase活性。采用动物实验制备抗重组DupA蛋白多克隆抗血清。
     4.利用Western blotting法检测DupA (2499)蛋白的亚细胞定位。采用免疫共沉淀实验和质谱分析方法,进行DupA (2499)蛋白的互作蛋白分析。
     5.构建敲除载体pBluescript/△dupA::KMr,采用同源重组的方法构建H. pylori dupA (2499)基因缺失株。
     6. H. pylori和GES-1细胞共培养后,采用Western blotting方法分析dupA (2499)基因的缺失对H. pylori CagA蛋白转运的影响,以及CFU实验和粘附率实验分析H. pylori dupA (2499)基因缺失株的粘附功能。
     7.分析不同pH值液体培养基中H. pylori生长情况,研究IH. pylori dupA (2499)基因缺失株对酸性环境的抵抗力。采用Western blotting,分析培养后上清液中脲酶含量。H. pylori和GES-1细胞共培养,采用ELISA方法分析上清液中IL-8的浓度,分析H. pylori dupA (2499)基因缺失株毒力变化。
     8. H. pylori和MKN-45细胞共培养后,采用MTT方法检测H. pylori dupA (2499)基因缺失株的细胞毒变化,Hoechst33258染色后显微镜下观察H. pylori dupA (2499)基因缺失株对肿瘤细胞形态变化的影响,Western blotting分析线粒体通路的凋亡相关分子标志变化,包括活化Caspase-3, PARP, Bax和Bcl-2变化。
     结果:
     1.经过PCR扩增后,116株H. pyloril临床分离株均携带cagA, cagL, cagM, cagT和cagX基因,而只有89.7%(104/116)和82.8%(96/116)菌株分别扩增出cagE和cagI基因。25.9%(30/116)菌株中发现cag部分缺失,其中cagPAI部分缺失株在慢性胃炎中占44.4%(24/54)显著高于胃溃疡、十二指肠溃疡和胃癌(9.7%,6/62)咖<0.001)。未发现cagPAI完全缺失的H. pylori菌株。
     24株菌株cagA3'端可变区氨基酸序列可分为两大群:东亚型(91.7%)和西方型(8.3%),其中前者为EPIYA-A-B-D型,后者为EPIYA-A-B-C型。CagPAI蛋白中除了CagL蛋白外,CagI、CagM、CagT和CagX蛋白序列均为保守。系统发育树提示CagPAI蛋白也分为两个群:东亚型和西方型,大部分菌株也属于东亚型。
     H. pyloril临床分离株vacA基因s区和m区的主要流行模式为s1a/m2(48.3%)和slc/m2(13.8%)。31.0%的H. pylori临床分离株携带dupA基因,其中在胃溃疡、十二指肠溃疡和胃癌携带率为40.3%,高于慢性胃炎(20.4%,p=0.02)。dupA基因序列分析显示其读码框架为2499bp,称作dupA (2499)基因。
     2. H. pylori WH-21菌株携带的dupA基因全长2499bp,称作dupA (2499)基因。威海地区8株dupA碱基序列同源性为99.3%,与日本两株H. pylori菌株的dupA基因碱基序列同源性为99.25%,不同地区14株H. pylori dupA碱基序列同源性为91.65%。生物信息学分析发现DupA (2499)蛋白为稳定亲水性蛋白质,抗原性强。无信号肽且有多个跨膜区,定位于细胞内膜。a螺旋是该蛋白多肽链中主要组成结构元件,具有一个卷曲螺旋结构。三维结构预测其配体结合物质为ADP、ATP和Mg2+等。与CagE_TrbE_VirB超家族有较高的同源性,具有ATP结合位点。
     3.获得了重组DupA蛋白,该蛋白ATPase活力为129.5±17.8/mgprot。成功制备了抗重组DupA蛋白多克隆抗血清,抗体效价为1:6.4x104。
     4. Western blotting结果显示DupA (2499)蛋白定位于胞膜。经过免疫共沉淀实验和质谱分析,DupA (2499)蛋白的互作蛋白为脲酶和HSP60。
     5.获得了H. pylori dupA (2499)基因缺失株,并通过了PCR和Western blotting的验证。
     6.采用H. pylori感染GES-1细胞后,缺失株组和野生株组向胞内转运CagA蛋白无差别。CFU实验结果[(27.2±7.1)×106和(28.5±6.9)×106,p=0.772]和粘附率实验结果(81.0%和78.8%,p=0.724)均无明显差异。
     7.除pH6.5-pH7.5之外,其它酸性环境下野生株组菌量显著高于缺失株组(p<0.05)。缺失株组的脲酶分泌低于野生株组,特别在酸性环境时。细菌细胞共培养后,野生株组上清液中IL-8浓度显著高于缺失株组(p<0.001)
     8.与对照组比较,细菌细胞共培养12h后MKN-45细胞存活率开始降低,缺失株组MKN-45细胞存活率显著高于野生株组(p<0.05)。细菌细胞共培养12h后,Hoechst33258染色结果显示缺失株组和野生株组均可以引起MKN-45细胞凋亡,但野生株组凋亡率显著高于缺失株组(p<0.05)。6h后野生株组和缺失株组均开始出现Caspase-3和PARP的剪切活化,野生株组强于缺失株组。与缺失株组比较,野生株组Bax明显上调而Bcl-2则明显下调。
     结论:
     1.胃十二指肠疾病高发区(威海)H. pylori I临床分离株为强毒株,与该地区的胃十二指肠疾病高发相关。H. pylori强毒性特征与东亚型cagA基因3’端可变区、完整的cagPAI、东亚型cagFAI基因、强毒性vacA基因和dupA (2499)基因有关。
     2.dupA (2499)基因保守且同源性高,适宜进行体外表达。DupA (2499)蛋白稳定且抗原性强,适合抗体的制备。
     3. DupA (2499)蛋白独立于CagPAI之外,存在于H. pylori的内膜,具有ATPase活性并参与脲酶的分泌,但不参与H. pylori的CagA蛋白的转运和其粘附过程。
     4. H. pylori DupA(2499)蛋白参与脲酶分泌的调节,使携带dupA (2499)基因的H. pylori菌株具有更强的耐酸特性。耐酸特性和刺激IL-8分泌的特性,与携带dupA基因H. pylori菌株引起十二指肠溃疡高发密切相关。DupA (2499)蛋白通过线粒体通路诱导肿瘤细胞凋亡,与携带dupA基因的H. pylori菌株降低胃癌发病相关。
Objectives
     Helicobacter pylori (H. pylori) colonize the surface area of the gastric mucosa in the human stomach, and are associated with an increased risk for various gastroduodenal diseases. In order to estimate the virulence of H. pylori isolated from the patients in a region at high risk of gastroduodenal diseases, we investigated the prevalence of H. pylori virulence markers, including cagPAI, vac A and dupA. The function of dupA of H. pylori was analyzed to further reveal the pathogenesis of H. pylori in the study.
     Methods
     1. H. pylori strains were isolated from gastric biopsies of patients in a region at high risk of gastroduodenal diseases. cagPAI genes (cagA, cagE, cagl, cagL, cagM, cagT and cagX), the cagA3'variable region, vac A, and dupA genotypes were determined by PCR. Some amplicons of the cagA3'variable region, cagPAI genes (cagl, cagL, cagM, cagT and cagX) and dupA were sequenced to compare with deposited sequences in NCBI (National Center of Biotechnology Information). The deduced amino acid sequence of proteins was obtained from the nucleotide sequence. The full-length amino acid sequences were aligned, and the phylo genetic trees were constructed by the program MEGA4.1.
     2. dupA genotype of H. pylori WH-21strain was analyzed, which was isolated from the patient with duodenal ulcer. The biological functions of the deduced DupA were analyzed using the structural bioinformatics analysis methods, including the primary structure, secondary structure, tertiary structure, the prediction of protein subcellular localization and the functional domains.
     3. After recombinant expression vector pET32a (+)-dupA was constructed and transformed into E. coli Rosetta (DE3), recombinant DupA fusion protein was induced by IPTG and affinity purified using Ni-nitrilotriacetic acid resin. ATPase activity of recombinant DupA fusion protein was tested using the assay based on the inorganic phosphate released by ATP hydrolysis. The polyclonal antibody to recombinant DupA fusion protein was produced by animal experiment.
     4. The subcellular localization of DupA (2499) was analyzed by Western blotting. The interaction proteins of DupA (2499) were investigated using Immunoprecipitation assay and MS.
     5. After the pBluescript/△dupA::KMr was constructed and introduced into H. pylori WH21strain by electroporation, an isogenic mutant of H. pylori dupA was generated by allelic exchange mutagenesis.
     6. The CagA translocation activity of the dupA-deleted mutant was analyzed after GES-1cells infected with H. pylori by Western blotting. The adhesion activity of the dupA-deleted mutant was quantified by colony-forming units (CFU) assay and adhesion rate assay.
     7. Susceptibility of dupA-deleted mutant to low pH was measured by the bacterial growth in the different pH liquid media. The supernatants of the different pH liquid media were collected for analyzing urease levels using Western blotting. IL-8levels in the supernatants were determined after GES-1cells co-cultured with H. pylori strains to estimate the virulence of the dupA-deleted mutant.
     8. After MKN-45cells co-cultured with H. pylori strains, the death of MKN-45cells induced by H. pylori was studied in cytotoxicity assay by MTT assay, and Hoechst33258staining was performed for morphology analysis. Protein-involved mitochondria mediated apoptosis were analyzed by Western blotting, including Caspase-3, PARP, Bax and Bcl-2.
     Results
     1. After PCR amplification of the cagPAI genes, the results showed that100%(116/116) of the isolates were positive for cagA, cagL, cagM, cagT and cagX, whereas89.7%(104/116) and82.8%(96/116)strains had cagE and cagl, respectively. Isolates with partial cagPAI were found in25.9%(30/116) strains, which present at a higher frequency in chronic gastritis (44.4%,24/54) than that of gastric ulcer, duodenal ulcer and gastric cancer (9.7%,6/62)(p<0.001). None of the isolates completely lacked the cagPAI.
     cagA3'variable regions of24strains fell into two types:East Asian-type (91.7%) classified as EPIYA-A-B-D and Western-type (28.3%) classified as EPIYA-A-B-C. The proteins encoded by cagPAI genes (CagI、CagM、CagT、CagX) were conserved with high homology except CagL.The phylogenetic trees of the full-length CagPAI proteins (CagI, CagL, CagM, CagT and CagX) demonstrated that all CagPAI proteins in the isolates could be placed into two major groups (East Asian-group and Western-group), and most of them were included in the East Asian-group.
     It showed that sla/m2(48.3%) and s1c/m2(13.8%) strains were the most prevalent H. pylori strains in this region. Thirty-one percent of strains (31.0%) possessed dupA, and the prevalence of dupA was significantly higher in strains from patients with gastric ulcer, duodenal ulcer and gastric cancer (40.3%) than that from chronic gastritis (20.4%, p=0.02). Sequencing of dupA revealed an ORF of2,449-bp, which was called as dupA (2499).
     2. Sequencing of dupA in H. pylori WH-21revealed an ORF of2,449-bp, which was dupA (2499). There was homology among dupA sequences of the nine strains from Weihai, approximately99.3%. The homology among strains from Weihai and two strains from Japan was99.25%, while it was91.65%among fourteen strians isolated from different regions. Using the bioinformatics software, DupA (2499) was classified as stable one with high hydrophilicity and antigenicity. There was transmembrane helices but no signal peptide in DupA (2499), which located in membrane. The major structural element of polypeptide chain was α-helix, and one coiled coil was predicted in DupA (2499). It contained combined sites of ADP、ATP and Mg2+in the tertiary structure. The protein was predicted to have high homology with the CagE_TrbE_VirB superfamily with ATP binding site.
     3. The expressed recombination DupA fusion protein was obtained, and the protein exhibited a clear ATPase activity (129.5±17.8U/mgproft. The polyclonal antibody to recombinant DupA fusion protein was produced in the study, and the antibody titer was1:6.4×104.
     4. DupA (2499) was located in bacterial membrane using Western blotting, which interacted urease and HSP60by IP and MS.
     5. The isogenic dupA mutant of H. pylori was obtained and identified by PCR using one pair of primers (P1and P4) and Western blotting using anti-DupA antibody.
     6. After used H. pylori to infect GES-1cells, the quantities of CagA protein translocated into the cells were similar between the wild type strain and the dupA-deleted mutant. No Significantly decreased numbers of the dupA-deleted mutant bound to GES-1cells were compared with the wild type strain both in CFU assay [(27.2±7.1)×106and (28.5±6.9)×106, p=0.772] and adhesion rate assay (81.0%and78.8%,p=0.724).
     7. The result revealed that the wild type strain had a stronger growth than the dupA-deleted mutant in low pH (p<0.05). Reduced urease secretion levels were found in dup A-deleted mutant especially in low pH comparing to the wild type strain.
     After the two strains infected GES-1cells, IL-8levels were significantly higher in supernatants co-cultured with the wild type strain than in those with its dupA-deleted mutant (p<0.001)
     8. The amounts of vital cells were decreased which were infected with wild type strain, compared to those for the mutant-infected cells after12h (p<0.05). After12h, apoptosis was observed in MKN-45cells treated both with the wild type strain and the deleted-dupA mutant. The number of apoptotic cells resulting from treatment with the wild type strain was significantly higher than in cells treated with the deleted-dupA mutant (p<0.05). The increase of cleaved Caspase-3, cleaved PARP and Bax in MKN-45cells exposed to the wild type strain was significantly higher than that exposed to the deleted-dupA mutant, while the decrease of Bcl-2in the wild type strain was more obvious from6h.
     Conclusions
     1. H. pylori isolated from patients are highly virulent strains, which associates with the high risk of gastroduodenal diseases in the region at high risk of gastroduodenal diseases. The virulent characteristics of H. pylori involve the more active East Asian-type cagA, intact cagPAI, East Asian-type cagPAI, highly virulent vacA genotypes, and dupA (2499).
     2. dupA (2499) is conserved and the homology is high, which is suitable for cloning and expression in vitro. DupA (2499) is classified as stability and has strong antigenicity, which is suitable for inducing antibody.
     3. DupA (2499) locates in membrane independently of CagPAI to involved the urease secretion as ATPase, which is not involved the adhesion and CagA delivery to host cells
     4. DupA interacted and involved the urease secretion in H. pylori cells, and the characteristic makes dupA-positive strains resistant to high acid conditions. dupA-positive strain is resistant to high acid conditions and induces IL-8secretion, and the characteristics associated with duodenal ulcer development. DupA inhibits tumor cell growth, and leads to mitochondria mediated apoptosis to reduce the risk for gastric cancer.
引文
[1]Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet,1983,321(8336):1273-1275.
    [2]Yakoob MY, Hussainy AS. Chronic gastritis and Helicobacter pylori:a histopathological study of gastric mucosal biopsies. J Coll Physicians Surg Pak,2010,20(11):773-775.
    [3]Abdullah SM, Hussein NR, Salih AM, et al. Infection with Helicobacter pylori strains carrying babA2 and cagA is associated with an increased risk of peptic ulcer disease development in Iraq. Arab J Gastroenterol,2012,13(4):166-169.
    [4]Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer,2002,2(1):28-37.
    [5]Axon A. Helicobacter pylori:what do we still need to know? J Clin Gastroenterol,2006,40:15-19.
    [6]NIH Consenus Conference. Helicobacter pylori in peptic ulcer disease. NIH consenus development panel on Helicobacter pylori in peptic ulcer disease. JAMA,1994,72:65-69.
    [7]Shiota S, Suzuki R, Yamaoka Y. The significance of virulence factors in Helicobacter pylori. J Dig Dis,2013,14(7):341-349.
    [8]Poursina F, Faghri J, Moghim S, et al. Assessment of cagE and babA mRNA expression during morphological conversion of Helicobacter pylori from spiral to coccoid. Curr Microbiol,2013, 66(4):406-413.
    [9]Crew KD, Neugut Al. Epidemiology of gastric cancer. World J Gastroenterol,2006,12:354-362.
    [10]Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med,2002,347:1175-1186.
    [11]Gong YH, Wang Y, Yuan Y. Distribution of Helicobacter pylori in north China. World J Gastroenterol,2005,11:3523-3527.
    [12]Zhang DH, Zhou LY, Lin SR, et al. Recent changes in the prevalence of Helicobacter pylori infection among children and adults in high or low-incidence regions of gastric cancer in China. Chin Med J (Engl),2009,122:1759-1763.
    [13]Sinha SK, Martin B, Gold BD, et al. The incidence of Helicobacter pylori acquisition in children of a Canadian First Nations community and the potential for parent-to-child transmission. Helicobacter,2004,9:59-68.
    [14]Escobar ML, Kawakami E. Evidence of mother-child transmission of Helicobacter pylori infection. Arq Gastroenterol,2004,41:239-244.
    [15]Kivi M, Johansson AL, Reilly M, et al. Helicobacter pylori status in family members as risk factors for infection in children. Epidemiol Infect,2005,133:645-652.
    [16]Ma JL, You WC, Gail MH, et al. Helicobacter pylori infection and mode of transmission in a population at high risk of stomach cancer. Int J Epidemiol,1998,27:570-573.
    [17]杨钰欣,李丹丹,江吉富.幽门螺杆菌疫苗相关研究进展.中国免疫学杂志,2012,28(5):478-480.
    [18]Roder DM. The epidemiology of gastric cancer. Gastric Cancer,2002,5 suppl 1:5-11.
    [19]Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol, 2009,472:467-477.
    [20]Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol,2013, 107(3):230-236.
    [21]Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol, 2006,12(1):17-20.
    [22]韩兢,王洁贞,李会庆,等.山东省主要恶性肿瘤死亡率地域分布的趋势面分析.山东医科大学学报,2000,38(03):255-257.
    [23]杨建华,刘穗媛,陈兴艳,等.威海市不同地域恶性肿瘤死亡变化趋势探讨.中国癌症杂志,2000,10(3):260-263.
    [24]Park JG, Yang HK, Kim WH, et al. Report on the first meeting of the International Collaborative Group on Hereditary Gastric Cancer. J Natl Cancer Inst,2000,92(21):1781-1782.
    [25]Barber M, Fitzgerald RC, Caldas C. Familial gastric cancer-aetiology and pathogenesis. Best Pract Res Clin Gastroenterol,2006,20(4):721-734.
    [26]Bertuccio P, Rosato V, Andreano A, et al. Dietary patterns and gastric cancer risk:a systematic review and meta-analysis. Ann Oncol,2013,24(6):1450-1458.
    [27]Gonzalez CA, Lujan-Barroso L, Bueno-de-Mesquita HB, et al. Fruit and vegetable intake and the risk of gastric adenocarcinoma:a reanalysis of the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study after a longer follow-up. Int J Cancer,2012, 131(12):2910-2919.
    [28]Nishino Y, Inoue M, Tsuji I, et al. Tobacco smoking and gastric cancer risk:an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol,2006,36(12):800-807.
    [29]Fukayama M, shiku T. Epstein Barr virus associated gastric carcinoma. Pathol Res and Pract. 2011,207:529-537.
    [30]徐卫国,张力建,陆哲明,等.上消化道癌组织中人乳头瘤病毒16及E6 mRNA检测的临床意义.中华医学杂志,2003,83(21):1910-1914.
    [31]Backert S, Schwarz T, Miehlke S, et al. Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect Immun,2004,72(2):1043-1056.
    [32]Conteduca V, Sansonno D, Lauletta G, et al. H. pylori infection and gastric cancer:state of the art (review). Int J Oncol,2013,42(1):5-18.
    [33]Polk DB, Peek RM Jr. Helicobacter pylori:gastric cancer and beyond. Nat Rev Cancer,2010, 10(6):403-414.
    [34]钱缙,房静远.幽门螺杆菌致胃癌相关因素研究进展.肿瘤,2012,32(8):651-653.
    [35]Lu H, Yamaoka Y, Graham DY. Helicobacter pylori virulence factors:facts and fantasies. Curr Opin Gastroenterol,2005,21(6):653-659.
    [36]Yamaoka Y. Pathogenesis of Helicobacter pylori-Related Gastroduodenal Diseases from Molecular Epidemiological Studies. Gastroenterol Res Pract.2012; 2012:371503.
    [37]Yuan XY, Wang MY, Wang XY, et al. Non-detection of Epstein-Barr virus and Human Papillomavirus in a region of high gastric cancer risk indicates a lack of a role for these viruses in gastric carcinomas. Genet Mol Biol,2013,36(2):183-184
    [38]Censini S, Lange C, Xiang Z, et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A.1996; 93(25):14648-14653.
    [39]Akopyants NS, Clifton SW, Kersulyte D, et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol,1998,28:37-53.
    [40]Slater E, Owen RJ, Williams M, et al. Conservation of the cag pathogenicity island of Helicobacter pylori:associations with vacuolating cytotoxin allele and IS605 diversity. Gastroenterology,1999,117(6):1308-1315.
    [41]Lai CH, Perng CL, Lan KH, et al. Association of IS605 and cag-PAl of Helicobacter pylori Isolated from Patients with Gastrointestinal Diseases in Taiwan. Gastroenterol Res Pract,2013, 2013:356217.
    [42]Nilsson C, Sillen A, Eriksson L, et al. Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. Infect Immun,2003, 71(11):6573-6581.
    [43]Ali M, Khan AA, Tiwari SK, et al. Association between cag-pathogenicity island in Helicobacter pylori isolates from peptic ulcer, gastric carcinoma, and non-ulcer dyspepsia subjects with histological changes. World J Gastroenterol,2005,11 (43):6815-6822.
    [44]Covacci A, Falknow S, Berg DE, et al. Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pyloril Trends Microbiol,1997,5:205.
    [45]Takeshi Azuma, Akiyo Yamakawa, Shiho Yamazaki, et al. Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J Clin Microbiol,2004,42(6): 2508-2517
    [46]Segal ED, Lange C, Covacci A, et al. Induction of host signal transduction pathways by Helicobacter pylori. Proc Natl Acad Sci USA,1997,94:7595.
    [47]Glocker E, Lange C, Covacci A, et al. Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-κB activation. Infect Immu,1998,66:2346.
    [48]Barrozo RM, Cooke CL, Hansen LM, et al. Functional Plasticity in the Type IV Secretion System of Helicobacter pylori. PLoS Pathog,2013,9(2):e1003189.
    [49]Backert S, Selbach M. Role of type secretion in Helicobacter pylori pathogenesis. Cell Microbiol,2008,10:1573-1581.
    [50]Olbermann P, Josenhans C, Moodley Y, et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet,2010, 6(8):el001069.
    [51]Sugiyama T, Asaka M. Helicobacter pylori infection and gastric cancer. Med Electron Microsc, 2004,37:149-57.
    [52]Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer,2004,4:688-694.
    [53]van Doom LJ. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology,1998,115:58-66.
    [54]Yamaoka Y. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology,2002,123:414-424.
    [55]Plummer M, van Doom LJ, Franceschi S, et al. Helicobacter pylori cytotoxin-associated genotype and gastric precancerous lesions. J Natl Cancer Inst,2007,99:1328-1334.
    [56]Franco AT, Johnston E, Krishna U, et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res,2008,68:379-387.
    [57]Franco AT, Israel DA, Washington MK, et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A,2005,102(30):10646-10651.
    [58]El-Etr SH, Mueller A, Tompkins LS, et al. Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. J Infect Dis,2004, 190(8):1516-1523.
    [59]Gwack J, Shin A, Kim CS, et al. CagA-producing Helicobacter pylori and increased risk of gastric cancer:a nested case-control study in Korea. Br J Cancer,2006,95(5):639-641.
    [60]Azuma T, Yamakawa A, Yamazaki S, et al. Correlation between variation of the 3'region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J Infect Dis,2002, 186(11):1621-1630.
    [61]Brandt S, Kwok T, Hartig R, et al. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A,2005, 102(26):9300-9305.
    [62]Saadat I, Higashi H, Obuse C, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature,2007,447 (7142):330-333.
    [63]Umeda M, Murata-Kamiya N, Saito Y, et al. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem,2009,284(33):22166-22172.
    [64]Yamaoka Y, Kodama T, Kashima K, et al. Variants of the 3'region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol,1998,36(8):2258-2263.
    [65]Higashi H, Tsutsumi R, Fujita A, et al. Biological activity of the Helicobacter pylon virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA,2002,99 (22):14428-14433.
    [66]Miura M, Ohnishi N, Tanaka S, et al. Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice. Int J Cancer,2009,125(11):2497-2504.
    [67]Vilaichone RK, Mahachai V, Tumwasorn S, et al. Molecular epidemiology and outcome of Helicobacter pylori infection in Thailand:a cultural cross roads. Helicobacter,2004, 9(5):453-459.
    [68]Yamazaki S, Yamakawa A, Okuda T, et al. Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J Clin Microbiol,2005,43(8): 3906-3916.
    [69]Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol,2006,1:63-96.
    [70]Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol,2005,3:320-332.
    [71]Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori Infection. Clin Microbiol Rev,2006,19(3):449-490.
    [72]Ayala G, Flores-Luna L, Hernandez-Amaro D, et al. Association of circulating VacA-neutralizing antibodies with gastric cancer and duodenal ulcer. Cancer Causes Control, 2011,22(10):1425-1434.
    [73]Lopez-Vidal Y, Ponce-de-Leon S, Castillo-Rojas G, et al. High diversity of vacA and cagA Helicobacter pylori genotypes in patients with and without gastric cancer. PLoS One,2008, 3(12):e3849.
    [74]Gangwer KA, Mushrush DJ, Stauff DL, et al. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci U S A,2007,104:16293-16298.
    [75]Ito Y, Azuma T, Ito S, et al. Full-length sequence analysis of the vacA gene from cytotoxic and noncytotoxic Helicobacter pylori. J Infect Dis.1998,178(5):1391-1398.
    [76]Perez-Perez GI, Peek RM Jr, Atherton JC, et al. Detection of anti-VacA antibody responses in serum and gastric juice samples using type sl/ml and s2/m2 Helicobacter pylori VacA antigens. Clin Diagn Lab Immunol,1999,6(4):489-493.
    [77]Lu H, Hsu PI, Graham DY, et al. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology,2005,128(4):833-848.
    [78]Tomb JF, White O, Kerlavage AR, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature,1997,388:539-547.
    [79]Alm RA, Ling LS, Moir DT, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature,1999,397:176-180.
    [80]Alm RA, Trust TJ. Analysis of the genetic diversity of Helicobacter pylori:the tale of two genomes. J Mol Med,1999,77:834-846.
    [81]Hussein NR, Argent RH, Marx CK, et al. Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J Infect Dis, 2010,202(2):261-269.
    [82]Queiroz DM, Moura SB, Rocha AM, et al. The genotype of the Brazilian dupA-positive Helicobacter pylori strains is dupAl. J Infect Dis,2011,203 (7):1033-1034.
    [83]Takahashi A, Shiota S, Matsunari O, et al. Intact long-type dupA as a marker for gastroduodenal diseases in Okinawan subpopulation, Japan. Helicobacter,2013,18(1):66-72.
    [84]Schmidt HM, Andres S, Kaakoush NO, et al. The prevalence of the duodenal ulcer promoting gene (dupA) in Helicobacter pylori isolates varies by ethnic group and is not universally associated with disease development:a case-control study. Gut Pathog,2009,1(1):5.
    [85]Kersulyte D, Lee W, Subramaniam D, et al. Helicobacter Pylori's plasticity zones are novel transposable elements. PLoS One,2009,4(9):e6859.
    [86]Zhang Z, Zheng Q, Chen X, et al. The Helicobacter pylori duodenal ulcer promoting gene, dupA in China. BMC Gastroenterol,2008,8:49.
    [87]Arachchi HS, Kalra V, Lal B, et al. Prevalence of duodenal ulcer-promoting gene (dupA) of Helicobacter pylori in patients with duodenal ulcer in North Indian population. Helicobacter, 2007,12(6):591-597.
    [88]Hussein NR, Mohammadi M, Talebkhan Y, et al. Differences in virulence markers between Helicobacter pylori strains from Iraq and those from Iran:potential importance of regional differences in H. pylori-associated disease. J Clin Microbiol,2008,46(5):1774-1779.
    [89]Abadi AT, Taghvaei T, Wolfram L, et al. Infection with Helicobacter pylori Strains Lacking dupA is Associated with an Increased Risk of Gastric Ulcer and Gastric Cancer Development. J Med Microbiol,2012,61(1):23-30.
    [90]Imagawa S, Ito M, Yoshihara M, et al. Helicobacter pylori dupA and gastric acid secretion are negatively associated with gastric cancer development. J Med Microbiol,2010,59:1484-1489.
    [91]Gomes LI, Rocha GA, Rocha AM, et al. Lack of association between Helicobacter pylori infection with dupA-positive strains and gastroduodenal diseases in Brazilian patients. Int J Med Microbiol,2008,298(3-4):223-230.
    [92]Queiroz DM, Rocha GA, Rocha AM, et al. dupA polymorphisms and risk of Helicobacter pylori-associated diseases. Int J Med Microbiol,2011,301 (3):225-228.
    [93]Pacheco AR, Proenca-Modena JL, Sales Al, et al. Involvement of the Helicobacter pylori plasticity region and cag pathogenicity island genes in the development of gastroduodenal diseases. Eur J Clin Microbiol Infect Dis,2008,27(11):1053-1059.
    [94]Tuncel IE, Hussein NR, Bolek BK, et al. Helicobacter pylori virulence factors and their role in peptic ulcer diseases in Turkey. Acta Gastroenterol Belg,2010,73(2):235-238.
    [95]Nguyen LT, Uchida T, Tsukamoto Y, et al. Helicobacter pylori dupA gene is not associated with clinical outcomes in the Japanese population. Clin Microbiol Infect,2010,16 (8):1264-1269.
    [96]Wang MY, Lin J, Sun SB, et al. Identification of Granulicatella elegans from a case of infective endocarditis, based on the phenotypic characteristics and 16SrRNA gene sequence. J Cardiovasc Med (Hagerstown),2012, [Epub ahead of print]. doi: 10.2459/JCM.0b013e328356a471.
    [97]Zhou J, Zhang J, Xu C, et al. cagA genotype and variants in Chinese Helicobacter pylori strains and relationship to gastroduodenal diseases. J Med Microbiol,2004,53(Pt 3):231-235.
    [98]Zhang Y, Argent RH, Letley DP, et al. Tyrosine phosphorylation of CagA from Chinese Helicobacter pylori isolates in AGS gastric epithelial cells. J Clin Microbiol,2005,43 (2): 786-790.
    [99]Schmidt HM, Andres S, Nilsson C, et al. The cagPAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore. Eur J Clin Microbiol Infect Dis,2010,29(4):439-451.
    [100]Kauser F, Hussain MA, Ahmed I,et al. Comparing genomes of Helicobacter pylori strains from the high-altitude desert of Ladakh, India. J Clin Microbiol,2005,43(4):1538-1545.
    [101]Yakoob J, Abid S, Abbas Z,et al. Distribution of Helicobacter pylori virulence markers in patients with gastroduodenal diseases in Pakistan. BMC Gastroenterol,2009,9:87.
    [102]Tan HJ, Rizal AM, Rosmadi MY, et al. Distribution of Helicobacter pylori cagA, cagE and vacA in different ethnic groups in Kuala Lumpur, Malaysia. J Gastroenterol Hepatol,2005, 20(4):589-594.
    [103]Falush D, Wirth T, Linz B, et al. Traces of human migrations in Helicobacter pylori populations. Science,2003,299 (5612):1582-1585.
    [104]Chen XJ, Yan J, Shen YF. Dominant cagA/vacA genotypes and coinfection frequency of H. pylori in peptic ulcer or chronic gastritis patients in Zhejiang Province and correlations among different genotypes, coinfection and severity of the diseases. Chin Med J (Engl),2005, 118(6):460-467.
    [105]Kauser F, Khan AA, Hussain MA, et al. The cag pathogenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations. J Clin Microbiol,2004,42(11):5302-5308.
    [106]Ikenoue T, Maeda S, Ogura K, et al. Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island. Clin Diagn Lab Immunol,2001,8(1):181-186.
    [107]Wang H, Han J, Chen D et al. Characterization of CagI in the cag pathogenicity island of Helicobacter pylori. Curr Microbiol,2012,64(2):191-196.
    [108]Kwok T, Zabler D, Urman S, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature,2007,449(7164):862-866.
    [109]Hussein NR. The association of dupA and Helicobacter pylori-related gastroduodenal diseases. Eur J Clin Microbiol Infect Dis.2010; 29(7):817-821.
    [110]Gasteiger E, Hoogland C, Gattiker A, et al. Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook, Humana Press.2005,571-607.
    [111]Petersen TN, Brunak S, von Heijne G, et al. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nat Methods.2011,8(10):785-786.
    [112]Shen HB, Chou KC. Signal-3L:A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun.2007,363(2):297-303.
    [113]Hofmann K, Stoffel W. TMbase-A database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler.1993,374,166.
    [114]Cserzo M, Wallin E, Simon I, et al. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins:the dense alignment surface method. Protein Eng.1997,10(6):673-676.
    [115]Yu NY, Wagner JR, Laird MR, et al. PSORTb 3.0:improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics.2010,26 (13):1608-1615.
    [116]Gamier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol.1978, 120(1):97-120.
    [117]Gibrat JF, Gamier J, Robson B. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol. 1987,198(3):425-443.
    [118]Levin JM, Robson B, Gamier J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett.1986,205(2):303-308.
    [119]Deleage G, Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng.1987,1(4):289-294.
    [120]Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng.1996,9(2):133-142.
    [121]Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science.1991, 252(5009):1162-1164.
    [122]Wass MN, Kelley LA, Sternberg MJ.3DLigandSite:predicting ligand-binding sites using similar structures. Nucleic Acids Res.2010,38(Web Server issue):W469-473.
    [123]Marchler-Bauer A, Lu S, Anderson JB, et al. CDD:a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res.2011,39:D225-229.
    [124]Jung SW, Sugimoto M, Shiota S, et al. The intact dupA cluster is a more reliable Helicobacter pylori virulence marker than dupA alone. Infect Immun.2012,80 (1):381-387.
    [125]魏香,曾宪纲,周海梦.蛋白质结构中卷曲螺旋的研究进展中国生物化学与分子生物学报.2004,20(5):565-571.
    [126]Hata S, Kitamura F, Sorimachi H. Efficient expression and purification of recombinant human μ-calpain using an Escherichia coli expression system. Genes Cells.2013,18(9):753-763.
    [127]Maitrepierre E, Sigoillot M, Le Pessot L, et al. An efficient Escherichia coli expression system for the production of a functional N-terminal domain of the T1R3 taste receptor. Bioengineered.2013,4(1):25-29.
    [128]Hata S, Ueno M, Kitamura F, et al. Efficient expression and purification of recombinant human m-calpain using an Escherichia coli expression system at low temperature. J Biochem. 2012,151(4):417-422.
    [129]Singh R, Avliyakulov NK, Braga M, et al. Proteomic identification of mitochondrial targets of arginase in human breast cancer. PLoS One.2013; 8(11):e79242.
    [130]Rogers L, Overall CM. Proteolytic post translational modification of proteins:proteomic tools and methodology. Mol Cell Proteomics.2013,12(12):3532-3542.
    [131]Pirmoradian M, Budamgunta H, Chingin K, et al. Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol Cell Proteomics.2013,12 (11):3330-3338.
    [132]Ghafourian S, Sekawi Z, Raftari M, et al. Application of proteomics in lab diagnosis.Clin Lab.2013,59(5-6):465-474.
    [133]Zhou T, Zhou ZM, Guo XJ. Bioinformatics for spermatogenesis:annotation of male reproduction based on proteomics. Asian J Androl.2013,15(5):594-602.
    [134]Hicks SW, Galan JE. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors.Nat Rev Microbiol.2013,11(5):316-326.
    [135]Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization.Biochim Biophys Acta.2013,1833(2):260-273.
    [136]Mohabatkar H, Keyhanfar M, Behbahani M. Protein bioinformatics applied to virology.Curr Protein Pept Sci.2012,13(6):547-559.
    [137]Jordan F, Nguyen TP, Liu WC. Studying protein-protein interaction networks:a systems view on diseases.Brief Funct Genomics.2012,11(6):497-504.
    [138]Kacar B, Gaucher EA. Experimental evolution of protein-protein interaction networks. Biochem J.2013,453(3):311-319.
    [139]Kuzmanov U, Emili A. Protein-protein interaction networks:probing disease mechanisms using model systems.Genome Med.2013,5(4):37.
    [140]Fulkerson JF Jr, Mobley HL. Membrane topology of the NixA nickel transporter of Helicobacter pylori:two nickel transport-specific motifs within transmembrane helices Ⅱ and Ⅲ. J Bacteriol.2000,182(6):1722-1730.
    [141]Osborn MJ, Gander JE, Parisi E, et al. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem.1972,247(12):3962-3972.
    [142]Salih AM, Goreal A, Hussein NR, et al. The distribution of cagA and dupA genes in Helicobacter pylori strains in Kurdistan region, northern Iraq. Ann Saudi Med.2013, 33(3):290-293.
    [143]Parzecka M, Szaflarska-Poplawska A, Gasiorowska J, et al. The prevalence of dupA (duodenal ulcer-promoting gene) of Helicobacter pylori in children and adolescents--own observation. Pol Merkur Lekarski.2013,34(203):277-280.
    [144]Devi VS, Mittl PR. Monitoring the disulfide bond formation of a cysteine-rich repeat protein from Helicobacter pylori in the periplasm of Escherichia coli. Curr Microbiol.2011, 62(3):903-907.
    [145]Lee IO, Kim JH, Choi YJ, et al. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem.2010,285 (21):16042-16050.
    [146]Fischer W, Puls J, Buhrdorf R, et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island:essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol.2001,42(5):1337-1348.
    [147]Jiang XC. Generation of general and tissue-specific gene knockout mouse models. Methods Mol Biol.2013,1027:253-271.
    [148]Wang Y, Li X, Milne CB, et al. Development of a gene knockout system using mobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microbiol.2013,79(19):5853-5863.
    [149]Kim SB, Timmusk S. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa. PLoS One.2013, 8(6):e68092.
    [150]Zhong Q, Shao S, Mu R, et al. Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep.2011,38(1):503-509.
    [151]Ling F, Wang X, Dai D, et al. The Helicobacter pylori protein CagM is located in the transmembrane channel that is required for CagA translocation. Curr Microbiol.2013; 67(5):531-536.
    [152]Piggot TJ, Holdbrook DA, Khalid S. Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B.2011, 115(45):13381-13388.
    [153]Brambach BC, Michels A, Franzke J, et al. Current density and conductivity dependent electroporation of Escherichia coli C600. Prog Biophys Mol Biol.2013,111(1):46-54.
    [154]Shibayama K, Nagasawa M, Ando T,et al. Usefulness of adult bovine serum for Helicobacter pylori culture media. Clin Microbiol.2006,44(11):4255-4257.
    [155]McGuckin MA, Every AL, Skene CD, et al. Mucl mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology.2007, 133(4):1210-1218.
    [156]Boonyanugomol W, Chomvarin C, Song JY, et al. Effects of Helicobacter pylori γ-glutamyltranspeptidase on apoptosis and inflammation in human biliary cells. Dig Dis Sci. 2012,57(10):2615-2624.
    [157]Yang Y, Deng CS, Peng JZ, et al. Effect of Helicobacter pylori on apoptosis and apoptosis related genes in gastric cancer cells. Mol Pathol.2003,56(1):19-24.
    [158]Yamaoka Y. Mechanisms of disease:Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol.2010,7(11):629-641.
    [159]Terradot L, Waksman G. Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J.2011,278(8):1213-1222.
    [160]Evans DG Karjalainen TK, Evans DJ Jr, et al. Cloning, nucleotide sequence, and expression of a gene encoding an adhesin subunit protein of Helicobacter pylori. J Bacteriol.1993, 175(3):674-683.
    [161]Benktander J, Angstrom J, Breimer ME, et al. Redefinition of the carbohydrate binding specificity ofHelicobacter pylori BabA adhesin. J Biol Chem.2012,287(38):31712-31724.
    [162]Senkovich OA, Yin J, Ekshyyan V, Conant C, et al. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun.2011,79(8):3106-3116.
    [163]Uberti AF, Olivera-Severo D, Wassermann GE, et al. Pro-inflammatory properties and neutrophil activation by Helicobacter pylori urease. Toxicon.2013,69:240-249.
    [164]Jacobson K, Chiba N, Chen Y, et al. Gastric acid secretory response in Helicobacter pylon-positive patients with duodenal ulcer disease. Can J Gastroenterol.2001,15(1):29-39.
    [165]Cheung TH, Chung TK, Lo KW, et al. Apotosis-related proteins in cervical intraepithelial neoplasia and squamous cell carcinoma of the cervix. Gynecol Oncol,2002,86(1):14-18.
    [166]Hao C, Beguinot F, Condorelli G, et al. Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res.2001,61(3):1162-1170.
    [167]Luo JJ, Li CY, Liu S, et al. Overexpression of Helicobacter pylori VacA N-terminal fragment induces proinflammatory cytokine expression and apoptosis in human monocytic cell line through activation of NF-κB. Can J Microbiol.2013,59(8):523-533.
    [168]Fan X, Gunasena H, Cheng Z, et al. Helicobacter pylori urease binds to class Ⅱ MHC on gastric epithelial cells and induces their apoptosis. J Immunol.2000,165(4):1918- 1924.
    [169]Zhang H, Fang DC, Lan CH,et al. Helicobacter pylori infection induces apoptosis in gastric cancer cells through the mitochondrial pathway. J Gastroenterol Hepatol.2007,22(7):1051-1056.
    [170]Verdecia MA, Huang H, Dutil E, et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol.2000,7(7):602-608.
    [171]Nicoletti VG, Stella AM. Role of PARP under stress conditions:cell death or protection? Neurochem Res.2003,28(2):187-194.
    [172]Nossa CW, Blanks SR. Helicobacter pylori activation of PARP-1:usurping a versatile regulator of host cellular health. Gut Microbes.2010,1(6):373-378.
    [173]Wood WG, Igbavboa U, Muller WE, et al. Statins, Bcl-2, and Apoptosis:Cell Death or Cell Protection? Mol Neurobiol.2013,48(2):308-314
    [174]Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol.2013,5(2).pii:a008722.
    [175]Zeng H, Kong X, Peng H, et al. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci.2012,16 (6):711-727.
    [176]Renault TT, Manon S. Bax:Addressed to kill. Biochimie.2011,93(9):1379-1391.
    [177]Ghibelli L, Diederich M. Multistep and multitask Bax activation. Mitochondrion.2010,10(6): 604-613.
    [178]Lalier L, Cartron PF, Juin P, et al. Bax activation and mitochondrial insertion during apoptosis. Apoptosis.2007,12(5):887-896.
    [179]Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell.2003,11(3):577-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700